
fax id: 6441

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
May 1996 – Revised March 6, 1997

Designing With F LASH370i™ for PC Cable Programming

Introduction
This application note presents how to design with the Cypress
In System Reprogrammable (ISR™) family of complex PLDs,
the FLASH370i™ family, for programming from a PC with the
ISR programming cable. The main issues addressed are
those related to programming and reprogramming the devic-
es in-system (i.e., while they are soldered onto a printed cir-
cuit board). Primary among these is interfacing to the pins
used to program the devices, both when those pins are used
only for programming and when they are used both for pro-
gramming and for I/O in normal operating mode.

To address this issue, we categorize designs into three types:
designs using devices with single-function pins; designs us-
ing devices with dual-function pins used in single-function
mode; and designs using devices with dual-function pins
used in dual-function mode. We will cover all three cases in
this application note. The three cases are explained further
below.

Single-Function Pins / Single-Function Mode: Some of the
FLASH370i devices have pinout/package combinations such
that the pins used for programming are single-function only;
i.e., they are used as programming pins only. When the de-
vice is operating (i.e., not being programmed) they are not in
use; they are just extra pins.

Dual-Function Pins / Dual-Function Mode: The rest of the
devices in the FLASH370i family have pinout/package combi-
nations such that the pins used for programming have dual
functionality. They are used as programming pins when the
device is being programmed, and they are used as I/Os when
the device is in normal operating mode. To use both of these
functions, you must design interface logic to isolate program-
ming signals from other devices on the board.

Dual-Function Pins / Single- Funct ion Mode: Alternatively,
the designer can decide to use these dual-function pins as
programming pins only and not connect them as I/Os for nor-
mal operation. The design is simpler in this case as no special
interface logic is required.

All FLASH370i devices can also be cascaded into a single
chain for programming purposes so that one cable and one
connector can be used to program all of the FLASH370i de-
vices on a board. We will show a simple example of this in this
application note, but this topic is covered in depth in an appli-
cation note called “Cascading FLASH370i Devices.”

In addition to the topic of interfacing to the programming pins,
several other topics are covered in this application note.
These include:

• handling the 12V signal on the board;

• the state of the FLASH370i devices’ I/Os at power-up (and
why you need to know about this);

• the state of the ISR programming cable’s pins when not
programming and the state of the FLASH370i’s ISR pro-
gramming pins when no cable is attached;

• and the structure of the ISR software programming config-
uration file.

Throughout this application note, assume that the ISR devic-
es are programmed in system by means of the ISR cable that
connects the board to a PC. This ISR programming cable is
provided by Cypress, and the details of the cable and the
connector on the board to which it interfaces are explained in
detail in this application note. There are other ways to pro-
gram or reprogram the parts in-system as well, and many of
the topics covered and solutions shown in this application
note also apply to those methods.

The ISR Programming Cable
The pins on a FLASH370i device used for programming are:
ISRVPP, SDI, SDO, SMODE, and SCLK. Their names and
functions are defined below.

ISRVPP In System Reprogramming Voltage

During programming, this pin supplies the device with the
voltage needed to program it, which is 12.0V ± 0.6V. During
normal operation this pin must be between 0V and 5V.

SDI Serial Data Input

During programming, this pin is the serial input to the device.

SDO Serial Data Output

During programming, this pin is the serial output from the de-
vice.

SCLK Serial Clock

During programming, this pin is the clock input. SDI and
SMODE are sampled on the rising edge of SCLK, while SDO
changes following the falling edge of SCLK.

SMODE Serial Mode Control

During programming, this is the mode select control input that
directs the TAP (test access port) controller state machine
contained within the ISR interface.

The FLASH370i devices are programmed using a PC as
shown in Figure 1: the ISR programming cable connects the
parallel port of the PC to a cable header on the board on
which the FLASH370i devices are soldered. The header on
the board connects to the traces that go to the ISRVPP, SDI,
SDO, SCLK, and SMODE pins on the FLASH370i devices
themselves. The ISR software runs on the PC and drives
these pins on the board, through the cable, header, and trac-
es, to program the devices with the appropriate JEDEC files.
The cable has a DC/DC converter built into it that receives 5V
from the board and supplies the 12V programming voltage to
the ISRVPP pin.

Designing with F LASH370i for PC Cable Programming

2

A 10-pin, 2 x 5, boxed header connector is used on the board
for the ISR programming cable to plug into. This boxed head-
er connector has a small opening in the box on one side (the
key) that allows the ISR programming cable to be plugged in
one way only. The pins are on 0.100" centers. The length of
each pin is 0.230", and the cross-section is 0.025" x 0.025".
This boxed header connector is available as a straight-pin
connector and as a right-angle connector.

Additionally, an open header can be used. Part numbers for
two compatible connectors are:

DIGI-KEY part # S2012-05-ND
(straight–pin connector)

DIGI-KEY part # S2112-05-ND
(right–angle connector)

The ISR programming cable provided by Cypress has a fe-
male end which plugs into these connectors. The position of
the signal pins on the connector is shown in Figure 2.

To program a FLASH370i device using the ISR programming
cable described here, all you need to do is route the ISRVPP,
SDI, SDO, SCLK, and SMODE pins from the cable connector
to the ISRVPP, SDI, SDO, SCLK, and SMODE pins of the
FLASH370i device, respectively.

