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OBJECTIVES 
• Learn how to create a state machine to control a registered ALU (the RALU created in Lab 4), also called a 

datapath, and create a simple CPU. 
• Understand how opcodes are translated into control words inside a CPU. 
• Perform basic assembly programming and hand-assemble a program for a CPU. 

INTRODUCTION 

We have spent the semester so far learning about the building blocks used in all digital circuits. This has culminated 
in the creation of a RALU that can execute general math operations in Lab 4 and learning how to design state 
machines in Lab 5. By combining the concepts learned in Lab 4 and 5, we can create a simple central processing 
unit (CPU), the heart of any digital computer. 

In this lab, you will create a controller for the RALU that you created at the end of Lab 4. During Lab 4, you 
controlled this datapath by providing the MUX select lines directly from your DAD. While this allowed fine grained 
control of exactly what your RALU was doing at any point in time, it is not an efficient way to encode what 
operations should be completed and it is error prone if the control word changes close to a rising clock edge. A 
much better solution is to create a state machine that can interpret short numbers representing each operation that 
the CPU can perform (called opcodes) and output the corresponding control word sequences to perform that 
operation. This abstracts away direct control of the RALU and allows you to think about your program as a series 
of operations that the controller can convert into the required control word values. You can also make a single 
opcode represent a series of operations to be done, such as an opcode that takes the 2’s complement of the values 
in a register. 

LAB STRUCTURE 
In this lab, you will be creating and programming a simple CPU. In § 1, you will be creating a state machine that 
can control your Lab 4 ALU and convert four different opcodes to control word sequences that perform 
corresponding operations. You will then expand upon these concepts to create a CPU in § 2 that has eight possible 
opcodes and can read a program made from those opcodes from ROM. 

 

REQUIRED MATERIALS 
• Your entire lab kit (including your DAD) 
• Note that in this lab, you can use the DAD to 

generate your inputs and to show your outputs 
(instead of switch and LED circuits); it is your 
choice!  

• UF's DAD Waveforms Tutorial 
• DE10-Lite Pins 
• Document on website: Explanation_of_Table4 

from Lab 4 
• ROM Creation Tutorial 

SUPPLEMENTAL MATERIALS 
• DE10-Lite Manual 
• DE10-Lite Schematic 
• PLD on Breadboard Programming WARNING!  
 

 
  

https://mil.ufl.edu/3701/docs/Waveforms_tutorial.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_Pins.pdf
https://mil.ufl.edu/3701/labs/Lab4_explanation_of_Table4.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Manual.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Schematic.pdf
https://mil.ufl.edu/3701/programming_warning.html
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PRE-LAB PROCEDURE 

INTRODUCTION: LAB 4 REVIEW 
The RALU designed in the second part of Lab 4 consisted of four 4-input MUXs on the inputs of REGA and 
four 4-input MUXs on the inputs of REGB.  The select lines for these MUXs were designated MSA1:0 and 
MSB1:0, respectively.  For a quick review, the MUXs selected a bus as shown in Table 1.  

The outputs of REGA and REGB were then passed to a combinatorial logic block and the results of this were 
then passed to four 8-input MUXs.  The select lines for these four MUXs were designated as MSC2:0. For review 
purposes, these (3) lines selected the functions shown in Table 2.  

There is no need to modify your lab 4 RALU design unless it does not work, although adding a reset input will be 
necessary in Part 2.  We’ll call this the Lab 4* RALU. 
 

1. FIRST RALU CONTROLLER 

A state machine controller and Instruction Register 
(IR) are now added to the Lab 4* RALU to facilitate 
the execution of simple instructions. See Figure 1 
for the total system components of this section.  The 
IR register contains 2 bits that represent the four 
instructions shown in Table 3.  In this part of the 
lab, you will ultimately use Quartus to make the 
project LAB6_Part1.  

The flowchart (NOT an ASM) for the controller is shown in Figure 2. All instructions execute in one cycle (plus 
one cycle to load the IR register). I strongly encourage you to use VHDL for the combinatorial part of the controller. 

