
University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 1/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

KEY WORDS

Compiler, Inline Assembly, GNU Assembler, GCC, AVR-GCC

RESOURCES

 GNU Assembler Resource - http://sourceware.org/binutils/docs-2.23.1/as/index.html

 AVR-LibC Inline ASM Cookbook - http://www.nongnu.org/avr-libc/user-manual/inline_asm.html

 Atmel APPNote AT1886 - http://www.atmel.com/images/doc42055.pdf

 Atmel APPNote AVR1000 - http://www.atmel.com/Images/doc8075.pdf

INTRODUCTION

Beyond standard assembly programming for a specific device, some devices allow the use of the C programming language to

create code that will control the device. When a computer program is completed in a source language such as C, it must then

be converted to a target language to control the desired device. To do this, a compiler is used to transform the source code

into the desired object code (e.g., assembly language).

During the conversion process, the compiler attempts to “optimize” the order and use of object code. Given that a compiler

tries to be quick, or simply may be poorly built, it is possible that the resulting object code may not be as fast or efficient as

desired. A programmer who is familiar with assembly may want to take advantage of their skills to improve the resulting

assembly code given by using assembly within the C program being generated. Specifically, a programmer may desired for a

C program to call an Assembly function or vice versa. For Atmel, this happens in either two cases: the use of “.s” assembly

files, or using “inline assembly” commands.

Note that for Atmel, the GCC (AVR-GCC) compiler is used to combine .c, .cpp, or .s files to create a project.

C ASSEMBLER

When creating a C project, if working with long and complex pieces of assembly code is required, it is more desirable to

express the code in a dedicated assembler file. The portions of C code and Assembly code can be used to communicate

between each other so nothing is lost, allowing that the programmer pays close attention to the use of registers. Typically,

Assembler files are very useful in cases of optimizing large pieces of code such as communication with external devices or

Interrupt Service Routines.

// Program Flash Data Section (in Code Memory Space)
.section .text
VA: .byte 1,2,3,4,5,6
VB: .byte 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0

.section .text

/*******************************PRIMARY CODE**/
.global MAIN_ASM // The assembly function must be declared as global

MAIN_ASM:
 ldi R18, N // Load the number of values
 ldi ZL, lo8(VA) // Load the address of program memory for VA
 ldi ZH, hi8(VA)

 call VADD // Call the ASM function for vector addition
 ret // Return to call from C code

Figure 1: Assembler File .s example

INLINE ASSEMBLY

In cases where smaller pieces of assembly code are used, inline assembly commands directly embedded into the C code may

be desirable. In these cases, instead of creating a separate Assembler file, the “asm” command may be used to wrap around

and insert assembler commands into C.

http://sourceware.org/binutils/docs-2.23.1/as/index.html
http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
http://www.atmel.com/images/doc42055.pdf
http://www.atmel.com/Images/doc8075.pdf

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 2/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

// Program Flash Data Section (in Code Memory Space)
asm(".section .text");
asm("VA: .byte 1,2,3,4,5,6");
asm("VB: .byte 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0");

/*******************************PRIMARY CODE**/
void VADD(); // C Prototype for VADD

// Main function required in primary C file of project
int main(void)
{
 asm("ldi R18, N"); // Load the number of values
 asm("ldi R30, lo8(VA)"); // Load the address of program memory for VA
 asm("ldi R31, hi8(VA)");
 asm("ldi R26, lo8(VC)"); // Load the address of data memory storage for
VC result
 asm("ldi R27, hi8(VC)");

 VADD(); // Use C function call

 // DONE while loop once main program is complete
 while(1)
 {
 }
}

Figure 2: Inline Assembly example

C ASSEMBLER (.S) USAGE

REGISTERS

When using the GCC compiler in a C program, registers are used slightly differently from a standard assembly project. First,

r0 is defined as a temporary register which may be used by compiler generated code. Any assembly code that uses r0 and

calls a C function should save and restore the register. r1 is assumed to always be zero by the compiler, so any assembly

code that uses this should clear the register before calling compiler generated code. The rest of the registers are defined as

being “call-saved” or “call-used”. “call-saved” registers are those that a called C function may leave unaltered, however,

assembly functions called from C should save and restore the contents of the register (using the stack). “call-used” registers

are available for any code to use, but if calling a C function, these registers should be saved since compiler generated code

will not attempt to save them.

A table is give below to quickly define how each register is to be considered:

Table 1: Register Interfaces between C and Assembly

Register Description Assembly code called from C Assembly code that calls C code

r0 Temporary Save and restore if using Save and restore if using

r1 Always Zero Must clear before returning Must clear before returning

r2-r17

r28

r29

“call-saved” Save and restore if using Can freely use

r18-r27

r30

r31

“call-used” Can freely use Save and restore if using

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 3/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

COMMANDS AND CONSTRAINTS

All commands that are given through the instruction set are available in the mixed C/Assembly setup. Below is a subset of

the instruction set, but are many of the primary commands that are given in various avr-gcc compiling guides. Notice the

constraint descriptions are slightly different.

