Getting Started:

Inside the monitor folder, there are a number of files. The file “main.asm” is the important file right now. That is the document that is assembled. To assemble the monitor, open “main.asm” in your editor/assembler (MiniIDE). At the top of “main.asm” there are a few #define statements.

#define _4MHZ_ is not commented out if it is a 4 Mhz board

#define _8MHZ_ is not commented out if it is a 8 Mhz board

Both should not be defined at once, but one should be defined
Default is currently 4 Mhz, with “#define _8MHZ_” commented out
#define _4800_ will set the board to 4800 baud, rather than the default 9600 baud
This is commented out as default
#define _CHECKSUM_ sets the monitor to use checksums when loading s-files

This is enabled as default

#define _TESTING_ does two things to enable the monitor to be loaded into

RAM rather than into static memory. First, it disables the interrupt vector table. Then, it changes the memory address where the monitor starts. Currently the monitor will be loaded at $4000 if _TESTING_ is defined. This can be easily changed by changing the value of test_start_point, which is found under the heading “MISC EQUATES” in “main.asm.”
TESTING should not be defined if this is to be loaded into static memory. This makes the monitor begin at $E000.
#define _STAR_ sets the monitor to print out stars when loading programs

The frequency of stars can be set at the top of the “m_load” file by adjusting the value of the equate statement. It can also be adjusted by adjusting the value in memory location “star_count_register”.
Once the program is configured properly, it can be assembled.
If _TESTING_ is defined, the assembled s-file is ready for use. Presumably, an existing monitor (DEBUG12) exists on the board that can handle loading this monitor into RAM. Use the existing monitor and a terminal program to load this monitor into RAM. Then, run the program at address $4000 (or another address if this was changed to not be the start point). This technique only works because this monitor is just a little larger than 4k. With 8k of RAM on the board, that leaves a little less than 4k to load programs using this monitor.
If _TESTING_ is not defined, the assembled s-file is now almost ready to be loaded into static memory. On the current UF HC12 boards, the memory map has EPROM or EEPROM going from $8000-$FFFF. $E000 is included in that range, but $E000 is relative to the start of the processors memory map. Relative to the start of the 32k EPROM or EEPROM that is used, the start of the memory map is $E000 - $8000, or $7000. The memory locations that are in the s-file need to be shifted down by $8000. To do that, load the file s_records.tgz onto a linux/unix/sun machine. Extract the contents with the command line “tar –xzvf s_records.tar” and then go to the directory “s1tos3” that will be in the extracted directory. When in that directory, use the command “gcc s1tos3.c –o s1tos3”. That will compile the proper program. Place the assembled “main.s19” file in this directory. Enter “./s1tos3 main.s19 mainoff.s19 -32768” as the command. 32768 is decimal for $8000. The format is “./s1tos3 <file_before_offset> <name_of_new_offset_file> <decimal offset>”. That will run the program which is designed to change the s1 records to s2 records, offset the addresses, and correct the checksums. There is one more step. Some of the data needs to be deleted. At the top of the file there will be a section that looks something like this:
S3070000ffcc080027

S3070000ffca080326

S3150000ffd0080608090000080c080f0812081508187c

S3150000ffe0081b081e082108240827082a082d0830a1

S3150000fff0083308360839e247083f08420845e0005c

S3150000080000000000000000000000000000000000e4

S3150000081000000000000000000000000000000000d4

S3150000082000000000000000000000000000000000c4

S3150000083000000000000000000000000000000000b4

S3150000084000000000000000000000000000000000a4

S315000008500000000000000000000000000000000b89

S31500000860df000000000000000000000000000000a5

S31300000870000000000000000000000000000076

S31500006000cf0bff16f19116f11cce0bdf7e085f87d4

S315000060107a0877860ace0850c76b00084326fa969a

The section here that is bolded will not be bolded in the file. Remove the section here that is bolded. The reason for doing this is that the bolded section is the data for the pseudo-vectors and reserved memory. This doesn’t go on the EPROM/EEPROM. It is on a separate memory chip and that information is initialized on monitor startup anyways. The information above the bolded section is the vector definitions. The information below is the start of the program. The address of the first record below the bolded records is $6000. $6000 + $8000 = $E000, which is the proper starting address for the program. Everything is ready to put on a chip now.

