
D-Bug4744 Monitor User Manual

© 2001, 2002 Patrick O'Malley

Licensing Agreement

The information contained in this document is © 2001, 2002 Patrick O'Malley. All
rights to this document are reserved by the author. However, the actual source
code to D-Bug4744 (distributed separately) is released by the author(s) of that
code under the GNU Public License. (For more information on that license
please see the license agreement that is distributed in the source code of D-
Bug4744.)

The author of this document makes no guarantees of the accuracy of what is
written herein. The author takes no responsibility for any damages that may
occur due to its use or misuse or errors contained herein.

© 2001,2002 Patrick O'Malley Page 1 D-Bug4744 User Manual

Table of Contents

1. General Instructions 3

1.1 Entering Numbers 3

1.2 Register Names 4

2. Commands 4

3. D-Bug4744 Internals 7

3.1 User and Monitor Stacks 7

3.2 Disassembly 7

3.3 Interrupt Vectors 9

3.4 Breakpoints and How They Work 9

4. Downloading Code 11

5. Debugging Tips 12

6. Utility Subroutines 13

6.1 Example Code for Calling D-Bug4744 Subroutines 16

A. About D-Bug4744 and the Motorola 68HC12B32 17

A.1 Origin of D-Bug4744 17

A.2 The Motorola 68HC12B32 17

B. Contact Info 18

© 2001,2002 Patrick O'Malley Page 2 D-Bug4744 User Manual

1. General Instructions (good for all monitor commands)

1.1 Entering Numbers

D-Bug4744 only understands numbers entered in hex. For example, to enter the
number 123, use the hex equivalent: 7B.

All addresses – designated by “<addr>” – must must be entered as 4 hex
characters. For example, the memory display function (md <addr> <addr>) can
be used correctly with the following two commands:

md 0800 0810

md e000 e0ff

The following two commands would be incorrect:

md 800 810

md 1 ff

All byte-size number inputs – designated by “<val>” – must be entered as two
characters. For example, the register modify (rm <reg> <val>) on a byte sized
register (a,b) should be used like this:

rm a 05

It would be incorrect to enter that command like this:

rm a 5

Incorrect number entry will cause inexpected and guaranteed incorrect results!

© 2001,2002 Patrick O'Malley Page 3 D-Bug4744 User Manual

1.2 Register Names

The register view (rv) and register modify (rm) functions use register names for
display and to allow the user to edit the internals of the registers. D-Bug4744
only recognizes the following register names: a, b, x, y, s, c. They must be
entered in lower-case. The “D” register is not recognized.

Name Register Name Register

a A b B

x X y Y

s SP c CCR

Table 1: Register Names

2. Commands

2.1 Memory Display [md]

Syntax md <addr_low> <addr_high>

Description Displays 16-byte lines of memory between addr_low and
addr_high. The two limits – addr_low and addr_high – are
rounded down and up, respectively, to the nearest 16-byte
boundaries. For example, 0x0801 as a low bound would be
rounded down to 0x0800.

2.2 Memory Modify [mm]

Syntax mm <addr> <val>

Description Changes the memory value at addr with val. It also displays the
former value of that memory location (just prior to changing it.)

© 2001,2002 Patrick O'Malley Page 4 D-Bug4744 User Manual

2.3 Register View [rv]

Syntax rv

Description Displays the contents of the registers. Note that it does not
display the contents of the registers as used by the monitor. It
“unstacks” the register values from the user's stack and displays
those values. This implies that the user has run code which has
been interrupted (by an SWI, for example) and the processor has
therefore put the state of the user's code onto the user's stack.
The rv command then reads and displays the state of the user's
code. This is done to facilitate ease of debugging user code. (If
the user's stack doesn't have anything on it, this command will
display random values for the registers.)

2.4 Register Modify [rm]

Syntax rm <reg> <val>

Description Changes the value contained in the specified register. (See Sect.
1.2 for a list of register names.) As with the register view
command, this command does not modify the state of the current
registers but rather modifies the state of the user's registers on
the stack. If there are no user registers on the stack, it will modify
some random memory location so beware.