In addition to these programming pins, there is an additional
signal available from the cable called ISR*. The purpose of
this signal is to allow the user to know the state of the signals
coming from the cable. If ISR* is a logic ‘0’, it indicates that
ISRVPP is 12V and one or more FLASH370i devices on the
board are being programmed; if ISR* is a logic ‘1’, it indicates
ISRVPP is not 12V and no FLASH370i devices on the board
are being programmed. This is particularly useful in the “Du-
al-Function Pins/Dual-Function Mode” designs mentioned in
the introduction and explained in detail later in this application
note. The logic ‘0’ and logic ‘1’ levels on ISR* are 0V and 5V,
respectively. The logic ‘0’ level is driven actively while the
logic ‘1’ level is not driven but pulled up using a 20-kΩ pull-up
resistor to the VCC pin of the ISR connector.

There are three other connection points on the cable and ca-
ble header: VCC, GND, and NC. VCC is the pin through which
the VCC plane on the board containing the FLASH370i devic-
es supplies 5V to the DC/DC converter in the ISR cable. This
is necessary for the ISR programming cable to be able to
generate the 12V voltage level on ISRVPP needed to pro-
gram the FLASH370i devices. GND provides a common
ground reference between the board and the ISR program-
ming cable. NC is a no connect that is not used.

Designs That Use Devices With
Single-Function Programming Pins
Single-function programming pins refers to the case where
the pins used for programming the device are only dedicated
to that function and are extras—not in use—when the device
is in normal operating mode. Two members of the FLASH370i
family currently have this feature, the 64-macrocell CY7C373i
in the 100-pin TQFP package and the 128-macrocell
CY7C374i in the 100-pin TQFP package. These two devices,
which have identical pinout, have 64 I/O pins and 6 input-only
pins for a total of 70 I/Os. Therefore, in the 100-pin package,
there are still plenty of pins to accommodate the five ISR pins

Figure 1. ISR Programming Cable

TO PARALLEL PORT

ISR PROGRAMMING CABLE

TO 10–PIN CONNECTOR ON BOARD

Figure 2. Layout of Connector for Cable on Board,
Top View

SMODE

GND

SCLK

ISRVPP

SDI

ISR*

NC

VCC

GND

SDO

Designing with F LASH370i for PC Cable Programming

3

on separate pins and still have ample power and ground con-
nections. As the pinout diagram of these two devices in Fig-
ure 3 shows, pins 88, 75, 50, 1, and 26 are, ISRVPP, SDI,
SDO, SCLK, and SMODE, respectively.

Designing with these devices is the easiest of the three cas-
es. You simply connect these ISR pins to the corresponding
pins on the ISR programming cable connector, and you now
have access to in system reprogramming.

There are other issues related to this, such as the best way
to route the 12V signal to the ISRVPP pin, the state of the ISR
programming pins when the cable is disconnected, and the
format of the ISR software configuration file. These issues
apply to all three types of designs (single-function pins, du-
al-function pins used in single-function mode, and dual-func-
tion pins used in dual-function mode), and will be treated in a
later section.

Designs That Use Devices With Dual-Function
Programming Pins
Dual-function programming pins refers to the case where the
ISR pins on a FLASH370i device are used for programming
the device when it is in programming mode and are used as
normal I/Os in normal operating mode. The devices that have
this characteristic are the CY7C371i and CY7C372i in 44-pin

packages, the CY7C373i and CY7C374i in 84-pin packages,
and the CY7C375i in 160-pin packages-in other words, all of
the devices in the family except the two mentioned in the sin-
gle-function section above.

For example, look at the CY7C373i and CY7C374i 84-pin
PLCC pinout in Figure 4. These are similar to the devices
described in the single-function section above, but with 64
and 128 macrocells respectively, and with 64 I/O pins. In this
case, the programming functions share pins with normal I/O
functions. Pin 72 is SDI in programming mode and I/O54 in
normal operating mode; pin 51 is SDO in programming mode
and I/O38 in normal operating mode; pin 14 is SCLK in pro-
gramming mode and I/O10 in normal operating mode; and pin
35 is SMODE in programming mode and I/O26 in normal op-
erating mode. Pin 83 is ISRVPP and differentiates the func-
tion of these other four ISR interface pins.

There are two ways to design with devices that have du-
al-function programming pins. First, you could use the du-
al-function pins as single function pins. That is, you could de-
cide to use only the programming function of the pins and not
use those pins as I/Os in your design. The other way to use
them, of course, is to use them as true dual-function pins,
where you use them both as programming pins in program-
ming mode and as I/Os in normal operating mode.

