
University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 1/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

INTRODUCTION
This tutorial covers the following:

• Creating an AVR assembler project within Microchip Studio
• Simulating an assembly program with the software debugger built into Microchip/Atmel Studio
• Running an assembly program with the debugger/programmer built into your µPAD.

The appendix of this document identifies how to do the above with the C programming language. When using C
across a network (which most of you will probably NOT do), you will need to perform the additional steps laid out
in the last page of this document.

For more information on Microchip/Atmel Studio, visit the Microchip/Atmel Studio 7 User Guide.

KNOWN ISSUES
If a filename or path has a space or special symbol, Microchip Atmel Studio often will fail. Solution: Remove the space or
special character.

REQUIRED MATERIALS
• GPIO_Output.asm
• µPAD v2.0 with USB A/B connector cable

SUPPLEMENTAL MATERIALS
• µPAD v2.0 Schematic

PROCEDURE
This tutorial assumes that you already have Microchip Studio installed. If not, read the Microchip Studio Installation
Instructions.

Creating the Project
1. Open Microchip Studio and create a new project via File  New  Project as shown in Figure 1.

Figure 1: Navigating to Project Creation.

2. Under Installed, select Assembler, and then AVR Assembler Project as shown in Figure 2.

Figure 2: Selecting the Project Type.

https://www.microchip.com/content/dam/mchp/documents/atmel-start/Atmel-Studio-7-User-Guide.pdf
https://mil.ufl.edu/4744/examples/GPIO_Output.asm
https://mil.ufl.edu/4744/docs/uPAD/schematics/uPAD_v2.0_schematic.pdf
https://mil.ufl.edu/4744/docs/Install_Microchip_Studio_7.0.pdf
https://mil.ufl.edu/4744/docs/Install_Microchip_Studio_7.0.pdf

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 2/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

3. Browse to a desired location for which to save the file (using the Location textbox) and save the file with
a meaningful name as shown in Figure 3. For this tutorial, we will call the project “GPIO_Output”.

Figure 3: Project Creation.

4. In the Device Selection window that
automatically opens, select the correct
device and click OK, as shown in
Figure 4. For the entirety of this
semester, we will be using the
ATxmega128A1U. You should now
see a workspace like what is shown in
Figure 5.

Figure 5: Microchip Studio Workspace.

Figure 4: Selecting the Device Configuration.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 3/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

Creating and Simulating the Program
We will be using the code from the GPIO_Output.asm file. This program utilizes a GPIO (General-Purpose
Input/Output) port connected to the RGB LED package on your µPAD. As shown in Figure 6, these LEDs are
connected to Port D, the GPIO port we will be utilizing throughout this program

Figure 6: RGB LED package as shown on the uPad Schematic.

A GPIO port can be defined in many capacities, though in the context of this tutorial, it suffices to relate a GPIO
port with a group of physicals pins controlled by electrical signals, i.e., a low voltage signal corresponding to a
binary ‘0’, a higher voltage corresponding to a binary ‘1’.
1. Copy the code from the accompanying GPIO_Output.asm file to your main program. Save the main program

by navigating to File  Save main.asm, or by pressing Ctrl+S (i.e., Ctrl and then S) on your keyboard.
Alternatively, save all aspects of the project by navigating to File  Save All, or by pressing Ctrl+Shift+S.

2. Build the project solution by navigating to Build  Build Solution (or by using the function key F7). If your
code has no errors, the Output window at the bottom should include “Build succeeded” as shown in Figure 7.

Figure 7: Build Success.
NOTE: We suggest enabling line numbers in the code editor. Navigate to Tools  Options  Text Editor  All
Languages and select Line Numbers, under the Settings heading, as shown in Figure 8.

https://mil.ufl.edu/4744/examples/GPIO_Output.asm
https://mil.ufl.edu/4744/docs/uPAD/schematics/uPAD_v2.0_schematic.pdf
https://mil.ufl.edu/4744/examples/GPIO_Output.asm

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 4/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

Figure 8: Enabling Line Numbers.

NOTE: If your compiler detects any errors or warnings, you can double-click on an individual listing of either type
and your cursor should be brought to the offending line (sometimes, your compiler cannot associate the error or
warning with a specific line of code).

