

5-27
Publication# 90003 Rev. A Amendment /0

Issue Date: June 1993

Combinatorial Logic Design

INTRODUCTION
In this section we will take a detailed look at several as-
pects of combinatorial logic design. Most combinatorial
design applications can be easily segmented into five
major fields.

Encoders and Decoders

Multiplexers

Comparators

Adders and Arithmetic Logic

Latches

We will not only focus on the design methodology for
these functions, but will also explore further function-
specific PLD selection requirements. Generalized
designs will be developed, which can be customized
later to suit specific system applications. Ways of opti-
mizing the design will also be discussed.

Encoders and Decoders
Two of the most important functions required in digital
design are encoding and decoding. The encoding and
decoding of data are used extensively in digital commu-
nications as well as in peripherals. Both these areas use
various complex encoding and decoding techniques.
Most of these techniques are extensions of the simple
encoding and decoding techniques often used in other
digital designs. In this discussion we will focus on simple
encoding and decoding techniques. More complex
techniques will be discussed later.

Encoders
A binary code of n bits can be used to represent 2n dis-
tinct pieces of coded data. A simple combinatorial
encoder is a circuit which generates n bits of output in-
formation based upon one of the 2n unique pieces of
input data information. This encoding of information is
controlled by other independent control signals in a typi-
cal digital circuit.

An illustration of a typical encoder is shown in Figure 1.
The design methodology typically followed is based on
truth tables (Table 1), from which the Boolean equations
are directly derived for the design. The same generic de-
vice selection considerations discussed in the section
on PAL device design methodology apply for encoder
and decoder designs.

A

B

C

D

C0

C1
Inputs Encoded

OutputsEncoder

90003A-1

Figure 1. A Block Diagram of an Encoder

Table 1. Truth Table of a Typical Encoder

A B C D C0 C1

1 0 0 0 L L

0 1 0 0 L H

0 0 1 0 H L

0 0 0 1 H H

Inputs Outputs

The Boolean equations can then be optimized using
Karnaugh maps or the software minimizer.

The resulting Boolean equations are:

C1 = /A * B * /C * /D
+ /A * /B * /C * D

C0 = /A * /B * C * /D
+ /A * /B * /C * D

A Priority Encoder
Let us take another look at the encoder example of Ta-
ble 1. In this example it is assumed that only one of the
inputs A, B, C or D is asserted HIGH at any one time. If
two of the inputs are asserted HlGH simultaneously, a
conflict would be created. To resolve this, a priority
needs to be assigned to each of the inputs. Such a prior-
ity assignment is used to select a particular element
when several inputs are asserted simultaneously. Each
input is assigned a priority with respect to the other in-
puts. The output code generated is the code assigned to
the highest priority input asserted.

Thus, a priority encoder is a combinatorial circuit block
similar to a general encoder, except that the inputs are
assigned a priority. Such priority encoders are used
often in state machine applications, where they detect

AMD

5-28 Combinatorial Logic Design

the occurrence of the highest priority event. They are
also used for microprocessor interrupt controllers,
where they detect the highest priority interrupt. Another
use for priority encoders is in bus control, where they are
used in arbitration schemes for allowing selective ac-
cess to the bus.

The model of a priority encoder is shown in Figure 2. The
four input signals are A, B, C and D. These are to be en-
coded as LL, LH, HL and HH outputs. Let us assign
priority to D over C, C over B, and B over A. The next
design step would be to modify the truth table (Table 2)
to reflect these priorities.

A

B

C

D

C0

C1

Priority
Encoder

90003A-2

Figure 2. A Four-Input Priority Encoder
Block Diagram

Table 2. Priority Encoder Truth Table

A B C D C0 C1

1 0 0 0 L L
0 1 0 0 L H
0 0 1 0 H L
0 0 0 1 H H

X 1 0 0 L H
X X 1 0 H L
X X X 1 H H

Inputs Outputs

Priority
Assignments

The Boolean equations, directly derived from the truth
table, are:

C1 = /A * B * /C * /D
+ /A * /B * /C * D
+ B * /C * /D
+ D

C0 = /A * /B * C * /D
+ /A * /B * /C * D
+ C * /D
+ D

These equations can be further optimized by the design
software to the following:

C1 = D + /C * B
C1 = D + C

Although a priority encoder is a purely combinatorial
function, output registers are frequently used to hold the
output signal stable for longer durations.