2.5 Block Fill [fill]

Syntax fill <addr_low> <addr_high> <val>

Description Fills the memory between addr_low and addr_high with the byte
in val. Does not round the addresses.

2.6 Go [go]

Syntax go <addr>

Description Does a JMP to addr. Switches to the user's stack before the JMP.

© 2001,2002 Patrick O'Malley Page 5 D-Bug4744 User Manual

2.7 S19 Load [load]

Syntax load

Description Loads an S19 from the SCI port (from the host) to memory. It will
not write to FLASH or EEPROM, only RAM. This command
returns to the monitor code when an “S9” record is received. If
there is no S9 record, it will hang.

2.7 Resume [res]

Syntax res

Description Resumes execution of user code after an SWI (user supplied or
breakpoint.)

2.8 Breakpoint [break]

Syntax break : prints the breakpoint table

break + <addr> : adds a breakpoint at addr

break - <addr> : removes the breakpoint at addr

Description Adds, removes and prints the breakpoint table.

2.9 Disassemble [dasm]

Syntax dasm <addr> <val>

Description Disassembles val number of instructions beginning at addr. If the
disassembler is unable to disassemble an instruction, it fails with
the message “incomplete disassembly...” Some addressing
modes do not disassemble at all. See Section 3.2 for more
information.

© 2001,2002 Patrick O'Malley Page 6 D-Bug4744 User Manual

3. D-Bug4744 Internals

3.1 User and Monitor Stacks

D-Bug4744 maintains two stacks. When user code is executed (using the go
command, for example) the monitor switches stack pointers to the user's stack.
When control of the processor returns to the monitor, the stack pointer is
changed back to the monitor's stack to prevent corruption of the user's program
state.

The go and resume commands do this changing of the stack pointer. When an
SWI occurs (and the monitor SWI handler is called) the stacks are again
switched.

The register view and register modify commands read the register values off the
user's stack. If the user has not executed any code (when the board is reset
straight into the monitor, for example) reading the user's stack will show random
values because it has no way of knowing if the user's stack has legitimate
information on it.

3.2 Disassembly

The built-in disassembler does not correctly disassemble all addressing modes
for some instructions. Nor does it disassemble all instructions. The general
instructions (such as ldaa, ldab, ldx, ldy for example) have four “base”
addressing modes: immediate, direct, extended and indexed. Each of these
corresponds to a particular opcode when code is assembled. The last mode –
indexed – contains another five different modes:

Mode Description

IDX 5-bit constant offset addressing. Example: ldaa -1,x

IDX1 9-bit constant offset addressing. Example: ldaa -254,x

IDX2 16-bit constant offset addressing. See below.

[D,IDX] Accumulator D indirect offset addressing. Example: ldaa [D,x]

[IDX2] 16-bit constant indirect indexed addressing. Example: ldaa [10,x]
Table 2: Indexed Addressing Modes

The IDX2 mode – 16-bit constant offset addressing – didn't work in the
assembler I was using to test the disassembler so it may or may not work.

© 2001,2002 Patrick O'Malley Page 7 D-Bug4744 User Manual

The only modes that the disassembler recognizes are immediate, direct,
extended and the IDX and IDX1 indexed modes. The disassembler has the
ability to recognize the other modes but currently the monitor doesn't decode
them.

The instruction opcodes that the disassembler specifically cannot recognize are
given in the following table.

dbeq emaxm emuls ibne leay minm

dbne emind etbl jmp maxa mem

emacs eminm exg leas maxm movb

emaxd emul ibeq leax mina movw

Rev Revw sex tfr tbeq tbne

tbl tpa tsx tsy txs tys

wav xgdx xgdy

Table 3: Unsupported Instructions

© 2001,2002 Patrick O'Malley Page 8 D-Bug4744 User Manual

3.3 Interrupt Vectors

In order to allow users to change the interrupt vectors, pseudo-vectors have
been placed at the beginning of internal RAM (0x0800). All of the hard-coded
vectors at the top of program space (0xffce-0xffff) except SWI and RESET point
to these pseudo-vectors in RAM. Each pseudo-vector is three bytes to
accommodate a JMP instruction. If a user wants to redirect the SCI0 interrupt,
for example, they would put a JMP to the interrupt handler at 0x080c. The
following table gives the locations for the pseudo-interrupts.