Table 2: Commands in AVR-GCC

Mnemonic Constraint Meaning

adc r, r Add without Carry

add r, r Add with Carry

adiw w, I Add Immediate to Word

and r, r Logical AND

andi d, M Logical AND with Immediate

asr r Arithmetic Shift Right

bclr I Flag Clear

bld r, I Bit load from T to Register

brbc I, label Branch if Status Flag Cleared

brbs I, label Branch if Status Flag Set

bset I Flag Set

bst r, I Bit Store from Register to T

cbi I, I Clear Bit(s) in I/O Register

cbr d, I Clear Bit(s) in Register

com r One’s Complement

cp r, r Compare

cpc r, r Compare with Carry

cpi d, M Compare with Immediate

cpse r, r Compare, Skip if Equal

dec r Decrement

elpm t, z Extended Load Program Memory

eor r, r Exclusive OR

in r, I In From I/O Location

inc r Increment

ld r, e Load Indirect

ld r, e+ Load Indirect, post-increment

ld r, -e Load Indirect, pre-decrement

ldd r, b + I Load Indirect with Displacement

ldi d, M Load Immediate

lds r, label Load Direct from data space

lpm t, z Load Program Memory

lsl r Logical Shift Left

lsr r Logical Shift Right

mov r, r Copy Register

movw r, r Copy Register Pair

mul r, r Multiply Unsigned

muls d, d Multiply Signed

neg r Two’s Compliment

or r, r Logical OR

ori d, M Logical OR with Immediate

out I, r Out To I/O Location

pop r Pop Register from Stack

push r Push Register on Stack

rol r Rotate Left Through Carry

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 4/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

Mnemonic Constraint Meaning

ror r Rotate Right Through Carry

sbc r, r Subtract with Carry

sbci d, M Subtract immediate with Carry

sbi I, I Set Bit in I/O Register

sbic I, I Skip if Bit in I/O Register Cleared

sbiw w, I Subtract Immediate from Word

sbr d, M Set Bit(s) in Register

sbrc r, I Skip if Bit in Register Cleared

sbrs r, I Skip if Bit in Register Set

ser d Set Register

st e, r Store Indirect

st e+, r Store Indirect, Post-Increment

st -e, r Store Indirect, Pre-Increment

std b, r Store Indirect with Displacement

sts label, r Store Direct to Data Space

sub r, r Subtract without Carry

subi d, M Subtract Immediate

swap r Swap Nibbles

xch z, r Exchange

Though the commands are like standard assembly commands, some of the constraints are described slightly differently. For

instance, some commands that you could typically use register definitions such as XH or XL must now use their specific

register declarations (r27 or r26). A description of the various constraints as well as operand definitions seen in other C

Assembly structures is shown in Table 3.

Table 3: Command/Operand Constraints

Constraint Type Range of Values

a Simple upper register r16 … r23

b Pointer Register y, z

d Upper Register r16 … r31

i Constant

l Lower Register r0 … r15

m Memory

n Value is known at compile

q Stack Pointer SPH: SPL

r Any Register r0 to r31

s Pointer Register x, y, z

t Scratch (Temp) Register r0

w Upper Register pairs r24, r26, r28, r30

x Pointer Register x x (r27: r26)

y Pointer Register y y (r29: r28)

z Pointer Register z z (r31: r30)

G Floating-point Constant 0.0

I 6-bit positive constant 0 to 63

J 6-bit negative constant - 63 to 0

M 8-bit integer constant 0 to 255

0 … 9 Identical to the specified operand

Notice that the X register is r27:r26, y register is r29:r28, and z register is r31:r30.

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 5/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

SYNTAX

When working with Assembler files within C, there are small changes from what is expected in an assembly file.

 In code segments, .org is not needed since the compiler handles code placement.

 In data segments, .org directives are offset from the last location used by the compiler in placement.

 The .s extension is used for assembler files.

 Lines using preprocessor directives defined by # must use C/C++ style comments (semicolons will cause errors)

 Table 3 shows a comparison of the structures for assembly and C.