Figure 3. Pinout of CY7C373/4i in 100-Pin TQFP

10099 9798 96

2
3

1

4241

59
60
61

12
13

15
14

16

4
5

4039

95 94

17

26

9
10

8
7
6

11

27 28 3029 31 32 3534 36 37 3833

67
66

64
65

63
62

68
69
70

75

73
74

72
71

89 88 8687 8593 92 84

SDI
VCC
I/O55
I/O54

I/O53
I/O52

CLK3/I4

I/O50

I/O48

GND
NC

I/O47
I/O46

I/O49

SCLK
GND
I/O8
I/O9

I/O10
I/O11

I/O15

VCC

GND
CLK1/I1

I/O16
I/O17

CLK0/I0

9091

I/O51

VCC

CLK2/I3

I/O14

N/C

I/O12
I/O13

I/O45

I/O44
I/O43
I/O42
I/O41

I/O40
GND
NC

I/O18

I/O19
I/O20
I/O21

I/O22

I/O23
VCC
NC

18
19
20
21
22
23
24
25

83 82 81 80 79 78 77 76

58
57
56
55
54
53
52
51

43 44 45 46 47 48 49 50

Designing with F LASH370i for PC Cable Programming

4

Devices With Dual-Function Programming Pins Used in
Single-Function Mode

To use the FLASH370i devices in this way, with the dual-func-
tion pins used as programming pins only, you need the total
number of I/Os used in your design to be equal to or less than
(n–4), where n is the total number of input and I/O pins avail-
able on the device. This way is the preferred method of de-
sign. It is much easier and will save both time and compo-
nents over implementing the kind of logic described in the
next section for dual-function pins used in dual-function
mode.

To design with the dual-function pins used in single-function
mode, all you really need to do is make sure no I/Os get as-
signed to those dual function pins. Two ways to do this are
described below.

First, if you are using the Cypress Warp™ VHDL compiler,
you can use a simple synthesis directive called “pin_avoid” to
make sure the compiler does not assign signals to whatever

pins you specify. In this case, of course, you would specify the
dual function pins. An example of the exact text to include in
your VHDL code appears in Figure 5. This example assumes
you are using the CY7C373i or CY7C374i in the 84-pin PLCC
package where pins 14, 35, 51, 72, and 83 are the ISR pins.

If you prefer, or if the software you are using does not have a
capability similar to the “pin_avoid” directive in Warp, you can
also ensure the dual-function pins do not get used as I/Os in
normal operating mode by explicitly assigning all of the sig-
nals to pins in your design. You just need to make sure you
assign all of the signals to pins other than the dual-function
pins. An example showing how to do this in Warp using the
“pin_numbers” directive is shown in Figure 6. Again, this ex-
ample assumes you are using the CY7C373i or CY7C374i in
the 84-pin PLCC package, so pins 14, 35, 51, 72, and 83 are
not being used. Notice that none of the signals used in the
example in Figure 6 are assigned to these pins.

Figure 4. Pinout of CY7C373/4i in 84-Pin PLCC

I/O14
I/O15 I/O48

9 8 67 5

13
14

12

11 10

4948

58
59
60

23
24

26
25

27

15
16

4746

4 3

28

33

20
21

19
18
17

22

34 35 3736 38 39 4241 43 44 4540

66
65

63
64

62
61

67
68
69

74

72
73

71
70

84 83 8182 802 1 79
GND
I/O55
I/O54/SDI
I/O53
I/O52
I/O51

GND

I/O49

CLK3/I4

VCC
CLK2/I3

I/O45
I/O44

I/O8
I/O9

I/O10/SCLK
I/O11
I/O12
I/O13

CLK0/I0
VCC

CLK1/I1
I/O16
I/O17
I/O18
I/O19
I/O20

53525150

30
29

31
32

54
55
56
57 I/O43

I/O42
I/O41
I/O40

7778 76 75

I/O21
I/O22
I/O23
GND

I/O50

I/O47
I/O46

GND

Figure 5. VHDL Code Fragment Showing pin_avoid Attribute

-- example of using “pin_avoid” for single–function mode of
-- dual–function devices

entity cpuctl is port (
a : in bit_vector (31 downto 0);
rd, wr : out bit;
hold : buffer bit;
status : out bit_vector (7 downto 0));

attribute pin_avoid of cpuctl:entity is “14 35 51 72 83”;
end cpuctl;

-- architecture would follow

Designing with F LASH370i for PC Cable Programming

5

Devices With Dual-Function Programming Pins Used in
Dual-Function Mode

There are cases where you may need or want to take advan-
tage of the dual functionality of the dual-function program-
ming pins. For example, you may not have enough I/O pins
for your design if you do not use the dual-function ISR pro-
gramming pins as I/Os when the device is in normal opera-
tion. Other times, you may want to use the dual-function ISR
pins as I/Os in normal operation because their physical posi-
tion makes your board layout easier. If you want to do this in
your design, you can do it fairly easily; it simply requires a little
bit of extra logic and possibly some additional small compo-
nents. This section shows you how to do this.

The SDI, SCLK, and SMODE programming pins are all inputs
to the device during programming, and they always share
pins with bidirectional I/Os when they are dual-function pins.
The SDO programming pin, on the other hand, is an output
pin from the device during programming. It, too, always
shares a pin with a bidirectional I/O when it is a dual-function
pin. These I/O pins, in turn, can be used as input only, output
only, or bidirectional I/Os in any design, based upon the func-
tionality that is described for these pins in the programmable
logic chip’s design description. The result is that there are six
different cases to consider: you can have an ISR input pro-
gramming pin (SDI, SCLK, SMODE) sharing a pin with a sig-
nal that is an input, an output, or an I/O; and you can have an
ISR output programming pin (SDO) sharing a pin with a signal
that is an input, an output, or an I/O. We next look at each of
these six cases individually.

This approach can be more time-consuming than using the
“pin_avoid” directive, especially if your design has a large
number of I/Os. When you do this, you also need to take
some device-specific resource information into account, such
as block-reset and preset or half-block output-enable signal
allocation. Since the compiler can account for all of this for
you automatically, it is usually easier to just use the
“pin_avoid” directive.

