Format for subroutines:

--

subroutine_name: "file_subroutine_found_in.asm"

Comments on subroutine.

Register inputs:

Register outputs:

--

block_fill_sub: "m_bf.asm"

Called from the command line. "> fill <addr1> <addr2> <val>"

Takes the command line arguments:

<addr1> 16-bit address of point to start filling at

<addr2> 16-bit address of point to stop filling at

<val> 8-bit data value to put into each memory location

Writes <val> to a section of memory from <addr1> to <addr2>

Reg Input:

y = command buffer address

Reg Output:

none

bkpt_add: “m_breakp.asm”

routine to add a breakpoint. Called by break_sub

Reg Input:

Y= command buffer addr

Reg Output:

None

bkpt_sub: “m_breakp.asm”

routine to remove a breakpoint. Called by break_sub

Reg Input:

Y = command buffer addr

Reg Output:

None

bp_get_empty: “m_breakp.asm”

routine that finds an empty spot in the breakpoint table

Reg Input:

None

Reg Output:

X = address of spot in breakpoint table

A = offset in storage table

A = $ff on error.

break_sub: “m_breakp.asm”

called from command line “> break [+][-][<addr>]”

it adds a breakpoint at the certain address or subtracts the breakpoint

at that particular address

Reg Input:

None

Reg Output:

None

check_PC_mod: “m_step.asm”

It is the routine that looks for any branches, jumps, returns, or any other PC

modifying commands. If it finds one, it puts the effective address in the second

breakpoint register. This is used in the swi_handler dealing with stepping through

a program.

Reg Input:

None

Reg Output:

X = address in the first breakpoint register

clr_bp_0: “m_step.asm”

Clears the first breakpoint register’s contents.

Reg Input:

None

Reg Output:

None

clr_bp_1: “m_step.asm”

Clears the second breakpoint register’s contents.

Reg Input:

None

Reg Output:

None

clear_cmd_buffer: “util.asm”

zeroes out the command buffer

Reg Input:

None

Reg Output:

None

cop_off: “cop.asm”

turns off the COP watchdog timer

Reg Input:

None

Reg Output:

None

dis_assembly_sub: “m_dis.asm”

Called from the command line. “> dasm <addr> <ops>

Takes the command line arguments:

<addr> the address to start disassembling

<ops> the number of operations to disassemble

Reg Input:

None

Reg Output:

none

disasm: “disasm.asm”

Used to get the address of the next instruction.

Reg Input:

x = address of first byte in instruction

Reg Output:

x = address of first byte in next instruction

download_sub: “m_load.asm”

Used to load s19 files onto memory

Reg Input:

None

Reg Output

None

edit_mem_sub: “m_editm.asm”

Called from the command line: “> mm <addr> <val>”

Takes the command line arguments:

<addr> is the address to replace the memory at

<val> is the value to put into the address

Reg Input:

None

Reg Output:

None

get_address: “util.asm”

used to get user input of an address. Could definitely use some help, as it does not

allow for backspaces or anything else. I’m not really sure why this code is in here.

Reg Input:

None

Reg Output:

X = user entered address

get_bp_0: “m_step.asm”

Returns the address in the first breakpoint register

Reg Input:

None

Reg Output:

X = address in the first breakpoint register

get_bp_1: “m_step.asm”

Returns the address in the second breakpoint register

Reg Input:

None

Reg Output:

X = address in the second breakpoint register

get_byte: “util.asm”

gets user input of a byte. Does not allow for backspaces

Reg Input:

None

Reg Output:

A = byte input

get_char: “serial.asm”

Used just to get a character IF there is one there. Does not block or echo.

Reg Input:

None

Reg Output:

a = character input

get_char_wait: “serial.asm”

Used to get a character. It will block and wait for one to show up, and it

Will also echo back a character if it needs to.

Reg Input:

None

Reg Output:

a = character input

get_char_wait_noecho: “serial.asm”

Used to get a character, blocks and waits for one. However, it will not

Echo the character once it is received.

Reg Input:

None

Reg Output:

a = character input

get_line: “util.asm”

command prompt, gets whatever is typed and puts in a buffer

at the address of the command buffer. The buffer is 20 bytes

Reg Input:

X = command buffer address

B = size of command buffer

Reg Output:

none

get_number: “util.asm”

gets user input of one single hex digit from the user, 0-15

Reg Input:

None

Reg Output:

A = value entered

go_addr_sub: “m_go.asm”

Called from the command line. “> go <addr>”

Takes the command line arguments:

<addr> is the address to start the program at

This saves the system stack pointer, restores the user stack pointer,

Then jumps to the program address.

Reg Input:

None

Reg Output:

None

help_sub: "m_help.asm"

Called from the command line. "> help"

Takes no command line arguments.

Prints out a splash screen containing the possible command line arguments.