Decoders
A decoder performs the reverse function of an encoder.
It converts an n-bit code to one of its 2n unique items. It is
a combinatorial circuit designed such that at most one of
its several outputs will be asserted based upon the
unique input codes.

A decoder may have as many outputs as there are pos-
sible binary input selection combinations. As shown in
the truth table (Table 3), only one output may be as-
serted at any time. When a new combination is applied,
another output is asserted and the original output is re-
turned to its non-asserted state.

AMD

5-29Combinatorial Logic Design

Table 3. The Truth Table of an Active-LOW 4-to-16 Decoder

A B C D Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Input Select Lines Output Lines

The Boolean logic equations can be directly derived
from the truth table shown in Figure 5. The procedure is
the same as explained in the previous section on PLD
design methodology. The Boolean equations derived
are shown in Figure 3.

/Q0 = /D * /C * /B * /A
/Q1 = /D * /C * /B * A
/Q2 = /D * /C * B * /A
/Q3 = /D * /C * B * A
/Q4 = /D * C * /B * /A
/Q5 = /D * C * /B * A
/Q6 = /D * C * B * /A
/Q7 = /D * C * B * A
/Q8 = D * /C * /B * /A
/Q9 = D * /C * /B * A
/Q10 = D * /C * B * /A
/Q11 = D * /C * B * A
/Q12 = D * C * /B * /A
/Q13 = D * C * /B * A
/Q14 = D * C * B * /A
/Q15 = D * C * B * A

Figure 3. Decoder Boolean Logic Equations

Probably the most commonly used decoders are the ad-
dress decoders required by most microprocessors and
bus interfaces. These also constitute the most common
application of PLDs in digital designs. The design con-
siderations for address decoders have been covered
earlier in the PLD Design Methodology section. Later we
will develop a general Boolean equation for an address
decoder circuit when we discuss range decoders.

Encoder/Decoder Device Selection
Considerations
The general device selection considerations are listed
below. Based upon the number of inputs and outputs re-
quired, a device can be selected.

Number of Input Pins

Number of Output Pins

Number of I/O Pins

Device Speed

Device Power Requirements

Number of Registers

Number of Product Terms

Output Polarity Control

Encoders typically require a large number of inputs and
fewer outputs, whereas decoders typically require a
large number of outputs and fewer inputs.

Notice from the truth table that there is no combination
of inputs that will send all the outputs to their non-as-
serted state. Many designs actually need to be able to
make all outputs inactive. This can be done simply by
putting enable lines in all of the output AND gates. Many
such design modifications can be easily added once the
basic Boolean equations have been derived, instead of
redoing the truth table.

Another important device selection consideration for en-
coders and decoders is the number of product terms
required for a design. A careful selection of code values

AMD

5-30 Combinatorial Logic Design

(and priority assignments in priority encoders) can often
reduce the required number of product terms. This can
sometimes determine whether or not a design fits a de-
vice successfully. Figure 4 shows the truth tables of two
simple partial 3-to-2 encoders. The product terms re-
quired for the two designs are different due to the
different assignment of encoded bits.

A B C X1 X0

1 0 0 0 0
0 1 0 0 1
0 0 1 1 0

Inputs Outputs Inputs Outputs

A B C X1 X0

1 0 0 0 1
0 1 0 1 0
0 0 1 1 1

X1 = /A * /B * C

X0 = /A * /B * /C

X1 = /A * B * /C
+ /A */B * C

X0 = A * /B * /C
+ /A * /B * C

10173D-26

Figure 4. Two Encoders with Different Product
Term Requirements

Another way of looking at a decoder is as a logic function
which, depending upon the select code applied, con-
nects one data input to the selected outputs. Also known
as a demultiplexer, a decoder essentially connects an
input to one of 2n outputs based upon n select code bits.
The reverse logic function, which combines data from
multiple sources to an output signal, is called a multi-
plexer and is discussed next.

Multiplexers
A multiplexer (sometimes referred to as a data selector)
is a special combinatorial circuit, widely used in digital
design. It is designed to gate one of several inputs to a
single output. The input selected for connection to the
output is controlled by a separate set of select inputs.

The traditional use of a multiplexer is for “time division
multiplexing” in data communication, when gating sev-
eral data lines to a single data transmission line for short
intervals of time. The data received is then de-
multiplexed by using a demultiplexer.

