

5-40
Publication# 90004 Rev. A Amendment /0

Issue Date: February 1996

Registered Logic Design

INTRODUCTION
In the previous section we discussed combinatorial de-
signs, circuits whose outputs are totally independent of
any system clock. In this section we will discuss sequen-
tial circuits, where outputs store their previous values
until a new clock is applied. The storage elements which
retain the previous output values are called flip-flops. A
bank of these flip-flops forms a register, although indi-
vidual flip-flops are often called registers.

Before we discuss purely registered designs, let us take
a look at designs which combine both registered and
combinatorial portions. Registered and combinatorial
outputs are often mixed on a single device. There can be
two distinct designs, one registered and one combinato-
rial (often glue logic) combined on a single device for
higher integration. There may also be a design require-
ment where registered outputs need to be decoded us-
ing combinatorial logic.

There are a number of devices which provide both regis-
tered and combinatorial outputs. Most devices provide
programmable register bypass, which allows outputs to
be programmed as registered or combinatorial.

In most design software packages, the output registers
are signified by the “:=” assignment symbol, as opposed
to the “=” sign for a combinatorial output. This helps to
easily identify registers in each equation. In devices
which provide outputs configurable as either registered
or combinatorial, this sign is also used by the software to
configure the outputs.

General Device Selection Considerations
The same set of general device selection considera-
tions discussed in the PLD design methodology section
apply to registered designs. The list of items which must
be considered is repeated in Figure 1 for convenience. A
device can be conveniently selected based upon the
specific input and output requirements.

Number of input pins

Number of output pins

Number of l/O pins

Device speed

Device power requirements

Number of registers

Number of product terms

Output polarity control

Figure 1. General Device Selection Considerations

Maximum Frequency
For registered designs, speed is a parameter which
needs careful consideration. Most combinatorial de-
signs use the propagation delay (tPD) for ensuring that
enough time is allowed for the data from the inputs to ap-
pear at the outputs. In registered designs the effects of
the clock must be taken into account. This is reflected in
the maximum frequency (fMAX) parameter. The flexibility
inherent in PLD design provides a choice of configura-
tions from which different fMAX parameters can be
calculated.

In the first type of design, the PLD is used for a stand-
alone registered design. In order to decide the next logic
level of the registers, the present logic level needs to be
available at the inputs of the registers before they are
clocked (Figure 2.) Under these conditions the clock pe-
riod is limited by the internal delay from the flip-flop out-
puts through the internal feedback and logic to the
flip-flops inputs. This fMAX is designated “fMAX internal.” A
simple internal counter is a good example of this type of
design, therefore, this parameter is sometimes
called “fCNT.”

Logic Register

CLK

fMAX Internal (fCNT)
90004A-1

Figure 2. Internal f MAX

AMD

5-41Registered Logic Design

The second type of system configuration is when a num-
ber of logic devices with registers, including PLDs, are
clocked with a common clock. This is probably the most
prevalent configuration. In this case, the registered out-
puts are sent off-chip back to the device inputs or to the
inputs of a second device. The slowest path defining the
period (Figure 3) is the sum of the clock-to-output time
and the input setup time for the external signals (tS+tCO).
The reciprocal, fMAX, is the maximum frequency with ex-
ternal feedback or in conjunction with an equivalent
speed device. This fMAX is designated “fMAX external.”

CLK

tS tCO

fMAX External: 1/(tS + tCO)

tS

(Second
Chip)

90004A-2

Logic Register

Figure 3. External f MAX

The third type of design is a simple data path applica-
tion. In this case, input data is presented, to the flip-flop
and clocked; no feedback is employed (Figure 4). In this
case, the period is limited by the sum of data setup time
and data hold time (tS+tH). However, the minimum clock
period (tWH + tWL) is usually a stricter limit. Thus, the third
fMAX designated “fMAX no feedback” will be the lesser of 1/
(tS + tH) or 1/ (tWH + tWL).

Logic Register

CLK

tS

fMAX No Feedback: 1/(tS + tH) or 1/(tWH + tWL)

90004A-3

Figure 4. f MAX with No Feedback

fMAX external and fMAX no feedback are calculated pa-
rameters. fMAX internal is measured.

Flip-Flop Types
There are four basic types of flip-flops; S-R, J-K, T and
the popular D-type. These flip-flops are described in the
“PLD Design Basics” section of this data book.

Almost all registered PLDs provide the basic D-type flip-
flops. D-type flip-flops are the simplest to design with
and will be used throughout this section. Some PLDs
provide the capability of configuring output registers as
either D, T, J-K or S-R. Configurable flip-flops in some
cases can reduce the number of product terms required
for certain designs. The effect of the configurable flip-
flops will be discussed wherever relevant.

Synchronous vs. Asynchronous
Registered designs can be easily classified into two
categories; synchronous and asynchronous. In syn-
chronous designs the clock inputs of all the registers are
tied together to a common clock. With asynchronous de-
signs, the flip-flops’ clock inputs may not be tied to-
gether, and the clocks may be gated or even driven by
other flip-flops. We will first discuss synchronous regis-
tered designs and then asynchronous registered
designs.

Synchronous Registered Designs
Synchronous registered designs are used for two major
functions: data handling and control. Registered syn-
chronous designs for data handling include counters
and shift registers. There are various types of counters.
Some are; binary counters, modulo counters, Johnson
counters, and Gray-code counters. These counters are
differentiated by the sequence of values through which
the counter travels. A binary counter is the simplest form
of a counter, and is used most often for data functions.
Any system requiring a regular count uses a binary
counter. Modulo, Gray-code, and Johnson counters are
also used for control.

