University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 1/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

INTRODUCTION

The purpose of this document is to present a quick tutorial on how to create an AVR® assembler project within
Atmel Studio, how to simulate an assembly program with the software debugger built into Atmel Studio, and also
how to emulate an assembly program with the debugger/programmer built into your pPAD.

Additionally, the appendix of this document identifies how to do the aforementioned using the C programming
language. When using C and working across a network, you will need to perform additional steps also laid out in
the last page of this document.

For more information on Atmel Studio, visit the Atmel Studio User Guide.

REQUIRED MATERIALS
e GPIO Output.asm
e uPAD v2.0 with USB A/B connector cable

SUPPLEMENTAL MATERIALS
e uPAD v2.0 Schematic

PROCEDURE

NOTE: This tutorial assumes that you already have Atmel Studio installed, and that you have set your workspace
folder to a known location. See the Atmel Studio Installation Instructions posted on our course website to learn how
to do so.

—

Open Atmel Studio, and create a new project by navigating to File 2 New = Project.

2. Under Installed, select Assembler, and then AVR Assembler Project (see Figure 1).

Browse to a desired location for which to save the file (using the Location textbox), and save the file with a
meaningful name (using the Name textbox). For this tutorial, we will call the project “GPIO_Output”. Leave
everything else default, and create the project by clicking the OK button.

(98]

4. Inthe Device Selection window that automatically opens, select the correct device and click OK. For the entirety
of this semester, we will be using the ATxmegal28A1U (see Figure 2).

New Project ?X Device Selection X
b Recent Sort by: Default =B E m 2~
ol AVR Assembler Project Assembler Type Askeilile Device Family: | All
Creates an AVR 8-bit Assembler project

Name App./Boot Memory (Kbytes)Data Memory (bytes)EEPROM (bytes) | Device Info:

ATtiny88 8 512 64 Device Name: ATxmega128A1U

ATtiny9 1 2 N/A Speed: N/A

| xmega | 136 8192 Vee: NA
ixmega
Family: XMEGAA
ATxmegal28A3 136 8192 2048 amily:
-

ATxmegal28A3U 136 8192 2048 7] Datasheets

ATxmega128A4U 136 8192 2048

ATxmega128B1 136 8192 2048 Supported Tools

ATxmega128B3 136 8192 2048 » Atmel-ICE

ATxmega128C3 136 8192 2048 «~ AVR Dragon

ATxmega128D3 136 8192 2048 © AVRISP il

ATxmega128D4 136 8192 2048 ’ o

ATxmega16Ad 20 2048 1024 ¥ AVR ONE!

ATxmegal6AdU 20 2048 1024 X EDBG

ATxmegal6C4 20 2048 1024 B JTAGICES

ATxmegal6D4 20 2048 1024 -

ATxmega16E5 20 2048 512 8 JTAGICE mkil

ATxmega192A3 200 16384 2048 8 Power Debugger

‘ ATxmeaa 192A3U___200 16384 2048 e
- [Browse.
[Create directory for solution
o] [|

Figure 1: Choosing the project type Figure 2: Choosing the device type

https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-C73F1111-250E-4106-B5E5-85A512B75E8B
https://mil.ufl.edu/3744/examples/GPIO_Output.asm
https://mil.ufl.edu/3744/docs/uPAD2p0/schematics/uPAD_v2.0_schematic.pdf
https://mil.ufl.edu/3744/docs/Install_Atmel_Studio_7.0.pdf

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 2/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

You should now see a workspace similar to what is
. E GPIO_Output - AtmelStudio X 1 | Quick Launch (Ctrl+Q) P = B X
Shown m Flgure 3 From thls pOll’lt on, we Wlll File Edit View VAssistX ASF Project Build Debug Tools Window Help

begin to use the code from the GPIO Qutput.asm o ‘f“‘ - E : t"',_j“"‘ *e ‘HL = E'v‘ TR e e
file mentioned above. This short program utilizes a | EETET)] S E
GPIO port connected to the RGB LED package on 6PT0_output o5 »c"ﬂ@‘ F[,o
your uPAD. A GPIO port can be defined in many S otnar or semarer 8 st G vt (1 i)
capacities, though in the context of this tutorial, it ' B Deomniancn

suffices to relate a GPIO port with a group of Ly o e vour seelicaion code |

inc rie

physicals pins controlled by electrical signals, i.e., i start
a low voltage signal corresponding to a binary ‘0’,
a higher voltage corresponding to a binary ‘1°.