What you are trying to accomplish in all of these cases is
fundamentally the same. You are trying to isolate the pro-
gramming signals from the normal operating signals on the
board. You do not want the programming signal to drive or
affect anything else on the board when you are programming

the FLASH370i device, and you do not want the normal oper-
ating signal to drive, affect, or be affected by the programming
logic when the FLASH370i device is operating normally in the
system. The basic strategy in all of the cases listed above is
to use three-state buffers or multiplexers on these signals,
and to have those buffers or multiplexers controlled by the
ISR* signal from the programming cable. The ISR* signal,
recall, is a signal from the programming cable that is a logic
‘0’ when ISRVPP is 12V (when the FLASH370i device is being
programmed), and it is a logic ‘1’ when ISRVPP is not 12V
(when the FLASH370i device is not being programmed).

First, consider the case of the ISR programming pins that are
inputs to the device during programming, SDI, SCLK, and
SMODE. When one of these device pins is being used as an
input during normal operating mode, you simply have to se-
lect between one of two inputs based on whether you are in
programming mode or in operating mode. This is implement-
ed very easily by using a 2:1 multiplexer where ISR* is the
select line, as shown in Figure 7(a). Alternatively, you could
implement this by having two three-state buffers whose inputs
are SDI (or SMODE or SCLK) and signal, whose outputs are
tied together and to the SDI / I/O pin, and whose enable lines
are controlled by opposite values of ISR*. This is shown in
Figure 7(b). One way you could implement this logic is with
FCT-family devices. For example, you could use one of the
four 2:1 multiplexers in a CY74FCT257 to implement the logic
shown in Figure 7(a). Alternatively, you could use a pair of
transceivers or pass-transistors from a CY74FCT244 or
CYBUS3384 to implement the logic shown in Figure 7(b). The
connections for the FCT257, FCT244, and CYBUS3384 are
shown in Figure 7(c), (d), and (e), respectively.

The inverter shown in Figure 7(e) can be eliminated by imple-
menting an inversion within the CYBUS3384 device. This re-
quires using only an external resistor and a few additional
connections. An inversion of the connection to pin BE1* is
accomplished by connecting +5V to pin A1 and connection
one end of a resistor to GND and the other end to pin B1. B1
will then be the inverse of the input connected to BE1*, which
is ISR*. By implementing this inversion, the inverter in Figure
7(e) can be removed, and pin B1 can be connected to pin
BE2*. The BE1*, A0, A5, B0, and B5 pin connections remain
the same.

Figure 6. VHDL Code Fragment Showing pin_numbers Attribute

-- example of explicit pin assignments that avoid ISR pins
-- to facilitate single–function mode of dual–function devices

entity cpuctl is port (
a : in bit_vector (15 downto 0);
rd, wr : out bit;
hold : buffer bit;
status : out bit_vector (7 downto 0));

-- assign pins below and avoid pins 14, 35, 51, 72, and 83

attribute pin_numbers of cpuctl:entity is
“a(15):12 a(14):13 a(13):15 a(12):16 a(11):17 a(10):18 a(9):19 “ &
“a(8):24 a(7):25 a(6):26 a(5):27 a(4):28 a(3):29 a(2):30 “ &
“a(1):31 a(0):33 rd:36 wr:37 hold:38 status(7):54 status(6):55 “ &
“status(5):56 status(4):57 status(3):58 status(2):59 status(1):60 “ &
“status(0):61“;
end cpuctl;

-- architecture would follow

Designing with F LASH370i for PC Cable Programming

6

Figure 7. Design for Dual-Function Pins: SDI/SCLK/SMODE used with Input

SDI

Signal

ISR*

0

1
y

S
SDI/I/O

FLASH370i

(a) Multiplexer Solution

SDI

Signal

ISR*

SDI/I/O

FLASH370i

(b) Buffer Solution

FLASH370i

ISR*

SDI

Signal

1

2

3 4 SDI/I/O

FCT257
DIP/SOIC/QSOP

Ya

Ioa

Iia

S

(c) FCT257 Implementation

FLASH370i

ISR*

SDI

Signal

1

2

3
18 SDI/I/O

FCT244
DIP/SOIC/QSOP

OA0

OA1

19

16

OEA

OEB
DA0

DA1

(d) FCT244 Implementation

ISR*

SDI

Signal

1

3

14

2
SDI/I/O

CYBUS3384
DIP/SOIC/QSOP

B0

B5

13

15

FLASH370i

BE1

BE2
A0

A5

(e) CYBUS3384 Implementation

SDI/I/I

Designing with F LASH370i for PC Cable Programming

7

The FCT devices shown are just one possible way of imple-
menting this logic, of course. There are others, including us-
ing extra pins and gates from an ASIC, FPGA, CPLD, or
PAL® device already on the board. Regardless of whether the
buffer or multiplexer is in an FCT device, ASIC, FPGA, or
other device, there will be some additional propagation delay
for the normal operating signal due to the presence of that
logic. This must be accounted for in your design, and using
the CYBUS3384 provides the smallest extra delay. The issue
of extra delay holds true for the other cases presented next.