Reg Input:

none

Reg Output:

none

hwbp_enable_sub: “m_step.asm”

Enables the hardware breakpoint system

Reg Input:

None

Reg Output:

None

hwbp_disable_sub: “m_step.asm”

Enables the hardware breakpoint system

Reg Input:

None

Reg Output:

None

init_serial_tx: “serial.asm”

Turns on only the serial transmit system at 9600 baud.

Reg Input:

None

Reg Output:

None

init_serial_tx_rx: “serial.asm”

Turns on both the serial transmitter and receiver at 9600 baud.

Reg Input:

None

Reg Output:

None

parse_address: “util.asm”

parses a 16-bit address from the command buffer

Reg Input:

Y = pointer to place in command buffer

Reg Output:

Y = pointer after address

X = address that was parsed

parse_byte: “util.asm”

parses an 8-bit byte from the command buffer

Reg Input:

Y = pointer to place in the command buffer

Reg Output:

Y = pointer after byte

A = value of the parsed byte

parse_command_line: "parse.asm"

Takes a user input in the command buffer and converts it to the address

of the subroutine that matches the user's input.

Reg Input:

x = command buffer address

Reg Output:

x = address of subroutine

y = end of command in command buffer

parse_number: “util.asm”

takes a single character from the command buffer and turns

it into the real value of the hex digit.

Reg Input:

Y = command buffer address pointer

Reg Output:

Y = incremented command buffer address

A = value of parsed byte

print_address: “serial.asm”

Prints an address, or a 4 byte number.

Reg Input:

x = the address

Reg Output:

none

print_bkpt_sub: “m_bptbl.asm”

Prints out the breakpoint table. First the address of the breakpoint, then the

Data that the breakpoint replaced. Destroys content in all registers.

Reg Input:

None

Reg Output:

none

print_mnem: “disasm.asm”

Mainly used for internal use only, it prints the mnemonic of an instruction.

It is basically a print_string for a hardcoded 4 characters, non null terminated.

Reg Input:

y = address of name of mnemonic.

Reg Output:

none
print_number: “serial.asm”

Used to print a number to the screen.

Reg Input:

a = the number to print

Reg Output:

none

print_splash: “util.asm”

used to print the splash screen at monitor reset

Reg Input:

None

Reg Output:

none

print_string: “serial.asm”

Used to print a null terminated string to the terminal through the serial port.

Reg Input:

y = address of null terminated string

Reg Output:

none

put_char: “serial.asm”

Used to send a character out on the serial port

Reg Input:

a = character to send

Reg Output:

none

reg_view_sub: “m_rv.asm”

Called from the command line: “> rv”

Takes no command line arguments. Must be used AFTER a breakpoint is hit, or

It won’t work.

Reg Input:

None

Reg Output

none

reg_edit_sub: “m_rm.asm”

Called from the command line: “> rm <reg> <val>”

Command line arguments:

<reg> is a register name <cbaxyp>

<val> is the value you want in the register

Reg Input:

None

Reg Output:

None

resume_sub: “m_res.asm”

Used to resume program flow from a software interupt or breakpoint.

Reg Input:

None

Reg Output:

None

sample_sub: “sample.asm”

A sample menu input. Just prints out a message.

Called from the command line: “> sample”

Reg Input:

None

Reg Output:

None

searchmnem: “disasm.asm”

Used to find the name of an op code. See “mnemtable.asm” for list of mnemonics.

Reg Input:

a = opcode to look up

b = class of the opcode

Reg Output:

y = address of name of opcode

b = “ff” on error

set_bp_0: “m_step.asm”

Puts the address in x in the first breakpoint register.

Reg Input:

X = address to set in the first breakpoint register

Reg Output:

None

set_bp_1: “m_step.asm”

Puts the address in x in the second breakpoint register.

Reg Input:

X = address to set in the second breakpoint register

Reg Output:

None

sh_search_addr: “swi.asm”

Used to search the breakpoint table looking for a matching address

Reg Input:

D = address to find in the table

Reg Output:

X = address in breakpoint table

X = $0 if not found

A = offset from other breakpoint table

skip_wspace: “util.asm”

skips over whitespace characters in the command buffer

Reg Input:

Y = character buffer pointer

Reg output:

Y = character buffer pointer not pointing to whitespace

step_sub: “m_step.asm”

Called from the command line with “> step <addr>” and it begins

Steps through a program beginning at <addr> using the space bar

To go to the next line and enter to stop stepping.

Reg Input:

None

Reg Output:

none

swi_handler: “swi.asm”

is not a subroutine, but an interrupt service routine. Happens with swi

Reg Input:

None

Reg Output:

none

tc_check: “serial.asm”

Used to make sure that the transfer is complete before another character is sent.

Reg Input:

None

Reg Output:

None

test_sub: “m_debug.asm”

Useless right now.

Reg Input:

None

Reg Output:

None

view_mem_sub: “m_view.asm”

Entered from the command line as “> md <addr1> <addr2>”

Takes the command line arguments;

<addr1> lower address to look from

<addr2> upper address to look to

It displays the memory contents from the first address rounded down to

The second address rounded up. There is no default case.

Reg Input:

None

Reg Output:

None