NOTE: Within the assembly file code editor, press Ctrl+Space on your keyboard to bring up a dialog box consisting
of a list of assembly instructions for the currently chosen device. If any string of letters is typed into this dialog box,
the listings shown will start with that specified string of letters. The internal program used for this function is
sometimes known as Intellisense, Autocomplete, or Auto Completion.

Before we can execute the program, we must select the appropriate debugging tool in Atmel Studio. For simulation,
we will select the software simulator built into Atmel Studio.

3. Click the target selector icon as shown in Figure 9. This will open the project Tool window. You can also
navigate here via Project  <Project_Name> Properties…

Figure 9: Target Selector.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 5/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

4. Under Selected debugger/programmer, use the dropdown menu to select Simulator as shown in Figure 10. The
target selector icon should now display Simulator. Finalize these changes by saving the project (File  Save
All) and then close the project properties window.

Figure 10: Selecting the Debugger.

Before executing the program, we will place a breakpoint. Breakpoints halt your program immediately before
executing the instruction specified at the breakpoint.

Note: Later in the course, certain functions cannot be debugged via breakpoints and must be handled with
alternative methods (like LED indication).

5. Place a breakpoint in your code editor on the first assembly instruction within your main program:
ldi R16, BIT456, by using your mouse to click the pane to the far left of the instruction. A red dot will
appear next to this specified instruction, as shown in Figure 11.

Figure 11: Breakpoint at first instruction of the given program, along with the debug Continue icon.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 6/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

6. Start debugging the main program. To start debugging, select the Start Debugging icon shown in Figure 12,
navigate to Debug  Continue, or simply press F5 on your keyboard. The break pointed line of code will be
highlighted, following a yellow arrow in the gray pane where the breakpoint resides. This indicates the next
instruction to be executed.

Figure 12: Starting Simulation.

7. While debugging, you can view any of the processor’s registers, I/O ports, memory locations, etc.; a very
powerful tool when writing embedded software. Open the I/O view by navigating to Debug  Windows 
I/O, as shown in Figure 13.

Figure 13: Opening the I/O view.

8. Open the Processor Status view by navigating to Debug  Windows  Processor Status. Your screen should
now resemble Figure 14. It is likely available by default.

Figure 14: Opening the Processor Status Window.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 7/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

9. Figure 15 shows a standard debug view with the four generally most useful (and the default) windows shown:
Program File, Processor Status, Watch, and Memory.

Figure 15: Standard Debug View.

NOTE: When simulating, if you would like the simulated clock frequency to match the clock frequency of the
actual µPAD board, select the value listed next to Frequency in the Processor Status window, and enter the
oscillator frequency that you have chosen for your device.

10. Within the I/O view, filter for and select I/O Port Configuration (PORTD). (To search for this, you may type
something as simple as “portd” in the Filter textbox, as shown in Figure 16.)

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 8/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

Figure 16: Filtering I/O View.
11. To execute the next instruction within your program, you can click the Step Into icon as shown in Figure 17.

Step through the program code, identifying changes that occur to the registers within PORTD, as well as to
the microcontroller’s internal GPIO registers.

Figure 17: Step Controls for Program Debugging.
NOTE: Two other useful debug stepping features are Step Over and Step Out. Step Over will always execute the
next instruction in the current procedure frame as a single unit, i.e., if the next instruction to be executed consists
of a procedure call, the entire procedure will be executed in a single step. Step Out executes the remaining lines of
a function in which the current execution point lies.

We will now stop debugging and begin to running the program on the µPAD. To stop debugging, you can navigate
to Debug  Stop Debugging, or click on the Stop Debugging icon, i.e., the red square, in the toolbar.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 9/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

Running the Program in Hardware
1. Connect the µPAD to your computer with your USB A/B connector cable. Select the on-board Atmel Embedded

Debugger (EDBG) as the Selected debugger/programmer, within the project Tool menu, as done in Step 3 of
the Simulation section. Also verify that the Interface is chosen to be PDI (as shown in Figure 18). Finalize
these changes by saving the project.

Figure 18: Selecting the on-board µPAD debugger.

NOTE: The PDI (Program and Debug Interface) clock frequency is only representative of the
programmer/debugger, not the microprocessor. It is recommended to leave the default value.

2. If the EDBG device does not appear as shown in Figure 18, there are a few possiblities to correct this problem.

• If you are CONVINCED that you properly followed the install directions, uninstall it, turn off your
antivirus, reinstall it, & turn on antivirus.