All counters are actually subsets of a larger class of digi-
tal designs called state machines. State machines are
discussed in detail in the next chapter of this handbook.

Counters
Counters are the most commonly used sequential cir-
cuits. A set of registers, that cycles through a predeter-
mined, unvarying sequence, is called a counter. A
general model of a synchronous counter is illustrated in
Figure 5. This shows a common clock to all the flip-flops,
whose outputs are fed back to a combinatorial logic ar-
ray called the next-state (count) decoder. The next
count is generated by this logic based upon the present
count and control inputs. Most PLDs use the standard
sum-of-products form of array for this logic.

AMD

5-42 Registered Logic Design

The relationship between a four-bit counter and its sig-
nal timing diagram is illustrated in Figure 6. The count-
ers can also be represented by state diagrams (Figure
7). The state diagrams are bubble-and-arrow diagrams.
Each bubble represents a count value and each arrow a

transition from one count to the next. More detail on
state diagrams is given in the next chapter on state ma-
chine design. For counters, the state diagrams are a
convenient representation tool and will be used in the
discussion when necessary.

Next

Flip-Flops
State

(Count)
Decoder

CLK

Control Inputs Outputs

Combinatorial
Logic

90004A-4

Figure 5. General Model of a Counter

CLK

X0

X1

X2

X3

0State
(Count)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

90004A-5

Figure 6. Timing Diagram of a Four-Bit Binary Counter

AMD

5-43Registered Logic Design

State 0
0000

State 1
0001

State 2
0010

State 3
0011

State 4
0100

State 5
0101

State 6
0110

State 7
0111

State 8
1000

State 9
1001

State 10
1010

State 11
1011

State 12
1100

State 13
1101

State 14
1110

State 15
1111

Sixteen States Numbered From 0–15

90004A-6

Figure 7. State Diagram of a Four-Bit Binary Counter

Binary Counters
Let us examine a four-bit binary counter. The truth table
(also called the transition table) for such a counter is
given in Table 1. The table lists the next state values of
all the output registers based upon their present values.

Table 1. The Truth Table for a Four-Bit Binary
Counter

X3 X2 X1 X0 X3 X2 X1 X0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

Present State Next State

AMD

5-44 Registered Logic Design

We derive Boolean equations for each bit directly from
the above truth table by collecting all the product terms
where outputs are asserted HIGH (ones). This yields:

X3 := /X3 * X2 * X1 * X0
+ X3 * /X2 * /X1 * /X0
+ X3 * /X2 * /X1 * X0
+ X3 * /X2 * X1 * /X0
+ X3 * /X2 * X1 * X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * /X0

X2 := /X3 * /X2 * X1 * X0
+ /X3 * X2 * /X1 * /X0
+ /X3 * X2 * /X1 * X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * X1 * X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * /X0

X1 := /X3 * /X2 * /X1 * X0
+ /X3 * /X2 * X1 * /X0
+ /X3 * X2 * /X1 * X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * /X1 * X0
+ X3 * /X2 * X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * /X0

X0 := /X3 * /X2 * /X1 * /X0
+ /X3 * /X2 * X1 * /X0
+ /X3 * /X2 * /X1 * /X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * /X1 * /X0
+ X3 * /X2 * X1 * /X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * X1 * /X0

These Boolean equations are for devices with active-
HlGH outputs. These equations can be inverted for de-
vices with active LOW outputs. The Boolean equations
for active-LOW devices can also be directly derived
from the truth table by collecting all the product terms
where the active-LOW outputs (zeros) are asserted.

Manipulating the equations with Boolean algebra, we
obtain the Boolean logic equations:

X0 := /X0
X1 := X1 :+: X0
X2 := X2 :+: (X1 * X0)
X3 := X3 :+: (X2 * X1 * X0)

Similarly, for active-LOW output devices (since /(A :+: B)
= /A :+: B):

/X0 := X0
/X1 := /X1 :+: X0
/X2 := /X2 :+: (X1 * X0)
/X3 := /X3 :+: (X2 * X1 * X0)

These equations could also be obtained from the
Boolean equations developed for an adder in the combi-
natorial design section.

Rewriting the equations for an adder:

X0 = A0 :+: B0 :+: Cin
X1 = A1 :+: B1 :+: C0

where

C0 = A0 * B0 + (A0 + B0) * Cin

X2 = A2 :+: B2 :+: C1

where

C1 = A1 * B1 + (A1 + B1) * (A0 * B0)
+ (A1 + B1) * (A0 + B0) * Cin

X3 = A3 :+: B3 :+: C2

where

C2 = A2 * B2 + (A2 + B2) *(A1 * B1)
+ (A2 + B2) * (A1 + B1) *(A0 * B0)
+ (A2 + B2) * (A1 + B1) *(A0 * B0)

* Cin

Assuming one of the operands in the adder is the num-
ber itself and the second operand is one (X3–X0 =
A3–A0, B3–B0 = 0001 and Cin = 0) we get the following
equations for a counter:

X0 := /X0
X1 := X1 :+: X0
X2 := X2 :+: (X1 * X0)
X3 := X3 :+: (X2 * X1 * X0)

These are, of course, the same equations as the ones
derived directly from the truth table. The equations for a
binary counter are very regular. The general equation
for an n-bit binary counter can be directly expressed:

Xn := Xn :+: (Xn–1* Xn–2 ... X0)

For devices with active-LOW outputs, the general
Boolean equations can be derived by inverting both
sides of the equation:

/Xn := /Xn :+: (Xn–1* Xn–2 ... X0)

These equations represent a binary UP counter. Count-
ing backwards for a DOWN counter, the Boolean equa-
tions can be similarly generated, either from the truth
table or from the adder Boolean equations. The general
equation for a DOWN counter is:

Xn := Xn :+: (/Xn–1* /Xn–2 ... /X0)

This equation is for active-HlGH outputs. For active-
LOW output devices the Boolean equation for a DOWN
counter is:

/Xn := /Xn :+: (/Xn–1* /Xn–2 ... /X0)

AMD

5-45Registered Logic Design

Further control functions can be added to these counter
equations directly either at the truth-table stage or in the
equations. For example, a load data function is required
in most counters. This allows registers to be loaded with
a count under the control of another input signal
(LOAD). When the LOAD signal is HIGH the counter is
loaded with the input data, and when the LOAD signal is
LOW the counting is resumed.