/N ERV NI Solution Ex

5. Copy the code from the accompanying

main.asm File Properties -

GPIO_Qutput.asm file to your main program. (e

Save the main program by navigating to File ComomToat T
-> Save main.asm, or by pressing Ctrl+S (i.e., e
Ctrl and then S) on your keyboard.
Alternatively, save all aspects of the project by o
navigating to File > Save All, or by pressing & o e s o butd
Ctrl+Shift+S on your keyboard. o

6. Build (and compile) the project solution by
navigating to Build = Build Solution (or by
using the function key F7). If your code has
no errors, i.e., if it was copied correctly, the

Output window at the bottom should include . _ o i i
“Build succeeded.” Figure 3: Atmel Studio application window, after creating

project
NOTE: If your compiler detects any errors or [oo TR o orer o I
Wamings, you can double—click on an individual file Edit View WAssistt Project Build Debug Tools Window Help

Full Path C:\Users\MadisonE

SRR Output

s ot : Q- Bro-2 | XID| 92T - b Ml Debug @ liws= =]
listing of either type gnd your cursor should be N bR 8k e [o
brought to the offending line (sometimes, your P e

compiler cannot associate the error or warning with 2o eoelo-ewls-

a specific line of code). el =S P —————
7 This program shows how to initislize a GPID port on the Atmel 4 GPIO output

NOTE: If you would like to add line numbers in anlp;:d;;Pit;l?:;sL:nF:D:ﬁum o opendeneies

the code editor (which is highly recommended), | % i AR i

navigate to Tools > Options > Text Editor > | ot o it s 0 e s, st

All Languages and select Line Numbers, under the b e o
Settings heading. i [l

2 Lequ BITS s ex2e
22 .equ GREEN = ~(BITS)

NOTE: Within the assembly file code editor, press 5 [

25 .equ BIT43E = 7R

Ctrl+Space on your keyboard to bring up a dialog o (e A

.equ BITe4 = @xse

box consisting of a list of assembly instructions for Somk

the currently chosen device. If any string of letters = Ryt scoe srares g fron e s

is typed into this dialog box, the listings shown will o s s sstare ragrm ot 018 <0 e o't oerrite

start with that specified string of letters. The o i e e o i i com 1y i —
internal program used for this function is § ™ .

sometimes known as Intellisense, Autocomplete, or

Auto Completion. Figure 4: Atmel Studio application window, after

copying contents of GPIO_QOutput.asm

https://mil.ufl.edu/3744/examples/GPIO_Output.asm
https://mil.ufl.edu/3744/examples/GPIO_Output.asm

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 3/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

Before we can execute the program, we must select the appropriate debugging tool in A¢mel Studio. For simulation,
we will select the software simulator built into Atmel Studio, and for emulation, we will select the
programmer/debugger built into your uPAD.

7. To perform a simulation of the program, we must first select the simulator debugging tool. Click the target
selector icon (listed No Tool by default), as pointed to by the red arrow in Figure 5. When you select this icon,
the project Tool window shown in Figure 6 will appear. (Alternatively, the project Tool window can be opened
by navigating to Project = <Project Name> Properties, and then selecting the Tool option.) Under Selected
debugger/programmer, use the dropdown menu to select Simulator. The target selector icon should now display
Simulator (as also shown in Figure 6). Finalize these changes by saving the project (File = Save All), and then
close the project properties window.