Instruction Register Design 
The IR is clocked like a typical bank of D flip-flops, however, it has a new feature; it can be loaded or not loaded 
depending on “IR.LD”. When IR.LD is true, data is loaded into the register and when IR.LD is false, new data is 
not loaded into the register (hold condition). This register can be simply realized with a 2-input MUX (in Quartus, 
if you want a bdf component, try 21mux) on the input of each flip-flop of the IR. When a 2-input MUX select line 
is false, select an IR output to pass through the MUX back into a D-FF input; when the select line is true, an INPUT 
bus signal should pass through a MUX and into a D-FF input. 

Pre-Lab Requirements
1. Use the flowchart shown in Figure 2 to help you 

create an ASM chart. The ASM’s outputs include 
the MUX select signals (instead of the description 
of actions). 

2. Create a next state truth table. If you use the 
graphic design editor (block diagram/schematic 
file) for schematic entry in Quartus to create your 
controller, you must make K-maps and simplified 
logic equations for the controller. If you use 

Table 1:  Input source MUXs for Registers A and B. 
MSA/ 
MSB1 

MSA/ 
MSB0 

Bus Selected as Input 
to REGA/REGB 

0 0 INPUT Bus 
0 1 REGA Bus 
1 0 REGB Bus 
1 1 OUTPUT Bus 

 

Table 2:  ALU function selection MUX (for MUX C). 
MSC2:0 Action 

000 REGA Bus to OUTPUT Bus 
001 REGB Bus to OUTPUT Bus 
010 complement of REGA Bus to OUTPUT Bus 
011 bit wise AND REGA/REGB Bus to OUTPUT Bus 
100 bit wise OR REGA/REGB Bus to OUTPUT Bus 
101 sum of REGA Bus & REGB Bus to OUTPUT Bus 
110 shift REGA Bus left one bit to OUTPUT Bus 

111 shift REGA Bus right one bit to OUTPUT Bus 
without sign extension 

 

Table 3:  Part 1 instructions. 
IR1:0 Action Instruction 

00 Sum REGA & REGB => REGA SUM_BA 
01 Load INPUT bus => REGA LDAA #In 

10 Right Shift REGA 1 bit (logical, 
not arithmetic shift) => REGA SRA 

11 Move REGA contents => REGB TAB 
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VHDL (and external flip-flops) to create the 
controller, you do not need to make K-maps or 
simplify the equations. 

3. Using the block diagram/schematic editor in 
Quartus, add the IR and controller circuitry to 
your Lab 4* RALU.  

4. Simulate and test all instructions created in the 
controller circuitry.  As always, annotate your 
design simulation. 

5. Turn in all the documents described above as 
stated in the Lab Rules and Policies document; re-
read, if necessary. (Submit the Quartus archive 
file LAB6_Part1.qar). Documents must be 
submitted through Canvas for every lab. All pre-
lab material is to be submitted as required (at least 
15 minutes before the beginning of your lab).
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PART 1 PRE-LAB QUESTIONS 
1. Why did we require the new instruction register in this design? 
2. In this section of the lab, you are setting the INPUT bus by hand.  If you wanted to read or fetch this value from 

memory, what could you add to do this automatically for you every CLK cycle? 
3. How would you add more instructions (i.e., 8 instead of 4) to the controller? 
 
HELPFUL HINTS 
Debug as you design for a much better chance of success. When a design does not work as expected, don’t panic!  
Think of some experiments that you can do to break the problem down into pieces in order to isolate the error. A 
useful tool for debugging a design is to add outputs for some of the internal signals, i.e., signals that are neither 
outputs nor inputs of your design.  This will allow you to “peer inside” a design both in simulation and with the 
actual hardware. 
 