Table 4: Structure Comparisons

Atmel AVR AVR-GCC

.include “xxx.inc” #include <avr.io>

.dseg .section .data

.cseg .section .text

.db 1,2,3,4 .byte 1,2,3,4

.db “message” .ascii “message”

.db “message”, 0x00 .asciz “message”

.dw .word

HIGH() hi8()

LOW() lo8()

EXAMPLES

.DSEG AND DATA MEMORY

When working with data memory the “.section .data” structure is used. The below example shows various methods of using

Data Memory:

// SRAM Data Segment
.section .data // This will start at address 0x2000 as default
Text: .asciz "hello world"

Variable1: .ds.b 4 // Define storage of bytes 4 long
Variable2: .ds.w 2 // Define storage of words 2 long
Variable3: .byte 5 // Define byte value of 5

.global __do_copy_data // Copy a defined variable in program memory to data memory

Figure 3: .DSEG and Data Memory example

The Text label uses “asciz” to define a null terminated string. Labels Variable1 and Variable2 are used to define storage

spaces of either byte size or words size respectively. Label Variable3 is used to define a specific value of 5 in a space of byte

size.

Data memory is typically used for creating storage of variables such as defined by Variable1 and Variable2. In some cases,

it is desired to not only create a space in memory, but also to define a value to be stored at that position on startup. Text and

Variable3 define a space in data memory as well as desired initial values. The initial value is initially stored in program

memory, however, the special command .global __do_copy_data handles copying the data from program memory to the

desired position for that information in data memory.

.CSEG AND PROGRAM MEMORY

Like assembly, program memory is used to hold both program variables (constants) and the assembly code. The following

example shows how the “.section .text” structure may be used:

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 6/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

// Program Flash Data Section (in Code Memory Space)
.section .text
Variable1: .byte 1,2,3,4,5,6
Variable2: .byte 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0

/*******************************PRIMARY CODE**/
.global MAIN_ASM // The assembly function must be declared as global

MAIN_ASM:
 ldi R18, N // Load the number of values
 ldi ZL, lo8(VA) // Load the address of program memory for Variable1
 ldi ZH, hi8(VA)

 call VADD // Call the ASM function for vector addition
 ret // Return to call from C code

Figure 4: .CSEG and Program Memory example

The Variable1 and Variable2 labels define a place in program memory that holds two sets of respective values. Following

this declaration, the main body of the assembly program (various functions) may now be defined.

ASSEMBLY FUNCTION DEFINITIONS AND USE

Assembly functions are defined the same way they are in a standard assembly project using standard labels. The “ret”

command is still used to return from a function call to an assembly function. Within the Assembler file (.s), calls between

functions within the same file require no special consideration. However, when dealing with calls to assembler functions

from C code, the function must be define a special way.

/*********************************INITIALIZATIONS***********************************/
extern void MAIN_ASM(); // C Prototype that defines an externally defined function

// Main function required in primary C file of project
int main(void)
{
 MAIN_ASM(); // Single call to Vector Add Function
}

Figure 5: Assembly Function Use - .c File

/*******************************PRIMARY CODE**/
.global MAIN_ASM // The assembly function must be declared as global

MAIN_ASM:
 ret // Return to call from C code

Figure 6: Assembly Function Use - .s File

The above two examples show both the .c file and the .s file descriptions for connection to an assembly function. In the .c

file, a C Prototype is created for the assembly function. The use of the “extern” keyword shows that the function is externally

defined. The assembly function is later called in the .c file. In the .s file, the assembly function is defined by the “.global”

directive to make the function available to other partial programs that are linked within the project. Notice that within the

assembly function the “ret” command is still used to return from the function when it is complete.

INLINE ASSEMBLY USAGE

Many of the rules and usage defined within the C Assembler section are used when executing inline assembly commands.

The following sections will detail the differences in Syntax usage as well as define the templates used when working with

inline assembly.

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 7/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

SYNTAX

As described, inline assembly makes use of the asm() command (also defined as __asm or __asm__). In special

circumstances where it is important that the command should not be optimized away (i.e., not moved from the defined

position in memory), the volatile modifier should be added (asm volatile ()). Notice that the volatile modifier does not need

to be used at every asm call. The template for the asm call follows:

asm volatile (asm-template : output-operand-list : list-input-operand : clobber list)

The asm-template follows the standard assembly instruction structure defined in Table 2: Commands in AVR-GCC. The

assembly instructions are incased in quotes. The asm-template may use “%” expressions to define placeholders replaced by

operands defined in the output-operand-list and list-input-operand sections. Below is a table of possible placeholders:

Table 5: ASM Template Placeholders

Placeholder Replaced by

% n By argument in operands where n = 0 to 9 for argument

A% n The first register of the argument n (bits 0 to 7)

% B n The second register of the argument n (bits 8 to 15)

% C n The third register of the argument n (bits 16 to 23)

% D n The fourth register of the argument n (bits 24 to 31)

% A n The Address register X, Y, or Z

% % The % symbol when needed

\ \ The \ symbol when needed

\ N A newline to separate multiple asm commands

\ T A tab used in generated asm

The output-operand-list and list-input-operand follows the definitions given in Table 3: Command/Operand Constraints.

