
University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 1/7 Lab 6: Elementary CPU Design

OBJECTIVES
• Learn how to create a state machine to control a registered ALU (the RALU created in Lab 4), also called a

datapath, and create a simple CPU.
• Understand how opcodes are translated into control words inside a CPU.
• Perform basic assembly programming and hand-assemble a program for a CPU.

INTRODUCTION

We have spent the semester so far learning about the building blocks used in all digital circuits. This has culminated
in the creation of a RALU that can execute general math operations in Lab 4 and learning how to design state
machines in Lab 5. By combining the concepts learned in Lab 4 and 5, we can create a simple central processing
unit (CPU), the heart of any digital computer.

In this lab, you will create a controller for the RALU that you created at the end of Lab 4. During Lab 4, you
controlled this datapath by providing the MUX select lines directly from your DAD. While this allowed fine grained
control of exactly what your RALU was doing at any point in time, it is not an efficient way to encode what
operations should be completed and it is error prone if the control word changes close to a rising clock edge. A
much better solution is to create a state machine that can interpret short numbers representing each operation that
the CPU can perform (called opcodes) and output the corresponding control word sequences to perform that
operation. This abstracts away direct control of the RALU and allows you to think about your program as a series
of operations that the controller can convert into the required control word values. You can also make a single
opcode represent a series of operations to be done, such as an opcode that takes the 2’s complement of the values
in a register.

LAB STRUCTURE
In this lab, you will be creating and programming a simple CPU. In § 1, you will be creating a state machine that
can control your Lab 4 ALU and convert four different opcodes to control word sequences that perform
corresponding operations. You will then expand upon these concepts to create a CPU in § 2 that has eight possible
opcodes and can read a program made from those opcodes from ROM.

REQUIRED MATERIALS
• Your entire lab kit (including your DAD)
• Note that in this lab, you can use the DAD to

generate your inputs and to show your outputs
(instead of switch and LED circuits); it is your
choice!

• UF's DAD Waveforms Tutorial
• DE10-Lite Pins
• Document on website: Explanation_of_Table4

from Lab 4
• ROM Creation Tutorial

SUPPLEMENTAL MATERIALS
• DE10-Lite Manual
• DE10-Lite Schematic
• PLD on Breadboard Programming WARNING!

https://mil.ufl.edu/3701/docs/Waveforms_tutorial.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_Pins.pdf
https://mil.ufl.edu/3701/labs/Lab4_explanation_of_Table4.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Manual.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Schematic.pdf
https://mil.ufl.edu/3701/programming_warning.html

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 2/7 Lab 6: Elementary CPU Design

PRE-LAB PROCEDURE

INTRODUCTION: LAB 4 REVIEW
The RALU designed in the second part of Lab 4 consisted of four 4-input MUXs on the inputs of REGA and
four 4-input MUXs on the inputs of REGB. The select lines for these MUXs were designated MSA1:0 and
MSB1:0, respectively. For a quick review, the MUXs selected a bus as shown in Table 1.

The outputs of REGA and REGB were then passed to a combinatorial logic block and the results of this were
then passed to four 8-input MUXs. The select lines for these four MUXs were designated as MSC2:0. For review
purposes, these (3) lines selected the functions shown in Table 2.

There is no need to modify your lab 4 RALU design unless it does not work, although adding a reset input will be
necessary in Part 2. We’ll call this the Lab 4* RALU.

1. FIRST RALU CONTROLLER

A state machine controller and Instruction Register
(IR) are now added to the Lab 4* RALU to facilitate
the execution of simple instructions. See Figure 1
for the total system components of this section. The
IR register contains 2 bits that represent the four
instructions shown in Table 3. In this part of the
lab, you will ultimately use Quartus to make the
project LAB6_Part1.

The flowchart (NOT an ASM) for the controller is shown in Figure 2. All instructions execute in one cycle (plus
one cycle to load the IR register). I strongly encourage you to use VHDL for the combinatorial part of the controller.

Instruction Register Design
The IR is clocked like a typical bank of D flip-flops, however, it has a new feature; it can be loaded or not loaded
depending on “IR.LD”. When IR.LD is true, data is loaded into the register and when IR.LD is false, new data is
not loaded into the register (hold condition). This register can be simply realized with a 2-input MUX (in Quartus,
if you want a bdf component, try 21mux) on the input of each flip-flop of the IR. When a 2-input MUX select line
is false, select an IR output to pass through the MUX back into a D-FF input; when the select line is true, an INPUT
bus signal should pass through a MUX and into a D-FF input.

Pre-Lab Requirements
1. Use the flowchart shown in Figure 2 to help you

create an ASM chart. The ASM’s outputs include
the MUX select signals (instead of the description
of actions).