Go to a machine with an EPROM programmer and open the program for loading EPROMs. I think the name of the program is “Mm” but it is usually on the desktop of the machine the loader is connected to. The icon is a MS-DOS icon. The EPROM loader will probably be found in the 4744 lab or the 3701 lab. I believe there is also one in the Senior Design lab. When in the program, it should be an old-style dos program blue interface. Place the chip in EPROM loader and flip the lever down. Select the proper chip in the program (use the name that is on the top of the black EPROM chip). Select the proper configuration, or ask someone who knows how to help. Load the file onto the machine so that it can be read by the program. Go to “load” in the menu of the program and find your .s19 file that has been translated by the “s1tos3” program. Load that into memory. Then go to “function” in the menu and select program when the function window pops open. It should program the chip, and then verify that the job was done correctly. The EPROM/EEPROM is now ready to be put into the slot for ROM on the HC12 board.

final.s19 is a file with s3 records ready to be put on an EEPROM.

Learning the monitor:

To start learning the monitor, it would help to start looking at the beginning of the program while running the monitor connected to a board. Start by reading the code in “main.asm” after the heading “MONITOR RESET ENTRY”. This is where the reset vector points and consequently is the code that executes when the board is powered on or reset. The first steps are initialization steps. Various systems are enabled or disabled and certain portions of memory are initialized. Then the splash screen is displayed along with the prompt, which awaits user commands.

Typing in “help” and pressing enter will cause the monitor to display the available list of commands. The ability to recognize “help” as a proper command will be explained later in the documentation. However, it is important to note that after the list of commands is displayed, the monitor displays the prompt again. It is important to note that there is a loop. It will keep asking for a command, execute it, and then ask for another command. The quickest way to break out of that loop is to run a program with the “go” command. If the program is loaded using the “load” command, the “go” command can be used to execute the program. Control of the processor is then given to the user program and taken away from the monitor. See the flowchart on the next page for a flowchart explaining the program flow.
In learning the individual commands and subsystems, it is probably best to leave the breakpoint subsystem and the disassembly subsystem until the end. The others are easier to understand, but all are self contained. Various utility functions and SCI related subroutines are used routinely in most other subsystems, so I would suggest looking at “util.asm” and “serial.asm” as the first two subsystems.

Once a few of these things are learned and the general program flow of the monitor is established, it’s probably a good idea to go back to the beginning and start reading the actual code from the reset monitor. Comments to the right of the code will help and may be best to read first before the code. The purpose, file it is found in, inputs, and outputs of all subroutines are listed in alphabetical order later in the documentation. Knowing what the subroutine does is more important than how it does it at this point. Other non-subroutine related code definitions can be found in the CPU12 Reference Manuals. From here on out, it is up to the person learning the system to decide what they want to look at next. Since most of the features are stand alone, they can be viewed or learned in any order.

[image: image1]
Adding a new instruction to the monitor:

For the purpose of demonstrating how to add an instruction, there is going to be a sample instruction added to the monitor. This is a walkthrough on how the instruction was added.

1. Think of a purpose for the instruction and come up with a name. The purpose for the sample instruction is just to print out “sample command output.” Typing in “sample” and pressing enter at the monitor is going to be how it is called.
2. The next step is to name the subroutine and put it in a file. The file name will be “sample.asm” and the subroutine will be called “sample_sub”.
3. After that, define the subroutine and what it does. My subroutine is just going to print out a string. So, I created the string. Next, I loaded the address of the string in the y register, as required by the print_string subroutine. Then I called the print_string subroutine and returned from the subroutine.