The various operands may be used with various modifiers as defined in the following:

Table 6: Operand Modifiers

Modifier Meaning

= Output operand

& Not used as input but only an output

+ Input and Output Operand

Operands are used by placing an operand (and modifier) in quotes, while placing the true variable, register, or memory

position in parenthesis. Any C expression may be used within the parenthesis.

EXAMPLES

SIMPLE INLINE ASSEMBLY COMMANDS

When using simple inline assembly commands, there is little difference from the look in a C Assembler (.s) file other than the

required asm(“ “) function call surrounding the assembly command.

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 8/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

void VADD()
{
 asm("nop");
 asm("VADD_ASM: push R18");// Push the number of values onto the stack for later use
 asm("movw R28,R26"); // movw Y, X
 asm("mov R19, R18"); // Copy count of values in vector to counter register

 // Work with first vector
 asm("LOOP:");
 asm("lpm R21, Z+"); // Load values of first vector pointed to by Z
 asm("st Y+, R21"); // Store currently loaded value into data memory pointed by Y
 asm("dec R19"); // Decrement counter
 asm("brne LOOP"); // Loop until counter = 0
 asm("pop R19"); // Restore the count of values in vector to counter register

Figure 7: Simple Inline Assembly example

INLINE ASSEMBLY COMMANDS USING OPERANDS

In circumstances where defined PORT names, Control Registers, or Memory locations are used, the more advanced asm()

template with operands must be used. In some of these situations, it is also important to insure that the assembly command

used is not moved during the compiler process, requiring the volatile modifier to be used.

 asm("LDI R18, 0xFF");
 asm volatile ("STS %0,r18" : "=m" (PORTK_DIRSET));

 asm("LDI R18, 0x01");
 asm volatile ("STS %0,r18" : "=m" (EBI_CTRL));

 asm volatile("LDI R31, hi8(%0)" :: "i" (&EBI_CS0_BASEADDR));
 asm volatile("LDI R30, lo8(%0)" :: "i" (&EBI_CS0_BASEADDR));

 asm("LDI R18, (IOPORT>>8)");
 asm("ST Z+, R18");

Figure 8: Inline Assembly with Operands example

In the example, the STS command used to define PORTK_DIRSET uses a simple placeholder operand (%0) showing that

the defined operand will come later in the template. Then, in the output operand section, PORTK_DIRSET is defined as an

output only memory (“=m”) location address.

Later in the example, the LDI command used to define EBI_CS0_BASEADDR uses another simple placeholder operand

(%0). The operand is later shown to be an input operand defined as a constant (“ i ”). The constant is defined by using the C

Pointer “&” modifier on EBI_CS0_BASEADDR. The “&” designated for C to return the address of

EBI_CS0_BASEADDR.

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 9/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

STARTING A C PROJECT

To begin, a C Project must be first started within Atmel Studio. After opening Atmel Studio, choose New Project and make

sure to choose the “GCC C Executable Project” option.

Once the project is open, the standard “.c” file will be opened with the template “main” function. C code may be written

using the “main” function as the starting point. Assembly may be used in a new “.s” file added to the project or directly

inserted using inline assembly commands within the “.c” file.

TO CREATE “.S” ASSEMBLY FILE

All files for the project are displayed in the Solution Explorer. Right click on the project name in the Solution Explorer

(highlighted in figure) and choose “Add -> New Item” in context menu. In the new “Add New Item” window, choose to

create an Assembly File. This new file will then be displayed in the Solution Explorer.

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 10/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

Figure 9: Project Solution Explorer Window

Figure 10: Add New Item Window

University of Florida EEL 4744 Dr. Eric M. Schwartz

Department of Electrical and Computer Engineering Josh Weaver, PhD Candidate

Page 11/11 Revision 0 12-Feb-14

Mixed C and Assembly Atmel XMEGA

TROUBLESHOOTING

GARBAGE AT END OF LINE

If you receive an error with the following comments

 ;’ required

 constant value required

 garbage at end of line

Check any lines with preprocessor directives that begin with # (e.g., #include, #define). If comments follow the directive,

they must be in the form of C/C++ style comments. Any comments using assembler structure with a semicolon will result in

an error.

DEFINING A VARIABLE WITH INLINE ASM DOES NOT WORK

Using the standard method of a #define will not connect correctly when used within an asm command:

 asm(“#define test r18”)

To define the register correctly you can use the command:

 register unsigned char CTR asm("r18");
Notice you will get a warning “call-clobbered register used for global register variable [enabled by default]” depending on

the register you use.