In the case of the SDI, SCLK, or SMODE sharing a pin with
an I/O that is used only as an output during normal operating
mode, the logic is slightly different. Much like the case above,
you can just use a pair of three-state buffers or pass-transis-
tors to separate the signals that are used for the two different
functions. In this case, however, instead of tying the two out-
puts together, you tie the output of one buffer both to the du-
al-function pin of the FLASH370i device and to the input of the
other buffer. The input to the first buffer is the programming
function signal, and the output from the other buffer is the
normal operation output Signal. The first buffer is enabled
when ISR* is asserted and is disabled otherwise, and the sec-
ond buffer is enabled when ISR* is deasserted and is disabled
otherwise. This is shown in Figure 8. Thus, when the device
is being programmed, SDI (or SMODE or SCLK) is driving the
SDI / I/O pin and Signal is in the high-impedance state, and
when the device is not being programmed, the SDI / I/O pin
is not driven as an input allowing the FLASH370i output to
drive Signal. Because Signal is in the high-impedance state
during programming, you may need to have a pull-up or
pull-down resistor on Signal depending on how you use it on
your board.

You can also use a CYBUS3384 as an alternative to the buff-
ers, just as in solution 7(e) in the previous case. This would
be the most flexible solution because it would work for all
configurations—the pin used as an I, O, or I/O—and allows
you to decide later exactly how to use that pin.

Another alternative exists for the case when SDI (or SMODE
or SCLK) has dual functionality with an I/O pin that is used as
an output during normal operating mode. You can simply con-
nect Signal and SDI (or SMODE or SCLK) together directly
without any isolating gates. Since Signal is an output from the
FLASH370i in normal operation, no damage should result

from Signal being driven identically to SDI during ISR pro-
gramming. The only precaution you must take is to ensure the
circuitry that is being driven is not affected logically by the
values on SDI, such as a state machine being put into the
wrong state. If that circuity can ignore SDI’s values during
programming, then this would be the preferred solution. It
does not add any extra delay to Signal’s path and does not
require any additional devices or logic, thus allowing you to
use the three ISR dual-function pins, SDI, SMODE, and
SCLK “for free.”

In the case of the SDI, SCLK, or SMODE sharing a pin with
an I/O that really is used as a bidirectional I/O, the logic need-
ed is a little more complicated. As seen in Figure 9, part of the
logic is a combination of the two solutions for the two individ-
ual cases above in the way it uses ISR* to separate the pro-
gramming function of SDI (or SMODE or SCLK) from the in-
put and output functions of Signal during normal operating
mode. There is more than just this logic required, however. It
is also necessary to use an extra pair of buffers to separate
the input and output functionality of Signal itself. This is re-
quired to keep from unintentionally building a feedback loop
and is accomplished with the help of an extra signal that indi-
cates the direction of the I/O pin. In this example, we assume
we have a signal called dir, and that dir = ‘1’ when the I/O pin
is being used as an input and dir = ‘0’ when the I/O pin is being
used as an output.

To understand why this is necessary, consider just combining
the logic from Figure 7(b) and Figure 8. The result would be
the logic shown in Figure 10, which is different from Figure 9
in that buffers b4 and b5 were eliminated and intermediate
signals w, x, and y are now all simply connected together and
to the SDI / I/O pin. In the logic of Figure 10, when the
FLASH370i device is in normal operation mode and ISR* is
HIGH, buffers b2 and b3 would both be enabled. If Signal
were an input at that time, it would drive the input to buffer b2,
whose output would drive the input to buffer b3. The output of
buffer b3 would be driving the input of b2 again, resulting in a
feedback loop that could produce undesired affects. The
same thing would happen if Signal were an output at the time.

Buffers b4 and b5 in Figure 9 prevent this. In the logic of
Figure 9, when signal is an output from the FLASH370i device,
b5 is enabled and b4 is disabled; when Signal is an input to
the device, b4 is enabled and b5 is disabled. In both cases,
both the function and value at the pin of the device and the
function and value of Signal are the same, correct, and only
driven by one source. There is no dangerous self-driving
feedback system like there is in Figure 10.

Figure 8. Design for Dual- Funct ion Pins:
SDI/SCLK/SMODE used with an Output

SDI

Signal

ISR*

SDI/I/O

FLASH370i

Designing with F LASH370i for PC Cable Programming

8

The limitation of this solution is that it requires the extra signal
dir. This signal may be already available; in fact, it may be an
input to the FLASH370i device itself for use as the OE-control
on the pin in question. If it is not already available, you will
need to generate it using other logic on the board. If you can-
not do it using other logic on your board, you should certainly
be able to generate it using logic inside the FLASH370i device
itself, because, as pointed out above, it should be the same
signal as the OE used on that pin internally. To get the signal
out of the FLASH370i, however, requires an additional pin, so
if you are using the logic in Figure 9 to save a pin, having to
use a pin on the device to generate dir will not gain you any-
thing. If generating one dir will help you save two or three pins
by allowing you to use two or three of SDI, SCLK, and
SMODE as dual-function pins, then you will still have a net
savings of one or two pins and it may be worth it.

As was mentioned in the case where the SDI (or SMODE or
SCLK) dual-function pin was being used with an input-only
pin or with an output-only pin, you can also use the
CYBUS3384 solution of Figure 7(e) when trying to use the
SDI (or SMODE or SCLK) dual-function pin as a bidirectional
I/O pin in normal operating mode.

