ex1.asm
;**
; file = ex1.asm
; Quick examples of adds, subtracts and compares for conditional branching.
; Dr. Karl Gugel, Sept/2009
;
; To be assembled using Code Composer Studio which requires a linker command
; file to tell CCR where to place code & data into DSP SRAM.
; The command file used = KG_RAM_link1.cmd
; Important Code locations:
;		.text	RAML1 (internal DSP memory) starting address = 09000 Hex, 4K Words
;		.data 	RAML2	(internal DSP memory) starting address = 0A000 Hex, 4K Words 		
;
	.global	_c_int00	;This assembler directive allows _c_int00 to be a global variable.
;This tells the linker where your program (.text) begins and where to boot.
;								
;**

;******************** Brief Introduction to CPU Model ***********************************
; CPU Registers:
;	ACC	 Accumulator (32 bits) comprised of AH (upper 16 bits) and AL (lower 16 bits)
;	XAR0 Auxiliary Register0 (32 bits) comprised of AR0H (upper 16 bits) and AR0 (lower 16 bits)
;	XAR1 Auxiliary Register1 (32 bits) comprised of AR1H (upper 16 bits) and AR1 (lower 16 bits)
;	XAR2 Auxiliary Register2 (32 bits) comprised of AR2H (upper 16 bits) and AR2 (lower 16 bits)
;	XAR3 Auxiliary Register3 (32 bits) comprised of AR3H (upper 16 bits) and AR3 (lower 16 bits)
;	XAR4 Auxiliary Register4 (32 bits) comprised of AR4H (upper 16 bits) and AR4 (lower 16 bits)
;	XAR5 Auxiliary Register5 (32 bits) comprised of AR5H (upper 16 bits) and AR5 (lower 16 bits)
;	XAR6 Auxiliary Register6 (32 bits) comprised of AR6H (upper 16 bits) and AR6 (lower 16 bits)
;	XAR7 Auxiliary Register7 (32 bits) comprised of AR7H (upper 16 bits) and AR6 (lower 16 bits) 	
;	XT	Multiplicand Register (32 bits) comprised of T (upper 16 bits) and TL (lower 16 bits)
;	P	Product Register (32 bits) comprised PH (upper 16 bits) and PL (lower 16 bits)
;	PC	Program Counter (22 bits)
;	SP	Stack Pointer (16 bits)
;	DP	Data Page Register (16 bits)
;	ST0	Status Registers (flags)
;**

;****************** F335 Program Examples ***********************
		.text			;Program section starting at 0x9000 (internal DSP SRAM)
						
_c_int00:				;This label tells the linker where the entry (starting) point for
					;the first instruction in your program.	

;The following examples illustrate the ADD, SUB (subtract) and CMP (compare) instructions.
;It is important to understand how these instructions affect the flags (N,V,C,Z) in ST0.
						
;ADD => C,Z,N are either set or cleared. However if there is an overflow, V = 1 (set).
; => Else if there is no overflow, there is NO CHANGE to V.
						
;SUB => Z,N are either set or cleared. However for C, if there is a borrow, C = 0 (cleared).
; => If there is no borrow, C = 1 (set).
; => As in the ADD instruction, if there is an overflow, V = 1 (set); Else, V = NO CHANGE.

;ADD & SUB can therefore create and overflow (V=1) but never clear it. Overflows are considered
;very bad and are only cleared by a conditional branch that tests the V flag. See below for an
;example.

;CMP => C,Z,N are set & cleared just like the SUB instruction. However no result is generated.
; => This is a great instruction for testing A>B or A<B where you don't want to modify the
; => data. i.e. finding max,min in an array or writing a sort routine

		;For all the examples below, try to predict the outcome of the flags.
							
		MOV		AH,#0x7fff			;signed overflow or unsigned carry?	
		MOV		AL,#0x7fff		
		ADD		AL,AH				;AL,V,N,C,Z = ?
				
		MOV		AH,#0x8000			;signed overflow or unsigned carry?
		MOV		AL,#0x8000			
		ADD		AL,AH				;AL,V,N,C,Z = ?
		B		END1,NOV			;example of how V can be cleared
		
		MOV		AH,#0x7fff			;signed overflow or unsigned carry?
		MOV		AL,#0x7fff			
		SUB		AL,AH				;AL-AH = ?,V,N,C,Z = ?
		CLRC		C				;example of how to clear carry
		
		MOV		AH,#0x8000			;signed overflow or unsigned carry?
		MOV		AL,#0x8000			
		SUB		AL,AH				;AL-AH = ?,V,N,C,Z = ?

		MOV		AH,#0x8000			;signed overflow or unsigned carry?
		MOV		AL,#0xFFFF			
		ADD		AL,AH				;AL,V,N,C,Z = ?
		B		END1,NOV			;clear V for next example

		MOV		AH,#0x8000			;signed overflow or unsigned carry?
		MOV		AL,#0xFFFF			
		SUB		AL,AH				;AL - AH =?,V,N,C,Z = ?
				
		MOV		AH,#0xffff			
		MOV		AL,#0x0001
		CMP		AL,AH				;AL - AH = ?,V,N,C,Z = ?
		CMP		AH,AL				;AH - AL = ?,V,N,C,Z = ?
								
END1		B		END1,UNC			;infinite loop to just keep us from trying to execute
								;un-initialized (no program) memory.