Binary Counter Device Selection
Considerations
One major device selection consideration is the logic
requirement.

The binary counter Boolean equations make use of ex-
clusive-OR functions in the output. In most of the regis-
tered PLDs, the XOR functions are implemented in their
sum-of-products logic form. This usually requires a
large number of product terms. Most standard PAL de-
vices provide eight product terms per output. However,
for larger counters, a greater number of product terms is
required.

Some PLDs provide a dedicated XOR gate on the out-
puts. This allows an AND-OR-XOR implementation of
the Boolean logic, and consequently requires fewer
product terms.

Cascading Binary Counters
Situations are occasionally encountered in digital sys-
tem designs where very long counters are required.

Binary counters can be easily cascaded into two or more
devices to construct such large counters. The design of
long counters is very simple. These are designed as
simple binary counters with a count enable control. The
less significant counters generate an extra output signal
at the penultimate count. These signals are ANDed to-
gether to form the count enable signal for the higher-
order counter. For a down counter the reverse scheme
is implemented.

Cascading counters is a lot easier than cascading ad-
ders because the carry-look-ahead circuitry is not re-
quired. The only thing to remember is that the more
significant counter toggles only when the penultimate
count of all of the less significant counters is reached.

Flip-Flop Selection
Until now, all the designs have been implemented in de-
vices with D-type flip-flops. What happens if the counter
design is implemented in a device that allows both J-K
and T-type registers? The Boolean logic equations for
such a design can be derived from the truth table. This
requires advanced knowledge of the functionality of the
J-K and T-type registers. For the J-K register the output
is asserted when the J input goes HIGH and the output is
unasserted when the K input goes HIGH. Toggle type
registers require the T input to be asserted for every
change in the output level.

Table 2. Truth Table for D, J-K and T-Type Flip-Flops

X3 X2 X1 X0 D J K T D J K T D J K T D J K T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1
0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1
0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1
1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1
1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1
1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Present State
Next State

X3 X2 X1 X0

AMD

5-46 Registered Logic Design

Table 2 shows the truth table for both a J-K and a T-type
register implementation for a binary counter. Deriving
and optimizing the equations from the table, we get the
following results:

X3–J := /X3 * X2 * X1 * X0
X3–K := X3 * X2 * X1 * X0
X2–J := /X2 * X1 *X0
X2–K := X2 * X1 X0
X1–J := /X1 * X0
X1–K := X1 * X0
X0–J := /X0
X0–K := X0
X3–T := X2 * X1 * X0
X2–T := X1 * X0
X1–T := X0
X0–T := 1

As we can see from these equations, the number of
product terms used for J-K and T-type implementations
are smaller than the number of product terms required
for a D-type implementation.

Which flip-flop is most efficient depends on the relative
number of transitions or holds required. As a counter
traverses from one count (state) to another, every out-
put either makes a “transition” (changes logic level) or

“holds” (stays at the same logic level). Small counters in
general require more transitions and fewer holds. As the
designs get larger, the higher-order bits require fewer
transitions and more holds.

D-type flip-flops use up product terms only for active
transitions from logic LOW level to HIGH level, and for
logic HIGH level holds only. J-K and T-type flip-flops use
up product terms for both LOW-to-HIGH and HIGH-to-
LOW transitions, but eliminate hold terms. Generally,
the requirements of transition and hold terms depends
upon the count sequence selection. D-type flip-flops are
more efficient for small designs. Conversely J-K and T-
type flip-flops can be more efficient for large designs,
which require more hold terms.

A comparison of product term requirements of 2-, 3-, 4-
and 5-bit binary counters can be representative for other
types of counters and state machines. Table 3 shows
the transition terms and the hold terms required for
these counters. For a J-K type flip-flop implementation,
after optimizing, total product terms required are 4, 6, 8,
and 10 respectively. The D-type implementation re-
quires 3, 6, 10, and 15 respectively, and is relatively less
efficient for large counters.

Table 3. Product Term Requirements for Configurable Flip-Flops

D Product J-K Product T Product
Binary Counter Transitions Holds Terms Terms Terms

2-Bit 6 2 3 4 1
3-Bit 14 10 6 6 1
4-Bit 30 34 10 8 1
5-Bit 62 98 15 10 1

Modulo Counters
The number of unique states a counter traverses is gen-
erally referred to as the modulus. A typical n-bit binary
counter has a maximum modulus of 2n. It is often neces-
sary to introduce signal delays into the logic design to
meet timing requirements. This makes it possible to al-
low for bus-skew, access time, or differential propaga-
tion delays between devices along two different signal
paths. A typical example of this is the introduction of wait
states to allow for access times of different memory ele-
ments. Counters and delay lines are commonly used to
introduce the delay. Counters in PLDs have the added
advantage of programmability to select the required de-
lay. Such applications where precise timing duration
control is required usually use modulo counters with a
non-power-of-two modulus. Other applications of
modulo counters include waveform generators and
arbiters.

