R R b e R R e R R e S R e R R e R e R e R e S R R e R e e e e S e e e e

timer_exl.asm 24 Mar 2011 Rev. 1

Original Author: Adam Mills
Editted by: Dr. Schwartz

AEXAAAIAAAIAAAXAAAALAAAAAAALAAAAAAAIAAALAAAAAXhdXx

* Flashes the LED on our board. Example using Timerl.

AEAAAIAAALAAAAAAAAAAAAAALAAAXAAAAAAAAAAAAhxk

GPAMUX1 .set Ox6F86
GPATOGGLE .set Ox6FC6
GPADIR .set Ox6F8A
GPADAT -set OX6FCO
INT13_VECT .set 0x00001A ;Vector for Timerl interrupt, VMAP = O
TIMREGPG .set 0xC00>>6 ;start of timer register page
TIMER1PRD .set Ox0COA ;holds period of counter
TIMER1PRDH .set 0x0CO0B ;holds period of counter [high]
TIMER1TCR .set 0x0coC ;timer control register
TIMER1PR .set 0Ox0COE ;msb current prescaler count, prescale amount [low bytes]
TIMER1PRH .set Ox0COF ;msb current prescaler count, prescale amount [high bytes]
PERI0ODL -set OXFFFF ;16-bit lower count value
PERIODH .set Ox000F ;16-bit upper count value
PRESCALEL .set 0x3 ;8-bit lower prescale value
PRESCALEH .set 0x00 ;8-bit upper prescale value
.global _c_int00 ;This assembler directive allows c intOO to be a

;global variable. This tells the linker where your
;program (.text code) begins and where to boot fro

- AE A A A A AA A AA AL AAAAAALAAAXAAAAXAAAXAAAAAAAXAAXAAAAALAAAAAAXALAAXAAAAAAAXAAXX

-text ;program section, see the command linker file, program code
;should be placed in the text section which starts at 0x9000

_Cc_int00:

LC INIT_CPU ;initialize CPU (objmode, disable watchdog)

LC INIT_OUTPUTO ;initialize LED (output, mux = 00)

LC INIT_TIMERL_INT ;intitialize timer (PRS = 0x132, TIM = OxF FFFF, enable
interrupts)

OR 1ER,#0x1000 ;enable INT13 (bit 12 in ier) must be done with an OR

CLRC INTM ;enable global interrupts (by clearing the global interrupt mask)
WAIT:

B WAIT, UNC ;wait for interrupt
INIT_CPU:

PUSH DP

SETC OBJMODE ;allow 32 bit mov instructions

EALLOW ;allow write access to GPIO regs

MOVZ DP,#0x7029>>6 ;turn off that pesky watchdog timer
MOV @7029h,#0x68

POP DP

LRET

INIT_OUTPUTO:
PUSH ARO
PUSH AR1
MOV ARO,#0 ;set Mux for 1/0 purposes
MOV AR1,#GPAMUX1
MOV *AR1,ARO
MOV ARO,#0x1 ;set GPIOO as an output
MOV AR1,#GPADIR
MOV *AR1,ARO
POP AR1
POP ARO



LRET

INIT_TIMERL_INT:

PUSH DP ;save neede register

CLRC VMAP ;set interrupt vectors to beginning of memory map

; instead of the end. This allows user to write the

address of the isr directly into the interrupt vector,,
; since this is ram instead of rom (which is at the end)
MOV DP, #TIMREGPG ;set data page to timer registers
MOV @TIMER1PRD, #PERIODL ;set period
MOV @TIMER1PRDH, #PERIODH ;o
MOV @TIMER1PR, #PRESCALEL ;set prescaler
MOV @TIMER1PRH, #PRESCALEH ; ...

TSET @TIMER1TCR, #14 ;set bit 14 to enable Timerl
TSET @TIMERLTCR, #5 ;load prescaler and period
MOVL XARO, #INT13 VECT ;need to load interrupt vector with isr address

MOV *XARO++, #TIMER1 ISR ;load lower byte (little endian)
MOV *XARO, #TIMER1 ISR>>16 ;load upper byte

POP DP ;restore register
LRET
; several registers auto-saved, including dp, arl and arO
TIMER1_ISR:
MOV AR1, #GPATOGGLE ;load AR1 with address of GPIOO
MOV *AR1, #1 ;toggle GPI0OO
MOV DP, #TIMREGPG ;set DP for direct addressing
TSET @TIMERLTCR, #15 ;clear timer interupt flag, intl3 flag auto-clears

IRET ;registers reloaded