2. SECOND RALU CONTROLLER WITH ROM 
The main difference between parts 1 and 2 of the lab is in the way the inputs are generated. In part 1, you input the 
opcodes (i.e., 00, 01, 10, or 11) and data manually. The opcodes and inputs were entered between every active clock 
transition with the switches at INPUT3:0. In this section (part 2), the opcode and data will be stored in memory. 
Your controller will control the signals in such a manner that the op code and data are automatically fetched from 
memory; the outputs of this memory are inputs INPUT3:0. A program counter (PC) will coordinate the sequencing 
of the instructions by stepping through the addresses in an appropriate manner. In this part of the lab, you will 
ultimately use Quartus to make the project LAB6_Part2. 

SPECIFICATIONS 
No changes will be made to MUXA, MUXB, MUXC, 
REGA or REGB from the Lab 4* RALU. 
1. As shown in Figure 3, a 32k × 8 EEPROM (or Flash) 

is added. The instructions and data will be stored in 
this EEPROM starting in location $3A10. 

2. A program counter (PC) is added. PC is a 4-bit up-
counter with a synchronous count enable signal 
(PC_INC). If PC_INC is TRUE, the counter will 
increment by 1 at the next active clock transition. If 
PC_INC is FALSE, the counter holds its current 
value. The count after 11112 is 00002. Another 
synchronous signal, PC_LD, is used to load the 
counter from the INPUT bus. The 74’161 (with 
asynchronous clear) is ideally suited to function as a 4-bit PC. (The 74’163 is identical except that it has a 
synchronous clear.) 

3. The instruction register (IR1:0) from part 1 of this lab is increased to 3 bits (IR2:0), as shown in Table 4. 
 
Changes to the ASM chart: 
1. All the manual switching that you would need to do if part 1 of this lab was built (e.g., setting the INPUT = 

next op code or data) can be better accomplished by incrementing the address on the ROM. The ROM will have 
the information that (in part 1 of this lab) would have come from switches (or your DAD). This is accomplished 
by incrementing the PC register or “Inc PC,” as shown in the Figure 4 flowchart. 

2. An additional state is necessary for the LDAA instruction in order to read the memory a second time to obtain 
the data to place in register A. 

3. The instruction SUM_BA from part 1 is now spelled ABA (which stands for add A to B and put the result into 
A).  

Table 4.  Part 2 instructions. 
IR2:0 Instruction  Function 
000 JMP Addr  Load PC with input address 
001 TAB Copy A to B (transfer A to B) 

010 ABA Load A with A plus B plus Cin; 
update Cout 

011 LDAA #data Load A with input data 
100 SAL Shift A left 1 bit, store in A 

101 SAR Shift A right 1 bit, store in A 
(logical, not arithmetic shift)  

110 Future use  
111 Future use  
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4. Note that the right shift is a logical shift, NOT an arithmetic shift, i.e., a zero is shifted into the most significant 

bit of REGA with the SAR instruction. Shift register A right (SRA) from part 1 is spelled differently here, now 
as SAR. 

5. The first new instruction is called “JMP Addr”.  JMP Addr consists of two nibbles where the first is the opcode 
and the second is an address.  This instruction forces the PC to load a 4-bit address read from memory (2nd 
nibble).   

6. The other new instruction is shift register A left (SAL). A zero should be shifted into the right most bit with 
this shift. 

MIF FILE CREATION INFORMATION 
When you write code in pre-lab part 4, below, you will hand assemble your code and put it into the “rom_32k.mif” 
file. A sample mif file (rom_8k.mif) can be found on the website and another mif file, rom_1k.mif, in the tutorial. 
These files can be used as templates to generate your own file. Key points related to these files are: 
1. The comments are surrounded by “%”symbols.  The left most number represents address space followed by the 

hex value to the right.  For example: 
“memory address” :”memory value”    %comment% 

2. The last line of code in the “rom_32k.mif,” file (after your program) should zero out the remaining data in ROM. 
In the rom_8k.mif file, the end of memory was filled with $FF using the line below:  
[8A..1FFF]  :   00; 

Your last line will be  
[XX..7FFF]  :  0; 

In the above, XX represents the next address after the last address of your code. This will initialize all your 
remaining unused memory to a known value of zero. 
 