Table 4. Truth Table for a BCD Counter

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0 0 0 0 0 -> 1 0 0 0 1
0 0 0 1 1 -> 2 0 0 1 0
0 0 1 0 2 -> 3 0 0 1 1
0 0 1 1 3 -> 4 0 1 0 0
0 1 0 0 4 -> 5 0 1 0 1
0 1 0 1 5 -> 6 0 1 1 0
0 1 1 0 6 -> 7 0 1 1 1
0 1 1 1 7 -> 8 1 0 0 0
1 0 0 0 8 -> 9 1 0 0 1
1 0 0 1 9 -> 0 0 0 0 0

Present State Next State

AMD

5-47Registered Logic Design

A good example of a modulo counter is a BCD counter.
Such a counter is useful in applications where the com-
puter’s outputs are generated using a decimal system.
While a four-bit binary counter can count to sixteen, the
BCD counter terminates the count at the modulus of 10.

Modulo counters can be designed in a variety of ways.
One direct way is to use the truth table to implement a
count to a modulus and directly derive the equations
from it. The truth table for a BCD count (from zero to
nine) is shown in Table 4.

Now let us consider what happens if the device acciden-
tally powers up in one of the count values from ten to fif-
teen. These are illegal counts (states) and, for a good
design, a mechanism must be built into the equations to
allow it to recover back into a legal state. What we actu-
ally need is to consider the truth table in Table 5 in con-
junction with the one in Table 4 for deriving the Boolean
equations.

Table 5. Truth Table for Illegal State Recovery to
Count Zero

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

1 0 1 0 10 -> 0 0 0 0 0
1 0 1 1 11 -> 0 0 0 0 0
1 1 0 0 12 -> 0 0 0 0 0
1 1 0 1 13 -> 0 0 0 0 0
1 1 1 0 14 -> 0 0 0 0 0
1 1 1 1 15 -> 0 0 0 0 0

Present State Next State

A state diagram for the BCD counter is shown in Fig-
ure 8. For active-LOW outputs, the Boolean equations
can be derived directly from the truth table and opti-
mized using Karnaugh maps or the software minimizer.

The Boolean equation for Q3 is:

/Q3 := /Q3 * /Q2 * /Q1 * /Q0
+ /Q3 * /Q2 * /Q1 * Q0
+ /Q3 * /Q2 * Q1 * /Q0
+ /Q3 * /Q2 * Q1 * Q0
+ /Q3 * Q2 * /Q1 * /Q0
+ /Q3 * Q2 * /Q1 * Q0
+ /Q3 * Q2 * Q1 * /Q0
+ Q3 * /Q2 * /Q1 * Q0
+ Q3 * /Q2 * Q1 * /Q0
+ Q3 * /Q2 * Q1 * Q0
+ Q3 * Q2 * /Q1 * /Q0
+ Q3 * Q2 * /Q1 * Q0
+ Q3 * Q2 * Q1 * /Q0
+ Q3 * Q2 * Q1 * Q0

The equation can be reduced to the following:

/Q3 := /Q3 * /Q2
+ /Q3 * /Q1
+ /Q2 * Q0
+ Q3 * Q1
+ Q3 * Q2

Similar Boolean equations can be generated for Q2,
Q12 and Q0.

Figure 9 shows the circuit diagram of a loadable dual
BCD counter.

0 1 2 3 4 5 6 7 8 9

A

B

C

D

E

F
90004A-7

Figure 8. State Sequence of a BCD Counter Showing Illegal State Recovery

AMD

5-48 Registered Logic Design

Input
Buffers

Four-Bit
BCD

Count

Four-Bit
BCD

Count

CEB
LDB

D0
D1
D2
D3

CEA
LDA

Clock

Q0
Q1
Q2
Q3

Q4
Q5
Q6
Q7

90004A-8
Figure 9. Circuit of a Dual BCD Counter

Modulo Counter Device Selection
Considerations
We have illustrated a counter that counts from zero to a
fixed modulus. The same technique can be applied for a
counter which counts down from a maximum power-of-
two number to a fixed modulus, or even a counter which
counts from one modulus to another. The important con-
siderations will be the number of product terms used.

The registered PLDs used for modulo counters are simi-
lar to the ones selected for other counters. Since the
counts used are binary, devices with J-K, T-type flip-
flops, or XOR gates will help optimize the number of
product terms used. The product term usage also de-
pends upon the modulus selected. Generally, a power-
of two or a multiple-of-two modulus will require fewer
product terms.

Another factor for flip-flop selection is the illegal states.
D-type flip-flops are generally better suited for illegal
state recovery than the J-K or T-type flip-flops. This is
because when no product term is asserted, the D-type
flip-flops reset to zero. Designers using J-K or T-type
flip-flops must design-in illegal state recovery.

Certain devices allow the use of a synchronous RESET
product term for modulo counters. The idea is to use the
minimal number of product terms to build a binary
counter that counts up to a power-of-two number. How-
ever, this counter is RESET to zero using the synchro-
nous RESET product term when the desired modulus is
reached. It then begins counting afresh from zero, and
the procedure is repeated. Similar operation can also be
achieved with a synchronous PRESET product term for
a down counter.

Using synchronous RESET and PRESET product terms
allows the counter to recover from illegal states. Notice
that the logic product terms in the counter are designed
for a complete binary count. If the counter powers up in
any illegal state (as shown in Figure 10), it will continue
the count until the terminal count and then, return to
zero, where the correct modulo count will begin. This il-
legal state recovery will take an unpredictable number of
clock cycles, and you may wish to design a more sys-
tematic recovery system.