The design methodology employed for multiplexer de-
sign is the truth-table approach. As an example, we can
look at a three in put-to-one-output (3:1) multiplexer,
which uses two select signals A and B. Based on these
two select bits, the data on one of the three inputs is sent
to the output. The truth table is shown in Table 4.

Table 4. Truth Table for a Three-to-One
Multiplexer

B A I1C0 I1C1 I1C2 O1Y

0 0 0 X X 0
0 0 1 X X 1
0 1 X 0 X 0
0 1 X 1 X 1
1 0 X X 0 0
1 0 X X 1 1

Select OutputInputs

Deriving the Boolean equation from this truth table is a
straight forward task. In this case no further minimiza-
tion is possible. The Boolean equation is:

/01Y = /B * /A * /I1C0
+ /B * A * /I1C1
+ B * /A * /I1C2

The equations derived in the above example can be
easily generalized for other multiplexers. The symbol for
a general 2n-inputs-to-one-output multiplexer is shown
in Figure 5 where n select lines are used.

Y OutputMultiplexer

I0

I1

Inputs

I2n–1

S0 S1 Sn–1
90003A-3

Input Select Lines

Figure 5. General Model of a 2 n-to-1 Multiplexer

AMD

5-31Combinatorial Logic Design

The Boolean equations are:

n=2

Y = /S1 * /S0 * (I0)
+ /S1 * S0 * (I1)
+ S1 * /S0 * (I2)
+ S1 * S0 * (I3)

n=3

Y = /S2 * /S1 * /S0 * (I0)
+ /S2 * /S1 * S0 * (I1)
+ /S2 * S1 * /S0 * (I2)
+ /S2 * S1 * S0 * (I3)
+ S2 * /S1 * /S0 * (I4)
+ S2 * /S1 * S0 * (I5)
+ S2 * S1 * /S0 * (I6)
+ S2 * S1 * S0 * (I7)

Multiplexer Device Selection
Considerations
Multiplexers typically require more inputs than outputs,
so the devices with a large number of inputs and l/Os are
usually more useful. Careful consideration must also be
given to the number of product terms available on
each output.

Several multiplexers are often used simultaneously to
route multiple address and data bits, under the control of
the same select lines. In such cases, multiple devices
can be cascaded when the number of inputs and out-
puts exceeds device limits. Cascading is also possible
for large multiplexers that do not fit in a single device. In
such cases, the select bits should also be judiciously se-
lected for each PLD, to minimize the number of
product terms.

Another common trick for designing a multiplexer is to
connect a number of outputs together and control the
output enables using the select bits to multiplex data.
Timing considerations for such designs include the out-
put enable and disable times, which should be carefully
selected to avoid output contentions.

Comparators
A comparator is a combinatorial circuit designed primar-
ily to compare the relative magnitude of two binary
numbers. Table 5 shows the truth table for a two-bit
comparator.

Table 5. Truth Table for a Comparator

A2 A1 B2 B1 A=B A<B A>B

0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A

Outputs

B

Inputs

EQL LES GTR

A basic comparator compares two numbers only for
equality, and generates the EQL signal (indicating
A=B). An extension, called a magnitude comparator,
also generates the LES signal (indicating A<B) and
GTR signal (indicating A>B). Based on this truth table,
the equations for the three output signals EQL, LES and
GTR can be easily derived. These equations can then
be optimized by using Boolean algebra, Karnaugh
maps, or the minimization routine available with the
software.

AMD

5-32 Combinatorial Logic Design

The final Boolean equations are:

EQL = /A2* /A1 * /B2 * /B1
+ /A2 * A1* /B2 * B1
+ A2* /A1 * B2 * /B1
+ A2 * A1 * B2 * B1

LES = /A2 * /A1 * /B2 * B1
+ /A2 * /A1 * B2 * /B1
+ /A2 * /A1 * B2 * B1
+ /A2 * A * B2 * /B1
+/A2 * A1 * B2 * B1
+ A2 */A1 * B2 * B1

= /A1 * /B2 * B1
+ /A2 * /A1 * B1
+ /A2 * B2

GTR = /A2 * A1 * /B2 * /B1
+ A2 * /A1 * /B2 * /B1
+ A2 * A1 * /B2 * /B1
+ A2 * /A1 * /B2 * B1
+ A2 * A1 * /B2 * B1
+ A2 * A1 * B2 * /B1

= /A1 * /B2 * /B1
+ /A2 * A1 * /B1
+ /A2 * /B2

Comparator Device Selection
Considerations
The number of product terms needed is directly related
to the number of bits compared. For LES (less than) and
GTR (greater than) functions, the number of product
terms required depends upon the number of bits in the
two operands compared, as well as their value. The LES
and GTR equations can be written as follows:

LES = B2 * /A2
+ (B2 :+: /A2) * B1*/A1

GTR = A2 * /B2
+ (A2 :+: /B2) * A1*/B1

These equations can then be extended for a general
comparison of n-bit comparands as follows:

LES = Bn * /An
+ (Bn :+: /An) *Bn–1 * /An–1
+ (Bn :+: /An) *(Bn–1:+:/An–1)

*Bn–2 */An–2

+ ...
+ ...
+ ...

