
;**
; timer_ex1.asm 24 Mar 2011 Rev. 1
;
; Original Author: Adam Mills
; Editted by: Dr. Schwartz
;**
;* Flashes the LED on our board. Example using Timer1.
;***
GPAMUX1 .set 0x6F86
GPATOGGLE .set 0x6FC6
GPADIR .set 0x6F8A
GPADAT .set 0X6FC0
INT13_VECT .set 0x00001A ;Vector for Timer1 interrupt, VMAP = 0
TIMREGPG .set 0xC00>>6 ;start of timer register page
TIMER1PRD .set 0x0C0A ;holds period of counter
TIMER1PRDH .set 0x0C0B ;holds period of counter [high]
TIMER1TCR .set 0x0C0C ;timer control register
TIMER1PR .set 0x0C0E ;msb current prescaler count, prescale amount [low bytes]
TIMER1PRH .set 0x0C0F ;msb current prescaler count, prescale amount [high bytes]
PERIODL .set 0xFFFF ;16-bit lower count value
PERIODH .set 0x000F ;16-bit upper count value
PRESCALEL .set 0x3 ;8-bit lower prescale value
PRESCALEH .set 0x00 ;8-bit upper prescale value

.global _c_int00 ;This assembler directive allows _c_int00 to be a
;global variable. This tells the linker where your
;program (.text code) begins and where to boot fro

;**
.text ;program section, see the command linker file, program code

;should be placed in the text section which starts at 0x9000

_c_int00:
LC INIT_CPU ;initialize CPU (objmode, disable watchdog)
LC INIT_OUTPUT0 ;initialize LED (output, mux = 00)
LC INIT_TIMER1_INT ;intitialize timer (PRS = 0x132, TIM = 0xF FFFF, enable

interrupts)
OR IER,#0x1000 ;enable INT13 (bit 12 in ier) must be done with an OR
CLRC INTM ;enable global interrupts (by clearing the global interrupt mask)

WAIT:
B WAIT, UNC ;wait for interrupt

INIT_CPU:
PUSH DP
SETC OBJMODE ;allow 32 bit mov instructions
EALLOW ;allow write access to GPIO regs
MOVZ DP,#0x7029>>6 ;turn off that pesky watchdog timer
MOV @7029h,#0x68
POP DP
LRET

INIT_OUTPUT0:
PUSH AR0
PUSH AR1
MOV AR0,#0 ;set Mux for I/O purposes
MOV AR1,#GPAMUX1
MOV *AR1,AR0
MOV AR0,#0x1 ;set GPIO0 as an output
MOV AR1,#GPADIR
MOV *AR1,AR0
POP AR1
POP AR0

LRET

INIT_TIMER1_INT:
PUSH DP ;save neede register
CLRC VMAP ;set interrupt vectors to beginning of memory map

; instead of the end. This allows user to write the
; address of the isr directly into the interrupt vector,,
; since this is ram instead of rom (which is at the end)

MOV DP, #TIMREGPG ;set data page to timer registers
MOV @TIMER1PRD, #PERIODL ;set period
MOV @TIMER1PRDH, #PERIODH ; ...
MOV @TIMER1PR, #PRESCALEL ;set prescaler
MOV @TIMER1PRH, #PRESCALEH ; ...
TSET @TIMER1TCR, #14 ;set bit 14 to enable Timer1
TSET @TIMER1TCR, #5 ;load prescaler and period
MOVL XAR0, #INT13_VECT ;need to load interrupt vector with isr address
MOV *XAR0++, #TIMER1_ISR ;load lower byte (little endian)
MOV *XAR0, #TIMER1_ISR>>16 ;load upper byte
POP DP ;restore register
LRET

; several registers auto-saved, including dp, ar1 and ar0
TIMER1_ISR:

MOV AR1, #GPATOGGLE ;load AR1 with address of GPIO0
MOV *AR1, #1 ;toggle GPIO0
MOV DP, #TIMREGPG ;set DP for direct addressing
TSET @TIMER1TCR, #15 ;clear timer interupt flag, int13 flag auto-clears
IRET ;registers reloaded