Cascading Modulo Counters
For large modulo counters, the technique of generating
Boolean equations from the truth tables is very tedious
and time consuming. Another approach for designing
modulo counters is to divide it into two smaller modulo
counters. In addition to simplifying the design, this ap-
proach usually helps optimize the number of product
terms.

As an example, a modulo-360 counter can be directly
implemented with nine register bits. However, instead of
implementing this as a straight 9-bit counter, we can im-
plement this as two counters: one four-bit counter
(counting from zero to 14) and another five-bit counter
(counting from zero to 23). Together, the two counters
count up to 360. The terminal count output, MOUT, is
asserted when the count reaches 360, as shown in
Figure 11.

The design requires nine inputs, nine outputs, one clock
pin, one LOAD pin, one RESET and one MOUT (module
output signal) pin. Note that no extra flip-flops or pins
were needed. Obviously, the count values of this
counter are not the same as a straight modulo-360
counter. Actually, this is what contributes to the optimi-
zation of the number of product terms used.

AMD

5-49Registered Logic Design

0

10 11 12 13 14 15

1

3

4

5

6

7

8

9

Legal
States

Synchronous
Reset Product
Term Asserted

Illegal States

90004A-9

Figure 10. A BCD Counter Using Synchronous RESET Product Term

4A (3:0)5A (8:4)
Load
RST
CLK

AmPAL22V10

Modulo 15
4 Bits

Modulo 24
5 Bits

Q24 (3) (2) (1) (0)(4) Q15 (2) (1) (0)(3)

M_OUT

90004A-10

Figure 11. A Modulo-360 Counter

AMD

5-50 Registered Logic Design

Counters with Encoding
Until now, we have discussed counters that generate bi-
nary output sequences. Most peripherals require a pre-
determined sequence of control signals. Custom control
sequences can be generated by decoding the binary se-
quence with combinatorial logic. Figure 12 shows a gen-
eral model of a counter with combinatorial output

decoding circuitry. This combinatorial circuit modifies
the counter bits and generates output signals in the
manner required for peripheral timing and control. Since
these circuits require extra combinatorial logic, they are
not very efficient. They are also more susceptible to haz-
ards and output glitches.

Outputs

Clock

Combinatorial
Logic

Output
Decoder

Flip-
Flops

Next
State

Decoder

Control
Inputs

90004A-11

Figure 12. Counter with an Output Decoder

It is possible to have a different output coding for a four-
bit counter, as shown in Table 6. This code, called Gray
code, allows only one output bit to toggle for each new
count value. This code can be easily derived from a four-
bit binary counter code (also shown in Table 6) using an
output decoder.

Table 6. Generating Gray Code from a
Binary Code

X3 X2 X1 X0 G3 G2 G1 G0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

Binary Code Gray Code

We can derive the Boolean equations for the combinato-
rial output decoder from the truth table. The equations
are:

G3 = X3
G2 = X3 :+: X2
G1 = X2 :+: X1
G0 = X1 :+: X0

A more efficient and easier technique for generating
control signals is to implement the decode circuitry be-
fore the registers. This alternative is shown in Figure 13.
This essentially generates a non-standard counter with
state values that are not a binary progression. It can be
considered as a counter where the product terms for a
binary count and encoding the outputs have been
combined.

Many different codes can be generated using such tech-
niques. We will limit ourselves to the ones that are most
commonly used: Gray-code counters and Johnson
counters.

AMD

5-51Registered Logic Design

Next
State

Decoder

Output
“PRE”

Decoder

Flip-
Flops

CLKCombinatorial
Logic

Control
Inputs

Outputs

90004A-12

Figure 13. Counter with Combined Next State Generation and Output Encoding Circuit

Gray-Code Counters
Gray-code counters are often used in digital designs for
control timing functions. The primary advantage of
Gray-code counters stems from the characteristic that
only one output bit changes value for every clock cycle.
These output signals can be easily decoded using a
combinatorial decoder without any risk of hazards.
Gray-code counters are used extensively as system
clocks, since the different output bits provide different
clock pulses, without the risks of hazards. Gray-code is
also used in high-speed data communication applica-
tions, where data is transmitted from one part of the sys-
tem to another, and where the error susceptibility
increases with the number of bit changes between adja-
cent numbers in a sequence. These are also used for
such specialized applications as shaft encoders and
real-time process control.

The implementation of a Gray-code counter is very sim-
ple. A truth table can be derived from the transition table
as is done for a binary counter. The Boolean equations
can then be directly derived from the truth table. The
truth table for the Gray-code counter is shown in
Table 7.

Table 7. Truth Table for a Four-Bit Gray-Code
Counter

X3 X2 X1 X0 X3 X2 X1 X0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1
0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 0 0 1
1 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0

Present State Next State

AMD

5-52 Registered Logic Design

The Boolean logic equations for a Gray-code counter
are:

X3 := /X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * X0
+ X3 * X2 * X1 * /X0
+ X3 * /X2 * X1 * /X0
+ X3 * /X2 * X1 * X0
+ X3 * /X2 * /X1 * X0

X2 := /X3 * /X2 * X1 * /X0
+ /X3 * X2 * X1 * /X0
+ /X3 * X2 * X1 * X0
+ /X3 * X2 * /X1 * X0
+ /X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * X0

X1 := /X3 * /X2 * /X1 * X0
+ /X3 * /X2 * X1 * X0
+ /X3 * /X2 * X1 * /X0
+ /X3 * X2 * X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * X0
+ X3 * X2 * X1 * /X0
+ X3 * /X2 * X1 * /X0

X0 := /X3 * /X2 * /X1 * /X0
+ /X3 * /X2 * /X1 * X0
+ /X3 * X2 * X1 * /X0
+ /X3 * X2 * X1 * X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * /X2 * X1 * /X0
+ X3 * /X2 * X1 * X0

Johnson Counters
A Johnson counter is part of a family of counters known
as “ring counters.” These counters are used for special
applications where code symmetry is desired. Ring
counters are also often used for timing purposes, since
all the outputs are essentially a series of pulses. This
code symmetry also allows use of the fewest possible
product terms with a D-type register. Devices that pro-
vide a small amount of logic per cell, can implement
Johnson counters very easily.