2. Create a next state truth table. If you use the
graphic design editor (block diagram/schematic
file) for schematic entry in Quartus to create your
controller, you must make K-maps and simplified
logic equations for the controller. If you use

Table 1: Input source MUXs for Registers A and B.
MSA/
MSB1

MSA/
MSB0

Bus Selected as Input
to REGA/REGB

0 0 INPUT Bus
0 1 REGA Bus
1 0 REGB Bus
1 1 OUTPUT Bus

Table 2: ALU function selection MUX (for MUX C).
MSC2:0 Action

000 REGA Bus to OUTPUT Bus
001 REGB Bus to OUTPUT Bus
010 complement of REGA Bus to OUTPUT Bus
011 bit wise AND REGA/REGB Bus to OUTPUT Bus
100 bit wise OR REGA/REGB Bus to OUTPUT Bus
101 sum of REGA Bus & REGB Bus to OUTPUT Bus
110 shift REGA Bus left one bit to OUTPUT Bus

111 shift REGA Bus right one bit to OUTPUT Bus
without sign extension

Table 3: Part 1 instructions.
IR1:0 Action Instruction

00 Sum REGA & REGB => REGA SUM_BA
01 Load INPUT bus => REGA LDAA #In

10 Right Shift REGA 1 bit (logical,
not arithmetic shift) => REGA SRA

11 Move REGA contents => REGB TAB

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 3/7 Lab 6: Elementary CPU Design

VHDL (and external flip-flops) to create the
controller, you do not need to make K-maps or
simplify the equations.

3. Using the block diagram/schematic editor in
Quartus, add the IR and controller circuitry to
your Lab 4* RALU.

4. Simulate and test all instructions created in the
controller circuitry. As always, annotate your
design simulation.

5. Turn in all the documents described above as
stated in the Lab Rules and Policies document; re-
read, if necessary. (Submit the Quartus archive
file LAB6_Part1.qar). Documents must be
submitted through Canvas for every lab. All pre-
lab material is to be submitted as required (at least
15 minutes before the beginning of your lab).

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 4/7 Lab 6: Elementary CPU Design

PART 1 PRE-LAB QUESTIONS
1. Why did we require the new instruction register in this design?
2. In this section of the lab, you are setting the INPUT bus by hand. If you wanted to read or fetch this value from

memory, what could you add to do this automatically for you every CLK cycle?
3. How would you add more instructions (i.e., 8 instead of 4) to the controller?

HELPFUL HINTS
Debug as you design for a much better chance of success. When a design does not work as expected, don’t panic!
Think of some experiments that you can do to break the problem down into pieces in order to isolate the error. A
useful tool for debugging a design is to add outputs for some of the internal signals, i.e., signals that are neither
outputs nor inputs of your design. This will allow you to “peer inside” a design both in simulation and with the
actual hardware.

2. SECOND RALU CONTROLLER WITH ROM
The main difference between parts 1 and 2 of the lab is in the way the inputs are generated. In part 1, you input the
opcodes (i.e., 00, 01, 10, or 11) and data manually. The opcodes and inputs were entered between every active clock
transition with the switches at INPUT3:0. In this section (part 2), the opcode and data will be stored in memory.
Your controller will control the signals in such a manner that the op code and data are automatically fetched from
memory; the outputs of this memory are inputs INPUT3:0. A program counter (PC) will coordinate the sequencing
of the instructions by stepping through the addresses in an appropriate manner. In this part of the lab, you will
ultimately use Quartus to make the project LAB6_Part2.

SPECIFICATIONS
No changes will be made to MUXA, MUXB, MUXC,
REGA or REGB from the Lab 4* RALU.
1. As shown in Figure 3, a 32k × 8 EEPROM (or Flash)

is added. The instructions and data will be stored in
this EEPROM starting in location $3A10.

2. A program counter (PC) is added. PC is a 4-bit up-
counter with a synchronous count enable signal
(PC_INC). If PC_INC is TRUE, the counter will
increment by 1 at the next active clock transition. If
PC_INC is FALSE, the counter holds its current
value. The count after 11112 is 00002. Another
synchronous signal, PC_LD, is used to load the
counter from the INPUT bus. The 74’161 (with
asynchronous clear) is ideally suited to function as a 4-bit PC. (The 74’163 is identical except that it has a
synchronous clear.)

3. The instruction register (IR1:0) from part 1 of this lab is increased to 3 bits (IR2:0), as shown in Table 4.

Changes to the ASM chart:
1. All the manual switching that you would need to do if part 1 of this lab was built (e.g., setting the INPUT =

next op code or data) can be better accomplished by incrementing the address on the ROM. The ROM will have
the information that (in part 1 of this lab) would have come from switches (or your DAD). This is accomplished
by incrementing the PC register or “Inc PC,” as shown in the Figure 4 flowchart.

2. An additional state is necessary for the LDAA instruction in order to read the memory a second time to obtain
the data to place in register A.

3. The instruction SUM_BA from part 1 is now spelled ABA (which stands for add A to B and put the result into
A).

Table 4. Part 2 instructions.
IR2:0 Instruction Function
000 JMP Addr Load PC with input address
001 TAB Copy A to B (transfer A to B)

010 ABA Load A with A plus B plus Cin;
update Cout

011 LDAA #data Load A with input data
100 SAL Shift A left 1 bit, store in A

101 SAR Shift A right 1 bit, store in A
(logical, not arithmetic shift)

110 Future use
111 Future use

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 5/7 Lab 6: Elementary CPU Design

4. Note that the right shift is a logical shift, NOT an arithmetic shift, i.e., a zero is shifted into the most significant

bit of REGA with the SAR instruction. Shift register A right (SRA) from part 1 is spelled differently here, now
as SAR.