The logic for using the dual-functionality of the SDO / I/O pin
is essentially the same as is shown in the above three cases.
The only difference is that SDO is an output during program-
ming mode instead of an input. Therefore, the only difference
in the logic is the orientation of some of the buffers. The so-

lutions for the SDO case are presented without further expla-
nation. The logic diagram for the case where SDO is connect-
ed to an I/O used only as an input is shown in Figure 11; the
logic diagram for the case where SDO is connected to an I/O
used only as an output is shown in Figure 12; and, the logic
diagram for the case where SDO is connected to an I/O really
used as a bidirectional pin is shown in Figure 13. You can
alternatively use the CYBUS3384 solution presented in Fig-
ure 7(e) in each of these three cases.

Figure 9. Design for Dual-Function Pins: SDI/SCLK/SMODE used with an I/O

SDI

Signal

ISR*

SDI/I/O

FLASH370i

b1

b2

b3

b4

b5

dir

W

X

Y

Figure 10. SDI/SCLK/SMODE used with an I/O: Example of Incorrect Solution

SDI

Signal

ISR*

SDI/I/O

FLASH370i

b1

b2

b3

Figure 11. Design for Dual-Function Pins:
SDO used with an Input

SDO

Signal

ISR*

SDO/I/O

FLASH370i

Designing with F LASH370i for PC Cable Programming

9

To summarize this section, there are many reasons to use the
members of the FLASH370i family that have dual-function ISR
programming pins and many different ways to accomplish it.
The easiest way is to use the dual-function device in the sin-
gle-function mode. This uses the dual-function pins as pro-
gramming pins only, and is easily accomplished using the
pin_avoid and pin_numbers directives in your Warp design
file. There are also going to be cases where you will want to
use the dual-functionality, most likely because you need
some or all of the four ISR programming pins as inputs, out-
puts, or I/Os during normal operation to get all the signals you
need into and out of the device for your design. The circuits
needed to share these pins are relatively straightforward and
require nothing or only buffers or pass transistors. These are
circuits you can implement using FCT or other logic, or you
may be able to implement them using extra gates and pins of
an ASIC, FPGA, or another PLD you already have on the
board.

Simple Cascading and the ISR
Software Configuration File
Until now, we have talked about programming just a single
FLASH370i device in the system. You can cascade an unlim-
ited number of FLASH370i devices in a system. That is, you
can daisy-chain the devices together and connect their pro-
gramming pins in such a way that all of the devices can be
programmed from a single connection to the ISR program-
ming cable. To do this, you simply tie all of the SCLK,
SMODE, and ISRVPP pins of each device to those same
pins, respectively, on all of the other devices, and then con-
nect them to the corresponding pins of the ISR cable connec-
tor. You then connect the SDI pin from the cable connector to
the SDI pin of the first device in the chain, then connect the
SDO output of that device to the SDI input of the next device
in the chain, then connect the SDO output of that device to
the SDI input of the next device in the chain, and so forth, until
you finally connect the SDO output of the last device in the
chain to the SDO pin of the cable connector (see Figure 14).

We have taken for granted so far that there is ISR program-
ming software running on the PC that accesses the
FLASH370i JEDEC files and drives the ISR programming ca-
ble to program the FLASH370i devices. This ISR software,
which is provided by Cypress, reads a simple configuration
file provided by the user. This configuration file is where the
user specifies what the JEDEC files are, what the FLASH370i
devices to be programmed are, and what other operations, if
any, are to be performed. For example, to program a single
CY7C374i with a JEDEC file called sarctl.jed, the configura-
tion file would just be the single line shown below:

CY7C374i p c:\sarctl.jed;

The first field specifies the FLASH370i device; the second field
specifies the operation; and the third field, if necessary, spec-
ifies the full path of the name of the file to be used.

Figure 12. Design for Dual-Function Pins:
SDO used with an Output

SDO

Signal

ISR*

SDO/I/O

FLASH370i

Figure 13. Design for Dual-Function Pins: SDO used with an I/O

SDO

Signal

ISR*

SDO/I/O

FLASH370i

dir

Designing with F LASH370i for PC Cable Programming

10

As previously mentioned, multiple FLASH370i devices can be
chained together for ISR programming purposes. The config-
uration file in this case contains all of the devices in that chain,
which may also include non-Cypress devices. The first line of
such a configuration file corresponds to the first device in the
chain, and the last line to the last device in the chain. As is
the case in a single-device configuration file like the one de-
scribed before, the first field in each line specifies the device
type; the second field specifies the operation; and the third
field, if necessary, specifies the full path of the file name to be
used. The full list of operation codes that can be used in the
second field along with their meaning is shown below:

p program device with listed JEDEC file

v verify device contents against listed JEDEC file

r read device and create listed JEDEC file

e erase device

d get silicon ID

u get user code

n no operation

s program security bit

i initiate power-on-reset

A non-Cypress device can be included in the chain with
FLASH370i devices if the device has a JTAG interface, con-
tains the standard JTAG TAP controller state machine, and
supports a bypass instruction which uses the specified code
of all ‘1’s. In the case where the chain of cascaded devices
includes a non-Cypress device, the line in the configuration
file for that device has the key word “NONCYPRESS” as the
first entry and an integer that specifies the number of bits in
that device’s instruction register in the second field. The JTAG

specification defines the bypass instruction to be all ‘1’s, so
the ISR programming software will insert the number of ‘1’s
necessary to fill the non-Cypress device’s instruction register
in the appropriate place in the bitstream that is sent.

