Laws and Theorems of Boolean Algebra

Operations with 0 and 1 :

1. $\mathrm{X}+0=\mathrm{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent laws:
3. $X+X=X$
3D. $X \cdot X=X$

Involution laws:
4. $\left(X^{\prime}\right)^{\prime}=X$

Laws of complementarity:
5. $X+X^{\prime}=1$
5D. $X \cdot X^{\prime}=0$

Commutative laws:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $X Y=Y X$

Associative laws:
7. $(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
7D. $(X Y) Z=X(Y Z)=X Y Z$

Distributive laws:
8. $\mathrm{X}(\mathrm{Y}+\mathrm{Z})=\mathrm{XY}+\mathrm{XZ}$
8D. $\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$

Simplification theorems:
9. $X Y+X Y^{\prime}=X$
9D. $(X+Y)\left(X+Y^{\prime}\right)=X$
10. $\mathrm{X}+\mathrm{XY}=\mathrm{X}$
10D. $X(X+Y)=X$
11. $\left(X+Y^{\prime}\right) Y=X Y$
11D. $X Y^{\prime}+Y=X+Y$

DeMorgan's laws:
12. $(\mathrm{X}+\mathrm{Y}+\mathrm{Z}+\ldots)^{\prime}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$
12D. $(X Y Z \ldots)^{\prime}=X^{\prime}+Y^{\prime}+Z^{\prime}$
13. $[f(A, B, \ldots, Z, 0,1,+, \bullet)]^{\prime}=f\left(A^{\prime}, B^{\prime}, \ldots, Z^{\prime}, 1,0, \bullet,+\right)$

Duality:
14. $(X+Y+Z+\ldots)^{D}=X Y Z \ldots$

14D. $(X Y Z \ldots)^{D}=X+Y+Z+\ldots$
15. $[f(A, B, \ldots, Z, 0,1,+, \bullet)]^{\mathrm{D}}=\mathrm{f}(\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}, 1,0, \cdot,+)$

Theorems for multiplying out and factoring:
16. $(X+Y)\left(X^{\prime}+Z\right)=X Z+X^{\prime} Y$

16D. $X Y+X^{\prime} Z=(X+Z)\left(X^{\prime}+Y\right)$
Consensus theorems:
17. $X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z \quad$ 17D. $(X+Y)(Y+Z)\left(X^{\prime}+Z\right)=(X+Y)\left(X^{\prime}+Z\right)$