+ (Bn :+: /An) *(Bn–1:+:/An–1)...
(B2 :+: /A2) * B1 * /A1

GTR = An * /Bn
+ (An :+: /Bn) *An–1 * /Bn–1

+ (An :+: /Bn) *(An–1:+:/Bn–1) *
An–2 */Bn–2

+ ...
+ ...
+ ...

+ (An :+: /Bn) *(An–1:+:/Bn–1)...
(A2 :+: /B2) * A1* /B1

The total number of product terms required for an n-bit
comparison is 2n–1. Comparators required a large num-
ber of product terms so, devices that offer many product
terms can be used very effectively.

As is obvious from these equations, comparators re-
quire exclusive-OR functions. They can be efficiently
implemented in devices that offers exclusive-OR func-
tions but, can still be implemented in those devices that
do not.

The values of the comparands themselves affect the
number of product terms used. When the comparison is
made with comparands which are power-of-two num-
bers, the number of product terms required can be
reduced drastically. This essentially relies on the fact
that when the lower bits of a comparand are all zeros
only the highest bit needs to be compared, requiring
only one product term. For example, in a two-bit compa-
rator, if A1 is zero and A2 is one, the equation for the
greater-than function becomes very simple and requires
only one product term:

GTR = /B2

The general equation for the GTR signal can also be
simplified when comparing a number B to a fixed power-
of-two comparand A with p least significant zeros.

A = 000010000 ... 00
n p 1

GTR = /Bn */Bn–1...*/Bp+1 */Bp

This general GTR equation can also be considered as
an equation for comparing a number to a range of num-
bers extending from zero to number A. In fact, this trick
is used very often by many system designers for ad-
dress decoder functions. In the PLD design
methodology section the ROMCS1 signal is one such
signal that is generated for the address range from
(000000) hex to (0FFFFF) hex. For this design n=23, the
comparand A=(0FFFFF + 1)=100000, and p=21. Sub-
stituting in the general equation we get the same
address decoder Boolean logic equation.

ROMCS1 = /A23 * /A22* /A21

AMD

5-33Combinatorial Logic Design

As such designs require few product terms and no XOR
gates, they are efficiently implemented on standard
combinatorial PLDs. A general form of range co-
mparators with two boundary comparands will be
discussed later.

The third output signal is the EQL signal. The EQL
Boolean equation tells us whether the two numbers are
identical. Such information is useful not only in address
decoders, but also in digital signal processing designs.
This equation requires a large number of product terms.
A closer examination reveals that it is essentially an ex-
clusive-OR function.

EQL = /A2 * /B2 * (/A1 * /B1 + A1 * B1)
 + A2 * B2 * (/A1 * /B1 + A1 * B1)

EQL = (A1:*:B1)* (A2:*:B2);Exclusive-NOR
;function

Inverting this:

/EQL = (A1:+:B1) + (A2:+:B2); Exclusive–OR
; function

This equation can be extended to give a general equa-
tion for equal-to comparison for two n-bit comparands.

/EQL = (An :+: Bn)
+ (An–1 :+: Bn–1)
+ (An–2 :+: Bn–2)
+ (An–3 :+: Bn–3)
+ ...
+ ...
+ (A1 :+: B1)

This inverted equation is implementable in the sum-of-
products form of the exclusive-OR functions, and can be
easily expanded to the following:

/EQL = A1 * /B1 + /A1 * B1
+ A2 * /B2 + /A2 * B2
+ A3 * /B3 + /A3 * B3
+ ...
+ ...
+ An * /Bn + /An * Bn

This gives us a general sum-of-products form of a co-
mparator equation which is easily implemented in PAL
devices. A n-bit comparator requires 2n product terms.

Note that the EQL equation, as well as GTR and LES
equations, rely upon the XOR function. Often the logic
represented by the equations is implemented in two or
more devices.