An example of a multiple-device, multiple-operation configu-
ration file is shown here:

CY7C375i v c:\dramctl.jed;

CY7C374i n;

CY7C373i r c:\cpuctl.jed;

CY7C374i p c:\sarctl.jed;

NONCYPRESS 4;

CY7C372i u;

This configuration file specifies that there are six devices in
the cascaded chain, that a CY7C375i is the first in the chain,
that a CY7C372i is the last in the chain, and that there is one
non-Cypress device in the chain. The first device, a
CY7C375i, is to have its JEDEC file read and verified against
the file c:\dramctl.jed; the second device, a CY7C374i, is to
be passed over—no operation is to be performed; the third
device, a CY7C373i, is to have its JEDEC file read and stored
in the file c:\cpuctl.jed; the fourth device, a CY7C374i, is to be
programmed with the file c:\sarctl.jed; the fifth device is the
non-Cypress device, and it has a four-bit instruction register;
and the sixth device is a CY7C372i, and the user code al-
ready programmed into the device is to be read.

For more detailed information on cascading FLASH370i de-
vices with other JTAG devices for ISR programming and sys-
tem diagnostics, refer to the application note titled “Cascad-
ing FLASH370i Devices.”

Figure 14. Simple Cascading Example

ISR Programming
Cable Connector

ISRVPP
SDI

SDO
SCLK

SMODE

ISRVPP
SDI
SDO
SCLK
SMODE

CY7C374i
PLCC

ISRVPP
SDI
SDO
SCLK
SMODE

CY7C375i
TQFP

ISRVPP
SDI
SDO
SCLK
SMODE

CY7C374i
TQFP

Designing with F LASH370i for PC Cable Programming

11

Other Considerations
In addition to the topics covered above, there are several oth-
er miscellaneous board-level design issues you should con-
sider when using FLASH370i devices. These include the state
of the FLASH370i devices at power-up (and why you need to
know about this); the state of the FLASH370i programming
pins when the ISR programming cable is not attached; and
handling the 12V ISR programming signal on the board. We
address these considerations here.

State of the F LASH370i Device I/Os at Power-Up

When FLASH370i devices are shipped from Cypress, the de-
vices have already been programmed, erased, and pro-
grammed again as part of the testing process. They will not,
therefore, be blank when they first come out of the tube. They
will, however, be programmed such that all of the I/Os are
three-stated. Furthermore, the I/Os (except SDO) are also all
three-stated during device programming, that is, when IS-
RVPP is at 12V. This allows you to solder FLASH370i devices
directly on your board without having to erase them first, and
it will allow you to power-up your board and program the
FLASH370i devices on it without having to worry about their
initial, non-blank state causing any problems.

The most likely way people would want to use these parts is
to take FLASH370i devices directly from the tube, solder them
onto their board, turn on the power to the board, and then
program the devices for the first time using the ISR program-
ming cable connected to a PC. Since many of the I/Os on the
FLASH370i device(s) to be programmed will undoubtedly be
inputs, other devices on the board could be driving those pins
immediately upon powering up the system. By having all of
the FLASH370i I/Os initially programmed to be three-stated,
and by having them also be guaranteed to be three-stated
during ISR programming, you are assured that the
FLASH370i device will not be also trying to drive those pins.
This prevents bus contention that could otherwise arise, and
it prevents the damage to a FLASH370i device or other devic-
es on your board that could result from it. When the 12V IS-
RVPP signal goes away, the FLASH370i device will then start
driving some of its output pins, based upon the FLASH370i
device being programmed according to your design. At this
point, it is no different from powering up a board with prepro-
grammed non-ISR PAL devices, PLDs, or CPLDs on it.

State of the F LASH370i’s Programming Pins When the ISR
Programming Cable is Not Attached

It is likely that the ISR programming cable will not always be
plugged into the connector on your board, so it is important to
understand that this will not be a problem when the board is
powered up and expected to be running. The reason it will not
be a problem is that the FLASH370i devices have been de-
signed with bus-hold structures on every input, input/clock,
and I/O pin, including the programming pins whether they are
single-function or dual-function. The exception to this is the
SDO pin on single-function devices, which is an output only.
This eliminates the need to use external pull-up resistors or
any other technique for handling the case where the ISR pro-
gramming pins are left floating due to the ISR programming
cable being disconnected.

Bus-hold structures enable an I/O pin to maintain its most
recent logic value even when it is three-stated, whether that
value was being driven in as an input pin or driven out as an
output pin. This is done with an extremely weak latch con-

nected to the pin. Since the ISR programming pins have
these bus-hold structures, if the ISR programming cable is
disconnected when the board is powered on, the ISR pro-
gramming pins will all maintain a logic ‘0’ or logic ‘1’ value
even though they are no longer being driven. These pins will
not be floating between these logic levels, and therefore, they
will not be subject to oscillation and will not be sourcing or
sinking any more current than the bus-hold currents specified
in the data sheet. If the ISR programming cable is disconnect-
ed when the board is powered-down, or if the board is pow-
ered down and then back up after the cable has been discon-
nected, there is still no problem. The FLASH370i bus-hold
structures have been designed to always power-up with a
logic ‘1’ level maintained on the pins to emulate an internal
pull-up, but this does not interfere with the capability of main-
taining the last state when not driving or not being driven.