_
E GPIO_output - AtmelStudio Standard Mode | % Quick Launch (Ctr+Q) P - B x
File Edit View VAssistX Project Build Debug Tools Window Help
Q- F-o-oRS | XAH] D =| P Ml Debug -l B
Pl b @t ok T He B B

Solution Explorer

1 i - <+ i3

2 s oo cutaut.aen * @ o-a @ L

. Modified: 19 Mar 16 Search Solution Explorer (Ctrls;) P~
: Authers: or. schwarcz, colin (@l solution ‘GPIO output (1 project)

S - GPIO_output

8 24 Dependencies

s

=il Labels
"l Output Files
2] main.asm

Processor "Solution Explorer”

.include "ATxmegal2sAludef.inc

£

equ BIT4 = exie

squ RED = ~(BIT4)
21 .equ BITS = exze
22 equ GREEW = ~(BITS)
25 equ BITe = exde
24 .equ BLUE = ~(sITS)
25 Lequ BIT456 = x70
3 ~equ WHITE = ~(BIT456)
7 .equ BITE4 = exSe =
& Leau PINC = ~(BIT64)
25 equ BLACK = exFR
51 oRa oxasen
r3ma HATN
24 LORG ox0108 §SEart program st 8x0160 so we don't overwrite
35 s that are at 0xE008-6x08FD
MATN [I2Y solution Explorer
1di R18, BIT4SE
ss sts PORTO_DIRSET, R1s
39 Notice that the 3 LEDs (RED, GREEN, an
aa
81 % - 4 »

Figure 5: Target selector icon

EJ crio_output - Atmelstudio
File Edit View VAssistX ASF Project Buld Debug Tools Window Help
o-olm-@u-s@s|xon|o-c-

i | > | v oo | Hex 2| @~ . 1+ [A _ W ATmegal28A1U 7§ Simulator -

E{\ P Ml Debug ~| Debug Browser ~ \ 5

GPIO_Output* + X FHETIEEH ASF Wizard

Build N/A N/A
Build Events

Toolchain

Device

Components

Selected debugger/programmer

Simulator

Advanced
External tool
Command:

Select Stimuli File for Simulator

Stimuli File

Activate stimuli when in breakmode from menu Debug->Execute Stimulifile, then continue execution

Figure 6: Project Tool window

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 4/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

Before executing the program, we will place a breakpoint. Breakpoints are used to intentionally halt your program
at a specific point of execution for debugging purposes, and are optional. A given breakpoint will halt your
program immediately before executing the instruction specified at the breakpoint.

8. Place a breakpoint in your code editor on the first assembly instruction within your main program, i.e., 1di
R16, BIT456, by using your mouse to click the gray pane to the far left of the instruction. A red dot will
appear next to this specified instruction, as shown in Figure 7.

m gsm_leds - AtmelStudio Standard Mode = ¥ | Quick Launch (Ctrl+Q) P - A
File Edit View VAssistX Project Build Debug Tools Window Help
©-0|B-u-uWWF| %FAA[2-C > MW pebug -| DebugBrowser - | 5 | RereBwE-. | [
bl | > YN e B @ WE. & -~ B ATxmegal28A1U 7§ Simulator -
mainasm # X gsm_leds Start Page ~ o Y
G Fs 3
2| "+ opro_output.asm T B = Fitter -hil4
i Name Value

4l * Modified: 19 Mar 16
5| * Authors: Dr. Schwartz, Wlin

@ 16-bit Timer/Counter type...
6 # @ 16-bit Timer/Counter type...
7| This program shows how to initialize a GPIO port on the Atmel @ @ 16-bit Timer/Counter type...
8 (Port D for this example) and demonstrates various ways to write to @ @ 16-bit Timer/Counter type...

o] a GPIO port. The output will blink LEDs at the bottom left of the .
10| uPAD, labeled D5. PortD4, PortDS, and PortDe are the red, green, @ @ 16-bit Timer/Counter With...
11| and blue LEDs, respectively. Note that these LEDs are active-low. # @ 16-bit Timer/Counter With..
12 wewr/ ® @ 16-bit Timer/Counter With..
= e . . ® @ 16-bit Timer/Counter With..
14| ;Definitions for all the registers in the processor. ALWAYS REQUIRED. - & @ 16 bit Ti n
15| ;View the contents of this file in the Processor "Solution Explorer” 16-bit Timer/Counter With...
16| ; window under "Dependencies” # @ 16-bit Timer/Counter With..
17] .include "ATxmegal28AlUdef.inc" —l ® @ 16-bit Timer/Counter With...
18 ST = oxto ® @ 16-bit Timer/Counter With...
19 .equ = ox

J @ | AES Module (AES)

20 -equ RED = ~(BIT4) ADC
8 Analog Comparator (ACA)

21 .equ BITS = ox20

22| .equ GREEN = ~(BITS) ® @8 Analog Comparator (ACB)
23] .equ BIT6 = e»(ae , @ i Analog/Digital Converter (...
24 .equ BLUE = ~(BIT6 @ 8o .