4. Now, the routine needs to be integrated into the monitor. Start by including the file in “main.asm”. The line added to include the demo was: #include “sample.asm”, since sample.asm contains the subroutine to be called. This adds the code and so now the code for your subroutine will be assembled with the monitor. Look at the bottom of “main.asm” to see where this was added.
5. Next, it needs to be added to the list of commands the parser will understand. Open “prompt.asm” and there will be a table of commands. The first entry is the length of the command. The length of “sample” is 6, so my first entry is 6. The second entry is the command entered in the prompt. So my second entry is “sample” including the quotes because we want the characters in the world “sample” to be recorded in memory as ascii characters. The third entry is the address of the subroutine. My third entry is sample_sub.
6. Last, if you want the command to be seen in the help menu, open “help.asm”. Follow the format that is already used in the strings that represent the help menu. Put a 13, 10 after the string to simulate pressing enter. Then if you want your command to be the last one in the help menu, make sure to put a 0 at the end of it because the string printer prints null terminated strings.
7. In depth look at the breakpoint system:
Hardware breakpoints are not used in this system. There are 2 16-bit registers for using the hardware breakpoint system. If the PC = Address in either hardware breakpoint register, a software interrupt instruction (SWI) will execute. Two hardware breakpoints are adequate for stepping through a program. At first, I thought they were. But then, after working with the system I came to believe that they weren’t. Finally, I figured out that they actually are adequate for stepping through a program.
Branches are where I thought there was an inadequacy, but there really isn’t one. Consider this code snippet:

[image: image2]
Only 2 breakpoints are needed to step through even if the branch is taken. Lets use this convention. Register #1 will always be assigned to the next instruction after a breakpoint happens. If the next instruction is a branch, long branch, jump, or any other instruction that adjusts the PC, Register #2 will contain the target address. No matter what, the next instruction will execute a software interrupt. See the following page for a flowchart.
The code replacement based breakpoint system works as follows: There are two tables with 5 entries each. The first table has 2 byte entries and those are for addresses. The second table contains 1 byte entries and those are for op codes. If the user wants to place a breakpoint, the user would issue the command “break + <addr>” and it would search the breakpoint table for an empty address location. If a location can be found, it records the address in the table. Then it puts the byte at that address (op code) in the op code table in the same position as the address (ie. If the address is in slot 2, the op code is in slot 2). In place of that byte, an swi instruction is placed. To remove a breakpoint, the process is reversed and the command is “break - <addr>”.

When the program runs into a breakpoint it enters the swi_handler routine. It then realizes that the breakpoint was one in the table. It puts the regular op code back where it belongs and clears both spots in the table so that other breakpoints can be placed. Control is then returned to the monitor so that commands can be entered at the prompt. The resume command resumes execution where the program left off after the swi command. If an swi is encountered and not in the table, control still returns to the monitor since this is a user entered swi.

[image: image3]
Disable COP watchdog timer

Set up the stack pointer

HC12 is turned on or reset

Clear breakpoint state

Clear breakpoint table

Initialize breakpoint system

Turn off clock stretching

Enable RAM R/W

Print Splash Screen

Print out the prompt

Wait for command

Parse the command

Is the command valid?

Execute the requested routine

Print out an error message

Yes

No

This is the flowchart for the program flow for the code in “main.asm”

Is the command go?

No

Yes

Execute the program

Maybe return control to monitor if there is a software interupt

…..

ldx	mem_loc_a

cpx	mem_loc_b

beq	there

ldaa	#$5

…..

there:	ldaa	#$7

Register #1

Register #2

Parse command line address

Get the command at the address

Get the next instruction

Put the address of the next instruction into breakpoint register #1

Enable hardware breakpoints

Set the step byte for the swi_handler

Print out step instructions

Execute program with go subroutine

In “sub_step”

Program breaks at a breakpoint

Enter SWI handler routine

Is the step byte zero?

Enter the regular swi routine

Print out the registers

SWI address in registers?

Get the next instruction

Put it in Register #1

Next instruction modify the PC?

Put it in Register #2

Wait for space or enter

Back to monitor

Resume flow

Space

Enter

Yes

No

No

Yes

No

Yes