PRE-LAB REQUIREMENTS 
1. Create an ASM chart using the Figure 4 

flowchart as an aid, i.e., utilize the actual signals 
to control the PC, IR, and the MUXs. Complete 
the ASM diagram, by also including the required 
elements for the SAL and SAR instructions. 

2. Create a next state truth table. If you use the 
block diagram/schematic editor in Quartus to 
create your controller, you must make K-maps 
and use simplified logic equations for the 
controller. If you use VHDL (and external flip-
flops) to create the controller, you do not need to 
make K-maps or simplify the equations. 

3. Add an active-low asynchronous RESET 
signal to all registers and the counter. You should 
use this to initialize all flip-flops (and the 4-bit 
counter) to zero before beginning your testing.  
(You should design every state machine so that 
you can start it in a known state. For this lab, the 
known state has state bits of all zeros.) 

4. Hand assemble the program in Table 5 and 
complete the table, adding the address on the left 
and the machine codes (the values that will be 
stored in the ROM). The successive columns of 
A and B should contain the changing values of 

RegA and RegB as the program is executed and 
the loop (created by the JMP instruction) causes 
the code to repeat. 

 
You can separately simulate the flash memory 
portion of your design in Quartus, just as you can 
separately test the controller, PC, and you 
already tested the Lab4 RALU design. Read 
through the documentation in the ROM Creation 
Tutorial, available on our website.  Also see the 
below section on MIF file creation.   
 

Table 5: Program to assemble. 
Addr  

Mach 
Codes A B A B A B A B 

$3A10 LDAA #7          
 TAB          
 LDAA #3          
 ABA          
 SAR          
 ABA          
 SAL          
 ABA          
 JMP 4          
 LDAA #$F          
 ABA          
 

https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
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Implement the design in Quartus (LAB6_Part2) 
and simulate the execution of this program. Use 
the ROM Creation Tutorial to create the ROM: 
1-PORT. You should start your simulation with 
a reset.   
 
You must make a MIF file for this program. If 
you did not simulate a ROM, you would need to 
input the op codes and data in the *.vwf 
simulation waveform file (just as you did in Lab 
4), which is much harder than making the ROM 
and MIF file. Use a functional compilation and 
simulation. As always, annotate your design 

simulation. Outputs should include the state bits, 
the registers, INPUT3:0, OUT3:0, IR.LD, IR, 
PC, PC_LD, and PC_INC. During debugging, 
you should also add the MUX select lines. 
 
Note that the memory clock should be at least 
twice as fast as the state machine clock to assure 
that the ROM data is available at the proper time.  
(See the ROM Creation Tutorial for more 
information.) 
 
The simulation technique used above will be used 
again in Lab 7.

 
Pre-lab Simulation and Programming Summary: 
• Create a 32k × 8 ROM with the program’s machine codes. 
o Create a MIF file with these machine codes. 
o Simulate this design (LAB6_Part2). 
o Program this design to your DE10-Lite 

 

PRE-LAB QUESTIONS 
1. Why do we need the extra states in the LDAA and JMP instruction paths?  
2. What do you need to do to the address lines to get your program to start at address $2CD0 (instead of $3A10)?  
 
PRE-LAB PROCEDURE SUMMARY 

1. Design a RALU controller that can interpret 4 opcodes in § 1. 
2. Design a more advanced RALU controller that can interpret 8 opcodes and read instructions from ROM in § 2. 
3. Program your Part 2 CPU with a sample program at the end of  § 2. 

IN-LAB PROCEDURE 

You will demonstrate your Table 5 program executing on your Part 2 RALU controller on your DE-10 Lite board. 
Use a debounced clock for your design. To facilitate this demo, please display REGA and REGB on two seven 
segment displays on your DE10-Lite. 
  

https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
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