Johnson counters are also known as circular-shift
counters. The sequence for a five-stage Johnson
counter is shown in Table 8. As can be seen in the truth
table, the counter first fills up with 1’s from left to right
and then it fills up with zeros again. Note from the output
sequence that only one of the Johnson counter bits
changes for every clock period, like the Gray-code
counter. One major advantage of the Johnson counter is
that it can be readily decoded with small two-input
NAND gates and hence is suitable for high-speed
applications.

Note that the five-stage sequence has a table of 10 legal
states and 22 illegal states (Table 9). In general, an n-bit
Johnson counter will produce a modulus of 2n. Fig-
ure 14 shows the state diagram of the five-bit counter.

Table 8. Five-Bit Johnson Counter Truth Table
Legal States

Q4 Q3 Q2 Q1 Q0 Q4 Q3 Q2 Q1 Q0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1
0 0 1 1 1 0 0 0 1 1
0 1 1 1 1 0 0 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1 1 0
1 1 0 0 0 1 1 1 0 0
1 0 0 0 0 1 1 0 0 0

Present State Next State

The implementation of a Johnson counter is relatively
straight-forward, and is the same regardless of the num-
ber of stages. When D-type flip-flops are used, the Q
output of each flip-flop is connected to the D input of the
following stage. The single exception is the Q output of
the last stage, which is complemented and connected to
the D input of the first stage.

Table 9. Illegal States for a Five-Bit
Johnson Counter

Illegal States

Q4 Q3 Q2 Q1 Q0 Q4 Q3 Q2 Q1 Q0

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0

Present State Next State

AMD

5-53Registered Logic Design

00001 00000

00011 10000

00111 11000

01111 11100

11111 11110

Illegal
States

90004A-13

Figure 14. State Diagram of a Five-Bit Johnson
Counter

One disadvantage of the counter is the number of invalid
(or illegal) states. The invalid states increase exponen-
tially with the length of the counter. The bigger the
counter becomes, the greater are its chances of enter-
ing an illegal state. Johnson counters are very suscepti-
ble to illegal states, and can “hang up” very easily. Noise
or improper use can cause this counter to end up in an
illegal state. Therefore, a design with illegal state recov-
ery circuitry is always recommended.

Figure 15 shows a nine-bit Johnson counter that can be
derived by directly extending the design of a five-bit
Johnson counter.

Shift Registers
A Shift Register is a special digital circuit often used as a
primary building block in digital computer systems. It is
closely related to a ring counter. Its fundamental usage
is for temporary data storage and bit-wise data manipu-
lation for advanced arithmetic and multiplication opera-
tions. Shift registers are also frequently used in
communications, for converting parallel byte-wide data
from the microprocessor to a serial data bit-stream for
transmission. Shift registers are also used in graphics
systems for serializing parallel data for use by the dis-
play monitor. A number of examples of video shift regis-
ters are included in the graphics section.

The fundamental purpose of a shift register (Figure 16)
is to shift data from one flip-flop to another. There are
several types of shift registers. They are classified by
the way in which incoming data is received (parallel or
serial), and how outgoing data is transmitted (parallel or
serial).

In the following example, we will discuss a simple uni-
versal shifter that provides both serial and parallel input
and output functions. Depending upon the control sig-
nals I0 and I1, the data is shifted from one flip-flop to an-
other in the left or the right direction. These inputs also
control when the new parallel data is loaded onto the
registers. When shifting left or right, serial data can be
received and transmitted on serial pins LIRO and RILO.
Since the flip-flop outputs appear on the output pins at
all times, the parallel output data is always available.
The truth table is shown in Table 10.

The Boolean logic equations can be directly derived
from the truth table, and are shown Figure 17.

Shift registers can be modified to suit various system de-
sign requirements. This universal shift register can be
used for serial in/serial out, parallel in/parallel out, serial
in/parallel out and parallel in/serial out functions.

D Q D Q D Q D Q D Q D Q D Q D Q D Q

Q

CLK
90004A-14

Figure 15. Block Diagram of a Nine-Bit Johnson Counter

AMD

5-54 Registered Logic Design

Control
Signals

Left Signal Data
In and Out (LIRO)

Clock

Right Serial Data
Out and In (RILO)

Parallel Data In

Shift Register

Parallel Data Out

D0 D1 D2 D3 D4 D5 D7D6

Q0 Q1 Q2 Q3 Q4 Q5 Q7Q6

90004A-15

Figure 16. A Shift Register Block Diagram

Table 10. The Truth Table for a Universal Shift Register

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 I1 I0

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 0 0 ;Retain Data
RILO Q7 Q6 Q5 Q4 Q3 Q2 Q1 0 1 ;Shift Right
Q6 Q5 Q4 Q3 Q2 Q1 Q0 LIRO 1 0 ;Shift Left
D7 D6 D5 D4 D3 D2 D1 D0 1 1 ;Load Data