Let us analyze these equations further. The LES and
GTR outputs indicate whether one number is greater
than or less that another. In fact, these equations can
also be judiciously combined to get a comparison of a
range of numbers such as A>X>B. Such range compari-
sons are very useful for address decoder circuits.

Range Decoders
Range decoders implemented as address decoders are
one of the most commonly used applications of PLDs in
digital systems. A good example is the address decoder
illustrated earlier. Range decoders compare a number
(address) to a given range of comparands (addresses).
One way to arrive at the range decoder Boolean equa-
tions is to use the traditional truth table approach.
Another way is to use the Boolean equations generated
earlier in the comparator section for greater-than and
less-than functions. To decode a range of three-bit num-
bers from B to A, we must compare another number X
such that A>X>B. The Boolean equations for the GTR
(A>X) and LES (B<X) functions are illustrated below:

GTR = A3 */X3
+ (A3 :+: /X3) * A2* /X2
+ (A3 :+: /X3) * (A2:+: /X2 *A1 *

/X1

LES = X3 * /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3) * (X2:+: /B2)* X1

*/B1

Combining these two equations can give us a range sig-
nal which will be asserted only when A is greater than X
and X is greater than B. The combined Boolean equa-
tion follows:

RANG = (A3 * /X3
+ (A3 :+: /X3) * A2 * /X2
+ (A3 :+: /X3) * (A2 :+: /X2)* A1 *

/X1) * (X3* /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3 * (X2 :+:/B2) * X1

*/B1)

AMD

5-34 Combinatorial Logic Design

Using Boolean algebra we get the following equation:

RANG =

(A3 :+:/X3) * (X3 :+: /B3) * (A2 :+: /X2)* A1 * /X1 * X2 * /B2

+ (A3 :+:/X3) * (X3 :+: /B3) * (X2 :+: /B2)* A2 * /X2 * X1 * /B1

+ (A3 :+:/X3) * (A2 :+: /X2) * A1 * /X1 * X3 * /B3

+ (X3 :+:/B3) * (X2 :+: /B2) * A3 * /X3 * X1 * /B1

+ (A3 :+:/X3) * A2 * /X2 * X3 * /B3

+ (X3 :+:/B3) * A3 * /X3 * X2 * /B2

The general equation for n-bit comparands can also be
obtained by extending these equations.

RANG = (An * /Xn

+ (An :+:/Xn) * An–1 * /Xn–1

+ (An :+:/Xn) * (An–1:+:/Xn–1) * An–2 * /Xn–2

+ ...
+ ...

+ (An :+:/Xn) * (An–1:+:/Xn–1)... (A2 :+: /X2)* A1 * /X1)

*

(Xn * /Bn

+ (Xn :+:/Bn) * Xn–1 * /Bn–1

+ (Xn :+:/Bn) * (Xn–1:+:/Bn–1) * Xn–2 * /Bn–2

+ ...
+ ...
+ ...

+ (Xn :+:/Bn) * (Xn–1:+:/Bn–1)... (X2 :+: /B2)* X1 * /B1)

The number of product terms required is clearly very
large and can easily exceed one hundred for an eight-bit
range comparator. Most microprocessors have ad-
dresses which exceed 16 bits. In order to fit the design
on a PAL device, one commonly used technique is to se-
lect the address range defined by A and B such that the
range extends from address B+1 to A–1, where A and
B+1 are power-of-two numbers. Because the address
space is aligned on the power-of-two boundaries, a
number of bits of the address comparands will be zero.
When implemented in Boolean equations, this substan-
tially reduces the number of product terms required.

The maximum number of product terms required for a
three-bit range decoder shown above, with any com-
parand values, is 28. If the address chosen is from 2 to 3,
resulting in A=4 and B=1, then only one product term will
be required.

RANG = /X3 * X2

Similarly, for a range from one to five, B =1 and A = 6 (a
multiple-of-two), and the number of product terms re-
quired is only two.

RANG = /X3 * X2
+ X3 * /X2

Thus, a careful selection of range boundaries allows
such logic functions to be implemented easily in PLDs.
Such reduction in logic obviously also holds true for dis-
crete implementations. Most address decoders are
designed with address ranges with boundaries that are
power-of-two numbers, and require few product terms
for implementation.