2l s Brvase - ere ® B8 Analog/Digital Converter (...
@ Clock System (CLK)

26| .equ WHITE = ~(BIT456)
27) .equ BITe4 = exse

28] .equ PINK = ~(BIT64)
29] .equ BLACK = @xFF

@ Clock System (PR)

Name Address Value

31 .ORG 6x8000 ;Code starts running from address @xeeee.
32 rjmp MAIN ;Relative jump to start of program.

33

34] .ORG oxelg ;Start program at 6x0100 so we don't overwrite

; vectors that are at @x@08e-@xeeFD

[l8) solution Explorer

1di R16, BIT456 5load a four bit value (PORTD is only four bits)

sts PORTD_DIRSET, R16 ;set all the GPIO's in the four bit PORTD as outputs Properties
39| ; Notice that the 3 LEDs (RED, GREEN, and BLUE) are all now on, creating white
40

81 % >

Output

@

Show output from: Build |

Build succeeded.
========== Build: 1 succeeded or up-to-date, @ failed, @ skipped ==========

Figure 7: Breakpoint at first instruction of the given program, along with
the debug Continue icon.

To start the program simulation, i.e., to start debugging, you can either select the Start Debugging icon (also known
as the Continue icon) specified by the green arrow near the top of the Atmel Studio window (see the topmost red
arrow in the Figure 7), or navigate to Debug = Continue, or even simply press F5 on your keyboard.

9. Start debugging the main program. The program should stop execution at the breakpoint you placed, and the
specified line of code should be highlighted yellow, following a yellow arrow in the gray pane where the
breakpoint resides. (The yellow arrow, along with the yellow highlight, indicates the next instruction to be
executed.)

While debugging, you can view any of the processor’s registers, I/O ports, memory locations, etc. To do so is
extremely helpful when writing any embedded software. Since we are using the I/O port PORTD in this example
program, in addition to internal GPIO registers, we will explore the I/O and Processor Status views of the debugger.

10. Open the I/O view by navigating to Debug = Windows = 1/O, as shown in Figure 8. Open the Processor
Status view by navigating to Debug = Windows - Processor Status.

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 5/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

File Edit View VAssistX Project Build | Debug | Tools Window Help
E: Windows » | &1 Breakpoints Alt+F9 | # R EwE - | | m
Start Debugging and Break Alt+F5 [E@ Data Breakpoints ATxmega128A1U Sl W
Attach to Target W Processor Status
P Statt v &
B Stop Debugging creshiftsFs | B 1o My Processor Status
+ Name Value
Start Without Debugging Ctrl+Alt+F5 @ Live Watch | Program Counter 0x00000100
Disable debugWIRE and Close Program Counter Trace Stack Pointer OX3FFF
» Continue F5 B output X Register 0x0000
< Execute Stimulifile Watch > Y Register 0x0000
< Set Stimulifile & Autos Ctrl+AIt+V, A Z Register 0x0000
O Restart 5] Locals Alt+4 Status Register (DEEVNGDO
Break All Ctrl+F5 I Immediate Ctrl+Alt+] Cycle Counter 2
po
& QuickWatch... Shift+F9 = call stack Alt+7 Frequency 1.000 MHz
¢ Stepinto F11 7% Threads Ctrl+Alt+H u | Stop Watch 2,00 ps
& Step Over F10 B Modules Ctrl+Alt+U © Registers
T Stepout Shift+F11 # Processes Ctrl+Shift+Alt+P ROO 0x00
Run To Cursol Ctrl+F10 MemEsy R Ro1 0400
T Reset Shift+F5 [E Disassembly Alt+8 RO2 0x00
@iz Do) TGS > Registers Alt+5 RO3 0x00
Percepio Trace » §166 50 we don't overwrite RO4 0x00
t 0x0000-0x00FD
Toggle Breakpoint F9 RO5 0x00
e . , le (PORTD is only four bits)]
Pt Gt it n the four bit PORTD as outputs RO6 0x00
& Delete All Breakpoints Ctrl+Shift+F9 ire all now on, creating white RO7 0x00
Disable All Breakpoints © to the P10 pins RO8 0x00
Clear All DataTips . RO9 0x00
n, then use some combinations -
= Export Dat: R10 0x00 |
Import DataTips ..
M ~ X |[Memory 3 -1
Save Dump As.
Type Memory: prog APP_SECTION ~ | Address: 0x000000,prog |
% Options.. prog 0x000000 ff c@ £f ff ff £f £f £f £f £f £f £f £f £f £f £f £f £f £f |
& gsm leds Properties... prog 0x000013 ff £f £f £f £f ff ff ff £f £f £f £f £f £f £f £f £f £f £f
prog 0x000026 ff £f £f £f £f £f £f £f £f £f £f Ff £f £f £f £f £f £f £f
prog ©x000039 ff £f £f £f £f £f ff £f £f £f £f £f £f £f £f £f £f £f £f
prog ©x00004C ff f f £f £f Ff Ff Ff £f Ff Ff Ff £f Ff £f £f £f £f £f
prog ©x00005F ff £f £f £f £f £f £f £f £f £f £f Ff £f £f £f £f £f £f £f
prog 0x000072 ff £f £f £f £f £f ff £f £f £f £f £f £f £f £f £f £f £f £f
prog 0x000085 ff £f £f £f £f f Ff Ff £f Ff £f Ff £f Ff £f £f £f £f £F