AMD

5-55Registered Logic Design

Equations

/Q0 := /I1*/I0*/Q0 ;HOLD Q0
+ /I1*I0*Q1 ;SHIFT RIGHT

:+: I1*/I0*/LIRO ;SHIFT LEFT
+ I1*I0*/D0 ;LOAD D0

/Q1 := /I1*/I0*/Q1 ;HOLD Q1
+ /I1*I0*/Q2 ;SHIFT RIGHT

:+: I1*/I0*/Q0 ;SHIFT LEFT
+ I1*I0*/D1 ;LOAD D1

/Q2 := /I1*/I0*/Q2 ;HOLD Q2
+ /I1*I0*/Q3 ;SHIFT RIGHT

:+: I1*/I0*/Q1 ;SHIFT LEFT
+ I1*I0*/D2 ;LOAD D2

/Q3 := /I1*/I0*/Q3 ;HOLD Q3
+ /I1*I0*/Q4 ;SHIFT RIGHT

:+: I1*/I0*/Q2 ;SHIFT LEFT
+ I1*I0*/D3 ;LOAD D3

/Q4 := /I1*/I0*/Q4 ;HOLD Q4
+ /I1*IO*/Q5 ;SHIFT RIGHT

:+: I1*/I0*/Q3 ;SHIFT LEFT
+ I1*I0*/D4 ;LOAD D4

/Q5 := /I1*/I0*/Q5 ;HOLD Q5
+ /I1* I0*/Q6 ;SHIFT RIGHT

:+: I1*/I0*/Q4 ;SHIFT LEFT
+ I1* I0*/D5 ;LOAD D5

/Q6 := /I1*/I0*/Q6 ;HOLD Q6
+ /I1*I0*/Q7 ;SHIFT RIGHT

:+: I1*/I0*/Q5 ;SHIFT LEFT
+ I1*I0*/D6 ;LOAD D6

/Q7 := /I1*/I0*/Q7 ;HOLD Q7
+ /I1*I0*/RILO ;SHIFT RIGHT

:+: I1*/I0*/Q6 ;SHIFT LEFT
+ I1*I0*/D7 ;LOAD D7

/LIRO = /Q0 ;LEFT IN RIGHT OUT
LIRO.TRST = /I1*I0

/RILO = /Q7 ;RIGHT IN LEFT OUT
RILO.TRST = I1*/I0

Figure 17. Boolean Logic Equations for an Octal Shift Register

AMD

5-56 Registered Logic Design

Barrel Shifters
In most data processing systems, some form of data
shifting or rotation is necessary. In typical computer sys-
tems, the shifter is located at the output of the ALU, and
usually requires a single-cycle shift and add function
(Figure 18). For such applications as floating-point arith-
metic or string manipulation, ordinary shift registers are
inefficient, since they require n clock cycles for an
n-bit shift.

Input Data Bus

Register
File

Register

ALU

Shifter

Output Data Bus

Shift
Distance

CLK

OE

90004A-16

Figure 18. Typical ALU Architecture

A specialized shift register, called a “barrel shifter,” is
used to shift (or rotate) data by any number of bits in a
single clock cycle. The name “barrel shifter” is used be-
cause of the circular nature of the shift operation. The
storage registers on the output of the shifter are used in
this architecture to pipeline the data operation, increas-
ing throughput. The three-state buffer on the output reg-
isters is also useful for providing an interface to the
data bus.

The design of a barrel shifter proceeds in the same man-
ner as a regular shift register. The truth table is drawn,

and the Boolean equations are then written based upon
the truth tables. An eight-bit barrel shifter requires at
least eight data inputs, eight registered data outputs,
three control lines to specify the shift distance, a clock
input and an output enable that controls the three-state
buffer on the register output.

Figure 19 shows the block diagram for an eight-bit regis-
tered barrel shifter, while Table 11 shows the truth table.
The registered barrel shifter requires a total of 14 inputs
and 8 outputs.

Barrel Shifter

D7 D6 D5 D4 D3 D2 D0D1

Q7 Q6 Q5 Q4 Q3 Q2 Q0Q1

S0
S1
S2

CLK

RST

OE

90004A-17

Figure 19. Block Diagram of an Eight-Bit Barrel
Shifter

Table 11. Truth Table for an Eight-Bit Barrel
Shifter

S2 S1 S0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

0 0 0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 1 D6 D5 D4 D3 D2 D1 D0 D7
0 1 0 D5 D4 D3 D2 D1 D0 D7 D6
0 1 1 D4 D3 D2 D1 D0 D7 D6 D5
1 0 0 D3 D2 D1 D0 D7 D6 D5 D4
1 0 1 D2 D1 D0 D7 D6 D5 D4 D3
1 1 0 D1 D0 D7 D6 D5 D4 D3 D2
1 1 1 D0 D7 D6 D5 D4 D3 D2 D1

Gray-Code, Johnson Counter and Shift
Register Device Selection Considerations
Gray-code counters, Johnson counters and shift regis-
ters are not very logic-intensive; the number of product
terms required is minimal. The D-type flip-flops provide
the most efficient implementations, allowing these de-
signs to be easily implemented in most PAL devices.

Since Gray-code counters are often used as system
clocks, very high speed PAL devices provide the highest
resolution clocks.

Barrel shifters are very logic-intensive and require many
product terms, since data from all the inputs needs to be
accessible at any output. Registered PLDs with a large
number of product terms are ideal for barrel shifters.
Large barrel shifters can also be partitioned into a num-
ber of PLDs.

AMD

5-57Registered Logic Design

Asynchronous Registered Designs
Until now, we have discussed strictly synchronous reg-
istered designs, where a common system clock is used.
In asynchronous registered designs, a common clock is
not used. The register clock may be generated by the
output of another register, or by a logical combination of
various other signals. Such designs are usually slow for
such applications as timing generation, because when
the output of one register is used to clock another, multi-
ple delays are encountered before all the register out-
puts stabilize. On the other hand, designs can be very
fast for asynchronous applications such as bus arbitra-
tion and control, where a fast response to a bus signal
can be provided without waiting for a common sys-
tem clock.