For a power-of-two address range, the comparand A
would be a power-of-two; 2, 4 or 8. These are numbers
whose least significant bits are all zeros. Similarly, com-
parand B will be a power-of-two number (minus one); 1,
3, and 7. These are numbers whose least significant bits
are all ones. Substituting these in the general equation
for range comparators we arrive at:

A = 0000100000000000
n p 1

B = 0000000000011111
n q 1

RANG = /Xn * /Xn–1 *...* /Xp *
(Xp–1 + Xp–2 + ... +Xq)

AMD

5-35Combinatorial Logic Design

This is a general equation for a power-of-two range
comparison. In the address decoder example, the
ROMCS2 signal addresses the range from 100000 to
1FFFFF, in which case B=0FFFFF and A=2FFFFF.
Here n=23, p=22, and q=21. The address decode equa-
tion for the ROMCS2 signal can be arrived at by
substituting:

ROMCS2 = /A23 * /A22 * A21

This is the same equation that was found from the truth
table.

Such designs are very common for address decoder ap-
plications. These do not require any XOR gates, and
can be implemented in standard combinatorial PLDs
with only sum-of-products logic.

Adders/Arithmetic Circuits
Digital systems are designed to carry out a variety of
arithmetic instructions on binary numerical data. A good
example is the ALU (Arithmetic Logic Unit) used in digi-
tal computers. The basic function of an ALU is that of an
adder performing addition on two binary numbers. A bi-
nary adder takes two inputs, adds them, and generates
the binary sum. A full adder is a one-bit adder with carry-
in and carry-out; this is the basic building block of any
adding circuit. The truth table of such an adder is shown
in Table 6.

Table 6. Truth Table for a Full Adder

A B C IN Y COUT

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

OutputsInputs

This truth table is then used to form the Boolean equa-
tions in the manner described earlier.

Y = A * /B */Cin
+ /A * /B * Cin
+ A * B * Cin
+ /A * B */Cin

Cout = A * Cin
+ A * B
+ B * Cin

Larger binary adders can be made by cascading these
full adders. Each carry-out is directed to carry-in for the
next stage. Such adders are known as Ripple Adders.

Combinatorial PAL devices are ideal for this purpose,
since they also provide internal feedback. Thus, one
strong consideration in such designs is the internal feed-
back capability of the device, in addition to other general
device selection considerations.

These ripple adders have the advantage that they can
be cascaded to any length. However, since the carry-out
from the least significant bit has to travel all the way to
the highest significant bit, which can take a long time,
such large adders are inefficient. Adders with built in
carry-look-ahead circuitry can save time by simultane-
ously generating the carry-in signal for all of the bits.

Rewriting the equations for the full adder from above
gives:

Y0 = A0:+: B0:+:Cin

where the carry-out signal is:

C0 = A0 * B0 + (A0 +B0) * Cin

Extending these equations for an n-bit carry-look-ahead
adder, we can directly get the following equations:

Y0 = A0:+: B0 :+: Cin

Y1 = A1:+: B1 :+: C0

where

C0 = A0 * B0
+ (A0 + B0) * Cin

Y2 = A2 :+: B2 :+: C1

where

C1 = A1 * B1
+ (A1 + B1) * (A0 * B0)
+ (A1 + B1) * (A0 +B0) * Cin

Y3 + A3:+: B3 :+: C2

where

C2 = A2 * B2
+ (A2 + B2) * (A1 * B1)
+ (A2 + B2) * (A1 +B1) * (A0 * B0)
+ (A2 + B2) * (A1 +B1) * (A0+ B0)

* Cin

In general,

Yn = An:+: Bn :+:Cn–1
and Cn–1 =An–1 *Bn–1

+ (An–1 +Bn–1) *(An–2 * Bn–2)
+ ...
+ ...
+ (An–1 +Bn–1) * ... * (A0
+ B0) * Cin

AMD

5-36 Combinatorial Logic Design

and finally the carry-out is:

Cn = An * Bn
+ (An + Bn) *(An–1 *Bn–1)

+ (An + Bn) *(An–1 +Bn–1) *
(An–2* Bn–2)

+ ...
+ ...
+ (An + Bn) * ... *(A0 + B0) * Cin

These equations are essentially a combination of the
traditional generate and propagate logic for ALU design.

Adder Device Selection Considerations
The number of product terms required for implementing
a carry-look-ahead adder is enormous. The carry-out
function alone for a four-bit carry-look-ahead adder re-
quires over 36 product terms in the sum-of-products
form. For a single-level AND-OR implementation the
number of product terms required for the most signifi-
cant bit Y3 is 28.