5. The first new instruction is called “JMP Addr”. JMP Addr consists of two nibbles where the first is the opcode
and the second is an address. This instruction forces the PC to load a 4-bit address read from memory (2nd
nibble).

6. The other new instruction is shift register A left (SAL). A zero should be shifted into the right most bit with
this shift.

MIF FILE CREATION INFORMATION
When you write code in pre-lab part 4, below, you will hand assemble your code and put it into the “rom_32k.mif”
file. A sample mif file (rom_8k.mif) can be found on the website and another mif file, rom_1k.mif, in the tutorial.
These files can be used as templates to generate your own file. Key points related to these files are:
1. The comments are surrounded by “%”symbols. The left most number represents address space followed by the

hex value to the right. For example:
“memory address” :”memory value” %comment%

2. The last line of code in the “rom_32k.mif,” file (after your program) should zero out the remaining data in ROM.
In the rom_8k.mif file, the end of memory was filled with $FF using the line below:
[8A..1FFF] : 00;

Your last line will be
[XX..7FFF] : 0;

In the above, XX represents the next address after the last address of your code. This will initialize all your
remaining unused memory to a known value of zero.

PRE-LAB REQUIREMENTS
1. Create an ASM chart using the Figure 4

flowchart as an aid, i.e., utilize the actual signals
to control the PC, IR, and the MUXs. Complete
the ASM diagram, by also including the required
elements for the SAL and SAR instructions.

2. Create a next state truth table. If you use the
block diagram/schematic editor in Quartus to
create your controller, you must make K-maps
and use simplified logic equations for the
controller. If you use VHDL (and external flip-
flops) to create the controller, you do not need to
make K-maps or simplify the equations.

3. Add an active-low asynchronous RESET
signal to all registers and the counter. You should
use this to initialize all flip-flops (and the 4-bit
counter) to zero before beginning your testing.
(You should design every state machine so that
you can start it in a known state. For this lab, the
known state has state bits of all zeros.)

4. Hand assemble the program in Table 5 and
complete the table, adding the address on the left
and the machine codes (the values that will be
stored in the ROM). The successive columns of
A and B should contain the changing values of

RegA and RegB as the program is executed and
the loop (created by the JMP instruction) causes
the code to repeat.

You can separately simulate the flash memory
portion of your design in Quartus, just as you can
separately test the controller, PC, and you
already tested the Lab4 RALU design. Read
through the documentation in the ROM Creation
Tutorial, available on our website. Also see the
below section on MIF file creation.

Table 5: Program to assemble.
Addr

Mach
Codes A B A B A B A B

$3A10 LDAA #7
 TAB
 LDAA #3
 ABA
 SAR
 ABA
 SAL
 ABA
 JMP 4
 LDAA #$F
 ABA

https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 6/7 Lab 6: Elementary CPU Design

Implement the design in Quartus (LAB6_Part2)
and simulate the execution of this program. Use
the ROM Creation Tutorial to create the ROM:
1-PORT. You should start your simulation with
a reset.

You must make a MIF file for this program. If
you did not simulate a ROM, you would need to
input the op codes and data in the *.vwf
simulation waveform file (just as you did in Lab
4), which is much harder than making the ROM
and MIF file. Use a functional compilation and
simulation. As always, annotate your design

simulation. Outputs should include the state bits,
the registers, INPUT3:0, OUT3:0, IR.LD, IR,
PC, PC_LD, and PC_INC. During debugging,
you should also add the MUX select lines.

Note that the memory clock should be at least
twice as fast as the state machine clock to assure
that the ROM data is available at the proper time.
(See the ROM Creation Tutorial for more
information.)

The simulation technique used above will be used
again in Lab 7.

Pre-lab Simulation and Programming Summary:
• Create a 32k × 8 ROM with the program’s machine codes.
o Create a MIF file with these machine codes.
o Simulate this design (LAB6_Part2).
o Program this design to your DE10-Lite

PRE-LAB QUESTIONS
1. Why do we need the extra states in the LDAA and JMP instruction paths?
2. What do you need to do to the address lines to get your program to start at address $2CD0 (instead of $3A10)?

PRE-LAB PROCEDURE SUMMARY

1. Design a RALU controller that can interpret 4 opcodes in § 1.
2. Design a more advanced RALU controller that can interpret 8 opcodes and read instructions from ROM in § 2.
3. Program your Part 2 CPU with a sample program at the end of § 2.

IN-LAB PROCEDURE

You will demonstrate your Table 5 program executing on your Part 2 RALU controller on your DE-10 Lite board.
Use a debounced clock for your design. To facilitate this demo, please display REGA and REGB on two seven
segment displays on your DE10-Lite.

https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf

University of Florida EEL 3701 — Summer 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 9-Jun-25
Page 7/7 Lab 6: Elementary CPU Design

	SPECIFICATIONS
	MIF FILE CREATION INFORMATION

	PRE-LAB REQUIREMENTS
	PRE-LAB QUESTIONS