The advantages of the bus-hold structures apply both to the
case of ISR programming pins used as single-function pins
and as dual-function pins. In the single-function case, they
can be taken advantage of exactly as described above. In the
dual-function case, they also behave as described above,
and in addition they do not interfere with the normal function
of the pin. Once the device is no longer being programmed,
the normal function of the pin becomes its main use. If, in that
normal function, the I/O is first three-stated, the bus-hold
structure operates as described before; if, in that normal func-
tion, the I/O is first driven as an output, the bus-hold structure
does not interfere; and if, in that normal function, the I/O is
first driven as an input, the bus-hold structure holds the last
value until a new one is driven.

The bus-hold structures are also useful on normal pins (i.e.,
non-programming pins). Just as the bus-hold eliminates the
need for external pull-up resistors, or any other method for
dealing with floating ISR programming pins, they also elimi-
nate the need for dealing with floating non-programming,
general-purpose input and I/O pins. This can be especially
useful during the debugging of a design where you may want
to leave all unused pins on a CPLD unconnected in case you
need to add more signals as the design evolves. You can take
advantage of the bus-hold structures to make that as easy as
possible. You simply do not use those pins when describing
and compiling your design, and you then leave those unused
pins unconnected on your board. The bus-hold structures
then act as pull-ups on these pins, but they are better be-
cause there is no external resistor connecting the pin to VCC
or GND. This most importantly saves you time. When you
need to add a signal to a formerly unused pin, you simply
make that connection on your board; you do not also have to
break the connection to VCC or GND like you would have to
if you used an external pull-up.

Note that the ISR* pin from the ISR programming cable con-
nector does not necessarily connect to a FLASH370i I/O pin.
Since it does not, you must use a pull-up on the ISR* signal
on your board so that it is not left floating when the ISR pro-
gramming cable is disconnected.

Handling the 12V Signal on the Board

There are two requirements on the ISR programming voltage
that necessitate special handling. The first is that its voltage
must be in the range 11.4V < ISRVPP < 12.6V during pro-
gramming, and the second is that its maximum current is 40
mA per FLASH370i device during programming. The 5V/12V
DC/DC converter and other components in the ISR program-

Designing with F LASH370i for PC Cable Programming

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

ming cable described in this application note have been cho-
sen to ensure that these specifications are met. Because of
this, if you are using the ISR programming cable for program-
ming the FLASH370i devices, it would be a good idea to just
use the 12V supplied by the ISR programming cable for IS-
RVPP even if 12V is available on the board on which the
devices are being used or from the backplane to which that
board is connected.

Because of the higher than usual current and voltage require-
ments on the ISRVPP signal, the trace on the printed-circuit
board connecting the ISRVPP pin from the ISR programming
cable to the ISRVPP pin on the FLASH370i device(s) also
deserves special attention. First, to handle the current, the
trace should be double the width of the standard traces. Sec-
ond, the trace should be kept as short as possible. In general,
this means the connector for the ISR programming cable
should be place as close as possible to the FLASH370i devic-
es on the board. Since the connector is small, it is much eas-
ier to move the connector to be close to the devices than
change the whole board layout to place the devices close to
the chosen spot for the connector.

Conclusion
In-system reprogrammability (ISR) in a CPLD has several
benefits. It allows engineering development and debugging
without having to socket the CPLDs and without having to
remove them and reprogram them in a device programmer.
This saves time regardless of the package type you decide to
use. ISR is especially valuable when you decide to use
fine-pitch packages like TQFPs. Like before, it allows you to
use them without sockets, which means, again, no handling

of devices for reprogramming. Not only does that save time,
but in this case, it also avoids the higher potential for bending
leads on very fine-leaded devices. Also, by allowing you to
solder TQFP packages directly onto a board without sockets,
it helps you avoid spending time simply checking de-
vice-to-socket-lead connections during debugging. ISR also
allows for designs which can be reconfigured in the field, ei-
ther by a software update or by an input from the system they
are in. The superior routability and flexible architecture of the
Cypress FLASH370i CPLDs enhance the value of all of these
benefits greatly by allowing you to actually make design
changes during prototyping, debugging, or field operation and
still successfully route to the already-defined pinout, even on
designs that are utilizing most or all of many of the device’s
resources.

This application note shows how to take advantage of the
in-system reprogrammability of the FLASH370i family by us-
ing a cable connected to the parallel port of a PC for program-
ming the CPLDs on a board. This is typically the way these
parts are used during development and debugging, which, as
described above, is an area where the FLASH370i architec-
ture and routability are particularly useful. This application
note explains all of the details of the programming cable and
the signals it uses, and it also covers many design techniques
and considerations that show how to most easily use the de-
sired capabilities of these parts. These include logic designs
for using the dual-function pins on FLASH370i devices whose
programming signals share pins with I/O signals, tips for han-
dling the 12-volt programming signal on your board, and de-
tails of the ISR programming software configuration file.

FLASH370i, ISR, and Warp are trademarks of Cypress Semiconductor Corporation.
PAL is a registered trademark of Advanced Micro Devices.