A logic trick lies in the bit-pair decoding function. All of
the bits of the first operand in the registers (A) and the
second operand at the inputs (B) are bit-pair decoded.
As illustrated in Figure 6, the results of this bit-pair de-
coding are A + B, A + /B, /A + B, and /A + /B. These
outputs are then fed to the AND array as inputs.

Input

A
B

Feedback

Bit-Pair
Decoding

A + B

A + B

A + B

A + B

90003A-4

Figure 6. Bit-Pair-Decoding Function

Sixteen AND combinations of these four inputs can then
be formed on every product term of the AND-OR array.
These are shown in Figure 7, and include the standard
true and complements of both the bits as well as XOR<
XNOR and various other combinations. This bit pair de-
coding essentially provides an extra two-level AND-OR
logic level before the AND-OR array. The cost as well as

extra propagation delay of the extra logic level is mini-
mal, since the array size does not increase.

The equations for the adder can obviously benefit from
multi-level logic. The bit-pair decoding can be used to
implement the first two levels of logic. The next level of
logic can be implemented in the standard AND-OR ar-
ray. Every product term of the AND-OR array can
combine one of the sixteen possible functions of differ-
ent inputs/feedbacks of the device.

The product terms are then combined together through
an OR gate to implement the CARRY-OUT function,
shown in Figure 8. For adder outputs Y0, Y1, Y2, and
Y3, the product terms are combined through an XOR
gate, as shown in Figure 9.

A + B

0

A + B

A

A + B

A :*: B

B

A * B

A + B

A :+: B

A * B

B

A

A * B

A * B

1

A + B A + B A + B A + B Product Terms

90003A-5

Figure 7. Sixteen Possible Input Logic
Combinations

AMD

5-37Combinatorial Logic Design

Bit Pair
Decoding

Bit Pair
Decoding

Bit Pair
Decoding

Bit Pair
Decoding

A3
B3

A2
B2

A1
B1

A0
B0

Cin

Carry-Out

A3 * B3

(A3 + B3) * A2 * B2

(A3 + B3) * (A2 + B2) * A1 * B1

(A3 + B3) * (A2 + B2) * (A1 + B1) * A0 * B0

(A3 + B3) * (A2 + B2) * (A1 + B1) * (A0 * B0) * Cin

A
3

+
 B

3

A
3

+
 B

3

A
3

+
 B

3

A
3

+
 B

3

A
2

+
 B

2

A
2

+
 B

2

A
2

+
 B

2
A

2
+

 B
2

A
1

+
 B

1

A
1

+
 B

1

A
1

+
 B

1
A

1
+

 B
1

A
0

+
 B

0

A
0

+
 B

0

A
0

+
 B

0
A

0
+

 B
0

Carry-Out = A3 * B3
(A3 + B3) * A2 * B2
(A3 + B3) * (A2 + B2) * A1 * B1
(A3 + B3) * (A2 + B2) * (A1 + B1) * A0 * B0
(A3 + B3) * (A2 + B2) * (A1 + B1) * (A0 * B0) * Cin

90003A-6

Figure 8. Implementation of CARRY-OUT Function

Bit Pair
Decoding

Bit Pair
Decoding

Bit Pair
Decoding

Bit Pair
Decoding

A3
B3

A2
B2

A1
B1

A0
B0

Cin

A3 :+: B3

(A2 * B2)

(A2 + B2) * (A1 * B1)

(A2 + B2) * (A1 + B1) * (A0 * B0)

(A2 + B2) * (A1 + B1) * (A0 * B0) * Cin

A
3

+
 B

3

A
3

+
 B

3

A
3

+
 B

3

A
3

+
 B

3

A
2

+
 B

2

A
2

+
 B

2

A
2

+
 B

2
A

2
+

 B
2

A
1

+
 B

1

A
1

+
 B

1

A
1

+
 B

1
A

1
+

 B
1

A
0

+
 B

0

A
0

+
 B

0

A
0

+
 B

0
A

0
+

 B
0

Y3

C
in

C
in

Y3 = A3 :+: B3
:+: (A2 * B2)

+(A2 + B2) * (A1 * B1)
+(A2 + B2) * (A1 + B1) * (A0 * B0)
+(A2 + B2) * (A1 + B1) * (A0 * B0) * Cin)

90003A-7

Figure 9. Relationship Between Adder Boolean Equation and Device Logic

AMD

5-38 Combinatorial Logic Design

Latches
PAL devices are often used to implement latches. One
of the most common uses for a latch is as a temporary
storage for data or addresses. PLD-based latches are
often used in address decoders to assert the decoded
signal for long durations. These latches are also very
useful for asynchronous digital designs, and are used
often for control and arbitration functions.