• Use the Device Manager to remove some extra drivers that altered the USB function through Microchip
Studio. The procedure can be found at https://www.microchip.com/forums/m1087470.aspx.

3. Repeat step 6 in the previous section. The code will now be executed on Microchip hardware rather than through
software on your computer. Upon stepping through the program, you should see the RGB LED package at the
bottom left of your µPAD (labeled D4) reflect the changes made to PORTD within the program. These LEDs
are connected to PORTD of your processor, as shown in the µPAD v2.0 Schematic.

NOTES ABOUT MEMORY WINDOW
• The memory window can show either internal Program Memory and internal RAM (Data Memory). To view

Program Memory, select prog APP_SECTION immediately following the Memory: and select data
INTERNAL_SRAM for viewing RAM in Data Memory. Immediately, following Address: put the first address
that you would like to view (without changing the ,prog or ,data that will already be to the right of the address).

• Note that it is a window to look at individual bytes. Therefore, when viewing Program Memory, the specified
Program Memory address has been shifted one bit to the left with the least significant bit of 0 corresponding to
the least significant byte of the Program Memory word and the least significant bit of 1 corresponding to the
most significant byte of the Program Memory word. This is because program memory is word addressed.

• The memory window does NOT work for external addresses! Do NOT depend on it.

https://www.microchip.com/forums/m1087470.aspx
https://mil.ufl.edu/4744/docs/uPAD/schematics/uPAD_v2.0_schematic.pdf

University of Florida EEL 4744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering 30-Dec-25
Page 10/10 CREATE, SIMULATE, DEBUG, AND RUN PROGRAMS IN

MICROCHIP (ATMEL) STUDIO
Revision 0

APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C
Microchip Studio cannot work accoss networks without using a network drive. Below are instructions on how to
create a network drive, for Windows 10 and versions prior.

Setting Up A Network Drive For Microchip Studio
Windows 10 and 11:
1. Type Windows-E (i.e., hold down the windows key and then type E) to open and Windows Exporer
2. In Windows Explorer, select This PC
3. Select Computer  Map network drive
4. Select a drive letter, e.g., Z:
5. Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\4744\labs\
6. Select Reconnect at sign-in
7. Select Finish

Pre-Windows 10:
1. Type Windows-E (i.e., hold down the windows key and then type E) to open and Windows Exporer
2. In Windows Explorer, select This PC
3. Select Map network drive
4. Select a drive letter, e.g., Z:
5. Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\4744\labs\
6. Select Reconnect at logon
7. Select Finish

Procedure to Create, Simulate, and Run Programs in C
1. Open Microchip Studio, and create a new project by navigating to File  New  Project.
2. Under Installed, under the C/C++ subheading, select GCC C Executable Project.
3. Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:),

and then the correct folder name.
4. Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only new

limitation might be that to be able to completely step through a C program, the compiler’s optimization level
may need to be changed. (Optimization allows your compiler to interpret your written C code and attempt to
generate more efficient assembly/machine code, i.e., some C statements written in your program might be
removed by the compiler if any level of optimization is enabled.)
o To turn off optimization, first navigate to Project  <Project_Name> Properties. Within the project

properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain,
select Optimization. Within the Optimization window, select the drop-down box for Optimization Level,
and choose None (-O0). There is now also a Debugging compiler option; for this you can leave it alone.

NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the
Microchip/Atmel Studio 7 User Guide.

https://www.microchip.com/content/dam/mchp/documents/atmel-start/Atmel-Studio-7-User-Guide.pdf

	INTRODUCTION
	KNOWN ISSUES
	REQUIRED MATERIALS
	SUPPLEMENTAL MATERIALS
	PROCEDURE
	Creating the Project
	Creating and Simulating the Program
	Running the Program in Hardware
	NOTES ABOUT MEMORY WINDOW

	APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C
	Setting Up A Network Drive For Microchip Studio
	Procedure to Create, Simulate, and Run Programs in C
	1. Open Microchip Studio, and create a new project by navigating to File (New (Project.
	2. Under Installed, under the C/C++ subheading, select GCC C Executable Project.
	3. Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:), and then the correct folder name.
	4. Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only new limitation might be that to be able to completely step through a C program, the compiler’s optimization level may need to be changed. (...
	o To turn off optimization, first navigate to Project (<Project_Name> Properties. Within the project properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain, select Optimization. Within the Optimization window, s...
	NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the Microchip/Atmel Studio 7 User Guide.