Although asynchronous designs are easier to visualize,
they present larger problems in implementation.

Combinatorial hazard conditions can cause false clock-
ing of registers, destroying the logic intended by the de-
signer. The designer also needs to worry about race
conditions when clocking a number of register simulta-
neously. Careful design analysis is strongly recom-
mended before implementing any asynchronous
design.

Ripple counters are probably the easiest examples of
such asynchronous designs. Figure 31 shows the logic
diagram of a five-bit binary ripple counter. These count-
ers clearly have the advantage of design simplicity. The
output from one stage is fed as the clock to the next
stage. However, this results in a slower counting rate,
since the clock signals need to propagate through all
five registers before the next count is reached.

R D S

Q Q

R D S

Q Q

R D S

Q Q

R D

Q Q

R D

Q Q

S S

Q4 Q3 Q2 Q1 Q0

CK SETRESET

Extra Circuit Required
For Modulo 20 Counter

90004A-18

Figure 20. A Five-Bit Ripple Counter

Figure 20 shows the implementation of a modulo-20
counter that is RESET when output bits Q4 and Q2 are
both HIGH. Since the RESET is implemented with a
product term, the extra AND gate shown can be imple-
mented directly within the PAL device.

Asynchronous Designs Device Selection
Considerations
The device selection for asynchronous designs is easy.
As the clock signals require logic, only PLDs that allow
implementations of Boolean logic on the clock signals
are useful.

AMD

5-58 Registered Logic Design

OTHER APPLICATIONS OF REGISTERED
PLDs

Registered PLDs are used for a number of miscellane-
ous applications that are not covered by the synchro-
nous and asynchronous design applications discussed
up to now. One such application is as a frequency
divider.

Frequency dividers

Addressable Registers

Frequency Dividers
Standard synchronous counters provide the basic capa-
bility of dividing an input frequency. A single register of a
PAL device will let us divide by two.

If we stack these registers, a binary counter provides
symmetrical division by 2, 4, 8, 16, etc. This divider has
been a standard for years, and the PAL device has al-
ways been on excellent choice for such applications.

One unique application of PAL devices is for dividing in-
put frequencies by odd numbers. This has been done
historically by designing a counter that cycles an odd
number modulo, and decoding the specific states of the
counter. The disadvantage of this approach is that the
output is not symmetrical and the duty cycle is not 50%.

Let us examine a simple divide-by-five counter. This
counter can be implemented using three flip-flops that
start at zero and reset at four, resulting in a five-state
counter. Table 12 shows the outputs of the three individ-
ual flip-flops.

Table 12. Truth Table for a Five-Bit Counter

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1 State zero to one.
0 0 1 0 1 0 State one to two.
0 1 0 0 1 1 State two to three.
0 1 1 1 0 0 State three to four.
1 0 0 0 0 0 State four to zero.

Present State Next State

The Boolean equations are:

Q2 := /Q2 * Q1 * Q0 ;MSB bit
Q1 := /Q1 * Q0 + Q1 * /Q0
Q0 := /Q2 * /Q0 ;LSB bit

The waveforms for this divider are shown in Figure 21.
Notice that the Q2 output goes HIGH for one state and
that this output is one fifth of the input frequency, but it is
a 20% duty cycle. Q1 is active for two states; it provides
the same frequency, but with a 40% duty cycle. If we
want a 50% duty cycle, we are going to have to divide a
state in half.

To provide the 50% duty cycle, the two edges should be
evenly spaced in the count sequence, one edge in the
middle of state two and one at the beginning of state
zero. The first edge can be formed by logically “ANDing”
state_2 with the falling edge of the clock. The second
edge can be formed by decoding state zero.

edge_1 =/clock * /Q2 * Q1*/Q0
;edge between
;states two and
;three

edge_2= /Q2 */Q1 */Q1 ;edge at state
;zero

The logical “OR” of these two equations will provide the
needed rising edges. To provide a clean output, this sig-
nal should clock another output register.

The next step in the design is to pick the appropriate
PAL device to fit this design. Our biggest concern is that
we need the capability of clocking the counter at one
speed and the output flip-flop at another. To do this, we
cannot use a PAL device that has a dedicated clock pin;
we need an architecture that allows programmable
clocks.

The clock signal requires two product terms (one for
each edge). Another technique is to use the independ-
ent asynchronous SET and asynchronous RESET prod-
uct terms of the output register. A HIGH on the SET
product term asserts the register output, and a HIGH on
the RESET product term unasserts the register output.
Due to the asynchronous nature of the product terms
some adjustment in timing is required. The SET product
term is asserted when in state 0 (Q2=0, Q1=0 and
Q0=0), and the RESET product term is asserted when
between states two and three.

OUTPUT.SET = /clock * /Q2 * Q1 * /Q0
;set between
;states 2 & 3

OUTPUT.RESET = /Q2 */Q1 * /Q0
;reset at
;state zero

AMD

5-59Registered Logic Design

Q0

Q1

Q2

Output

Set

Reset

State 0 State 1 State 2 State 3 State 4 State 0 State 1

90004A-19

Figure 21. Waveform for a Frequency Divider

Addressable Registers
Addressable registers are commonly-used MSI func-
tions, often implemented in PAL devices. Addressable

registers are used as building blocks for digital comput-
ers. Depending upon the address input one of the many
flip-flops in the register retain their previous values.