Autos Locals Watch 2 [QUCIUCIER Call Stack Breakpoints Command...

Immediate... Output Error List Memory

Figure 8: Selecting the I/O Debug view

NOTE: When simulating, if you would like the simulated clock frequency to match the clock frequency of the
actual uPAD board (if it does not already match), i.e., the actual clock speed when you emulate, select the value
listed next to Frequency in the Processor Status window, and enter the oscillator frequency that you have chosen
for your device (e.g., 2.000 MHz, the default ATXMEGA128A1U clock frequency).

Now, we will utilize the I/O view to view all of registers within PORTD, starting at the point of execution specified
by our chosen breakpoint.

11. Within the I/O view, filter for and select /O Port Configuration (PORTD). (To search for this, you may type
something as simple as “portd” in the Filter textbox, as shown in Figure 9.) After selecting the correct port
configuration, you will be able to view all of the registers associated with PORTD.

To execute the next instruction within your program, you can click the Step Into icon (as pointed to by the
leftmost red arrow in Figure 9), or press F11 on your keyboard. (You may also step through each instruction by
navigating to Debug = Step Into).

12. Step through the program code, identifying changes that occur to the registers within PORTD, as well as to
the microcontroller’s internal GPIO registers.

NOTE: Two other useful debug stepping features are Step Over and Step Out, as pointed to by the second-
rightmost and rightmost red arrows in Figure 9, respectively. Step Over will always execute the next instruction in
the current procedure frame as a single unit, i.e., if the next instruction to be executed consists of a procedure call,
the entire procedure will be executed in a single step. Step Out executes the remaining lines of a function in which
the current execution point lies.

University

of Florida

Department of Electrical & Computer Engineering

Page 6/8

EEL 3744

Revision 1

Dr. Eric M. Schwartz
Christopher Crary, Asst. Lecturer

24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

GPIO_Output (Debugging) - AtmelStudio Standard Mo Q| Quick Launch (Ciri+Q) d

File Edit View VAssistX Project Build Debug Tools Window Help

<1 | - | f| X ! | - - Debug Browser ~ B |] |] :
B2 0 p [t 2tk T Ho B|@-iE D B i | o 8 o0 Amegal28410 | Simulstor <

GPIO_Outputasm = X

uPAD, labeled D5.
and blue LEDs, g

rrrry

D5, and PortD6 are the red, green,
ote that these LEDs are active-low.