A latch is essentially a simple combinatorial circuit in
which the output is a function of inputs and feedback.
The most commonly used latch is the D-type latch.
When the control signal latch-enable (LEN) is HIGH, the
latch is in the “transparent mode” and the input signal /D
is available at the outputs. When the LEN signal is LOW,
the input data is latched on the outputs and is retained
until LEN goes back HIGH. In a typical address decoder,
the input will be a combination of various address sig-
nals, decoded as explained earlier for range
comparators. The latching signal in most microproces-
sors is called AS (address strobe) or ALE (address latch
enable).

The truth table for a latch can be derived directly from
this functional description, and is shown in Table 7.

Table 7. Truth Table of a Simple Latch

/D LEN /Q

0 1 0

1 1 1

X 0 /Q (previous)

Inputs Outputs

The Boolean equations for this latch can be directly de-
rived from the truth table:

/Q = /D * LEN
+ /Q * /LEN

The logic implementation for this latch is shown in
Figure 10.

D
LEN

Q

90003A-8

Figure 10. A Transparent Latch

Hazards
Even when a combinatorial circuit has been designed
correctly, it may still have erroneous outputs due to
“hazards.” Hazards exist because physical circuits do
not behave ideally. Combinatorial complementary out-
put functions based on the same inputs are prime
candidates for such hazards. As the input changes, the
two outputs will not respond simultaneously. Although
this will not change the steady-state output of the circuit,
it may cause a spurious pulse or a “glitch.” Such hazards
are even more dangerous in latches, where the glitch
can cause incorrect data to be latched.

There are two types of hazards, static and dynamic.
Static hazards occur when the steady-state output of
combinatorial logic is not supposed to change due to an
input transition, but a momentary change does occur.
Such a glitch can be further classified as a static 1 or a
static 0 hazard as shown in Figure 11.

Static 0 Hazard Static 1 Hazard

90003A-9

Figure 11. Static Hazards

Dynamic hazards involve situations where the steady-
state output is supposed to change due to an input
transition. The hazard occurs when the transient output
changes several times before settling. Figure 12 shows
dynamic hazards.

90003A-10

Figure 12. Dynamic Hazards

A Karnaugh map is a very good way of detecting hazard
conditions. When trying to detect a static 0 or static 1
hazard, only the mapping of the zeros and the ones, re-
spectively, are required. For example, the latch
equations in Figure 10 can be mapped to a Karnaugh
map shown in Figure 13. The relationship between the
Karnaugh mapping and the Boolean equation product
terms is also illustrated.

AMD

5-39Combinatorial Logic Design

Covering
Hazard

21

00

1 1

0

0

0

1

0

1

00 01 11 10

D LEN

Q

Static 1
Hazard

Notes:

1. Q = D * LEN
2. + Q * LEN 90003A-11

Figure 13. Karnaugh Map for Transparent Latch
Design

The possibility of a hazard exists when the signal LEN
changes. Initially, when D and LEN are HIGH, the output
Q is also HIGH. When LEN switches to LOW, it is possi-
ble for the output to go LOW momentarily. This is
because when LEN goes LOW the first product term is
disabled, and to maintain the output HIGH the second

product term should be enabled exactly at the same in-
stant. Due to the uneven gate delays or routing
conditions on board, these two events will not take place
simultaneously. This is a static 1 hazard. It can also be
identified directly in the Karnaugh map by the two adja-
cent but disjoint sets of ones, grouped together to form a
product term each.

The hazard conditions can be easily avoided in the
PLDs by providing an extra cover product term. This
product term is shown with a dotted line in the Karnaugh
map. This third product term will keep the output as-
serted during the transition of the LEN signal, when the
control changes from the first product term to the sec-
ond. The modified Boolean equation is shown below.

/Q = /D * LEN
+ /Q * /LEN
+ /D * /Q (Cover product term)

Devices on which latches are implemented need to pro-
vide output feedback. All devices with l/O pins provide
this necessary feedback. The only other consideration
for selecting a device would be the provision of sufficient
number of product terms for addressing the needs of
glitch-free and testable design.