+ E E| Filter: portd
FY

;Definitions for all the registers in the processor. ALWAYS REQUIRED.
;View the contents of this file in the Processor “Solution Explorer”
;5 window under "Dependencies”
.include “"ATxmegal28Alldef.inc”

U0 Port Interrupt 1 Level (L.
U0 Port Interrupt O Level (...
Output/Pull Configurat...
Input/Sense Configurat...
Output/Pull Configurat...
Input/5ense Configurat...
Output/Pull Configurat...
Input/Sense Configurat...
Qutput/Pull Configurat...
Input/5ense Configurat...
Output/Pull Configurat...
B lnediSanc
Address Value
Ox660
OxB61
Ox662
Ox663
Ox664
Ox663
Ox666
Ox667
Ox668
OneBB9
OxBBA
Ox668
(

~equ BIT4 = ebecelecesd
.equ INvV4 = ebl1161111
.equ RED = INV4

.equ BITS = @bealeasss
.equ INVS = ~BITS

.equ GREEN = ~(BITS)
.equ BITE = @x48

.equ BLUE = ~(BITE)
.equ BIT456 = @x7e
.equ WHITE = ~(BIT456)
.equ BITG4 = @x58

.equ PINK = ~(BITG4)
.equ BLACK = @xFF

“anficuirat

Name

o DIR
o DIRSET
o DIRCLR
o DIRTGL
e ouT
o OUTSET
o QUTCLR
o OUTTGL
1o M

Ll INTCTRL
o [INTOMA,...
1o [INT1MA,..

[+ P A\
Solution Explorer

00000cC
00oo0oc
O00000cC
O00000cC
00000cC
000oo0oc
O00000cC
O00000cC
O00000ocC

0OCc
O00000cC
O00000c

.0RG @xeesa
rjmp MAIN

;Code starts running from address @x@ees.
;Relative jump to start of program.
.ORG @x@lea ;Start program at @x@18@ so we don't overwrite
; wectors that are at @xB888-8xBBFD
MAIN:
1di R16, BIT456 ;load a four bit value (PORTD is only four bits)
sts PORTD_DIRSET, R16 ;set all the GPIO's in the four bit PORTD as ocutputs

» Matire that the 2 1 Fhc (RFN GRFFN and RINFY are all now nn reeating white L0

Processor Status [JI{08 Properties

Memory 4
Memery: prog APP_SECTION =
rog ff ce F
ff ff £f
f ff £f
F £f £F
ff ff £f
f ff £f

Address: (000000, prog

ff ff £f f ff fF
ff ff ff ff ff ff
ff ff ff ff ff ff
ff ff £f f ff fF
ff ff ff ff ff ff
ff ff ff ff ff ff
ff ff £f ff ff £f f ff fF

¢ 78 ff ff fF ff ff ff ff ff

Hro 50 ff ff ff ff ff ff

Autos QISR Watch 1 Watch 2 Call 5t

Stopped Col 70

Figure 9: Step Into, Step Over, and Step Out debug icons

We will now stop debugging and begin to emulate the program on the uPAD. To stop debugging, you can navigate
to Debug - Stop Debugging, or click on the Stop Debugging icon, i.e., the red square, in the toolbar.

13. Connect the uPAD to your computer with your USB A/B connector cable. Select the on-board Atmel Embedded
Debugger (EDBG) as the Selected debugger/programmer, within the project Tool menu, as done in Step 7.
Also verify that the Interface is chosen to be PDI (as shown in Figure 10). Finalize these changes by saving
the project.

NOTE: The PDI clock frequency is only representative of the programmer/debugger, and need not be the same
value as the clock frequency of the processor. It is recommended to not change the default value.

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 7/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

Components

ﬂ GPIO Qutput - AtmelStudio Advanced Mode Y Quick Launch (Ctrl+Q) P - & X
File Edit View VAssistX Project Build Debug Tools Window Help
e- B-h-0 W b M Debug M - RFCEHBEB- _oo-| el
1] > 5 Hex % @~ - L [¢ _ . b ATxmegai28A1U T PDI on EDBG (ATMLEDBGCO0000000110) —
QCTB uPAD 2.0 - 0110 GP\O_Output w X -
Build N/A N/A
Build Events
Toolchain
Beils Selected debugger/programmer
:EDBG = ATMLEDBGC00000000110 vi |nterface: | PDI

Advanced

PDI Clock
4 MHz

Reset to default clock
Programming settings

Erase entire chip ~

Preserve EEPROM

Figure 10: Selecting the on-board uPAD debugger

14. If the EDBG device does not appear as shown in Figure 10, there are a few possiblities to correct this problem.
Try the first one below; if this does not work then try the second one.

e If you are CONVINCED that you properly followed the install directions (and the previous tweet did not
fix it), uninstall it, turn off your antivirus, reinstall it, & turn on antivirus.
e Use the Device Manager to remove some extra drivers that altered the USB function through Atmel Studio.

The procedure can be found at https://www.microchip.com/forums/m1087470.aspx.

15. Repeat steps 9-12. The code will now be executing in hardware rather than in software; once more, this is
known as emulation. Upon stepping through the program, you should see the RGB LED package at the bottom
left of your pPAD (labeled D4) reflect the changes made to PORTD within the program. These LEDs are
connected to PORTD of your processor, as shown in the uPAD v2.0 Schematic.

https://www.microchip.com/forums/m1087470.aspx
https://mil.ufl.edu/3744/docs/uPAD2p0/schematics/uPAD_v2.0_schematic.pdf

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 8/8 Revision 1 24-Jan-20

CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO
APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C

Atmel Studio cannot work accoss networks without using a network drive. Below are instructions on how to create
a network drive, for Windows 10 and versions prior.

Setting Up A Network Drive For Atmel Studio

Windows 10:

Type Windows-E (i.c., hold down the windows key and then type E) to open and Windows Exporer
In Windows Explorer, select This PC

Select Computer - Map network drive

Select a drive letter, e.g., Zs:

Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\3744\labs\

Select Reconnect at sign-in

Select Finish

re-Windows 10:

Type Windows-E (i.e., hold down the windows key and then type E) to open and Windows Exporer
In Windows Explorer, select This PC

Select Map network drive

Select a drive letter, e.g., Z:

Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\3744\labs\

Select Reconnect at logon

Select Finish

rocedure to Create, Simulate, and Emulate in C

Open Atmel Studio, and create a new project by navigating to File 2 New = Project.

Under Installed, under the C/C++ subheading, select GCC C Executable Project.

Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:),
and then the correct folder name.

Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only
new limitation might be that to be able to completely step through a C program, the compiler’s optimization
level may need to be changed. (Optimization allows your compiler to interpret your written C code and
attempt to generate more efficient assembly/machine code, i.e., some C statements written in your program
might be removed by the compiler if any level of optimization is enabled.)

o To turn off optimization, first navigate to Project > <Project_Name> Properties. Within the project
properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain,
select Optimization. Within the Optimization window, select the drop-down box for Optimization
Level, and choose None (-00). In newer versions of Atmel Studio, there is an Optimize debugging
experience (-Og) option.

» Don’t forget to optimization back on (Optimize (-O1), by default) when you are finished
debugging.

el i A A Aol ol - A R

R

NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the Atmel
Studio User Guide.

https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-AFA543DE-B3DA-43FA-8154-8BB27DF1DCEB
https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-AFA543DE-B3DA-43FA-8154-8BB27DF1DCEB

	INTRODUCTION
	REQUIRED MATERIALS
	SUPPLEMENTAL MATERIALS
	PROCEDURE
	1. Open Atmel Studio, and create a new project by navigating to File (New (Project.
	2. Under Installed, select Assembler, and then AVR Assembler Project (see Figure 1).
	3. Browse to a desired location for which to save the file (using the Location textbox), and save the file with a meaningful name (using the Name textbox). For this tutorial, we will call the project “GPIO_Output”. Leave everything else default, and c...
	4. In the Device Selection window that automatically opens, select the correct device and click OK. For the entirety of this semester, we will be using the ATxmega128A1U (see Figure 2).

	APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C
	Setting Up A Network Drive For Atmel Studio
	Procedure to Create, Simulate, and Emulate in C
	1. Open Atmel Studio, and create a new project by navigating to File (New (Project.
	2. Under Installed, under the C/C++ subheading, select GCC C Executable Project.
	3. Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:), and then the correct folder name.
	4. Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only new limitation might be that to be able to completely step through a C program, the compiler’s optimization level may need to be changed. (...
	o To turn off optimization, first navigate to Project (<Project_Name> Properties. Within the project properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain, select Optimization. Within the Optimization window, s...
	 Don’t forget to optimization back on (Optimize (-O1), by default) when you are finished debugging.
	NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the Atmel Studio User Guide.