Interrupt RAM Addr Interrupt RAM Addr

KEY WKUP J 0800 TIMER 3 0827

KEY WKUP H 0803 TIMER 2 082a

A/D CONV 0806 TIMER 1 082d

SCI1 0809 TIMER 0 0830

SCI0 080c RTI 0833

SPI TX COMPLETE 080f IRQ 0836

PAC INPUT EDGE 0812 XIRQ 0839

PAC OVERFLOW 0815 SWI 083c

TIMER OVERFLO 0818 TRAP 083f

TIMER 7 081b COP FAIL 0842

TIMER 6 081e COP CLOCK FAIL 0845

TIMER 5 0821 RESET 0848

TIMER 4 0824
Table 4: Pseudo-Interrupt Vectors

The SWI and RESET vectors are used by the monitor and are therefore hard-
coded into the ROM but space for a pseudo-vector is left for future use.

3.4 Breakpoints and How They Work

Breakpoints are implemented in D-Bug4744 by replacing user code at the
specified breakpoint address with an SWI (software interrupt.) For that reason,
breakpoints must be placed on the first byte of an instruction if it is a multi-byte
instruction. (This makes sense also because if you put a breakpoint on the
second byte, for example, the PC would never reach that byte – the PC only
increments over whole instructions.) They can't be placed on jump or branch
instructions.

© 2001,2002 Patrick O'Malley Page 9 D-Bug4744 User Manual

Internally, when a breakpoint is reached, the monitor removes that SWI and
replaces it with the code that was originally there. It then puts another SWI at the
first byte of the next instruction following this one. When you resume after a
breakpoint, it resumes at the location of the instruction that was overwritten.
Because the next instruction is now an SWI, it goes back to the monitor and
replaces the breakpoint SWI again.

Because the monitor uses its disassembler to find the beginning of the next
instruction, breakpoints can only be placed on instructions that the disassembler
recognizes.

There is another way to use breakpoints and that is to manually add SWI
instructions to your code. When the SWI is reached, the monitor is called and
will allow you to do everything you would if there were a breakpoint at that
location. This is arguably the easiest way to debug your code.

© 2001,2002 Patrick O'Malley Page 10 D-Bug4744 User Manual

4. Downloading Code

The load command is used to get code into RAM. When executed, it waits for an
S19 file to be received through the SCI port.

The downloading ends when an S9 record (usually the last record in the file) is
received. If an S9 record is not received, the monitor will hang. Resetting the
board will usually solve this problem without corrupting the downloaded data in
RAM.

This downloader will not load code into either FLASH or EEPROM. Any attempts
to write to those locations will result in failure.

S0030000FC

S113FFCE0803080008060809080C080F081208158B

S113FFDE0818081B081E082108240827082A082DBB

S113FFEE0830083308360839E194083F08420845BA

S105FFFEE0001D

S104EF603D6F

S9030000FC

Table 5: Sample S19 File

S105FFFEE0001D

S1 Designator (tells the “type” of the line)

S0,S9 = “administrative lines”

S1 = data line

05 Number of bytes (including two for address, one for
checksum) in this line

FFFE Address where this line of bytes goes

E0 00 Data to be placed at the above addresss

1D Checksum (you'll have to find a detailed document for how
this is computed). It can usually be ignored and is ignored
by D-Bug4744.

Table 6: Decomposed S19 Line

© 2001,2002 Patrick O'Malley Page 11 D-Bug4744 User Manual

5. Debugging Tips

5.1 Use Breakpoints Wisely

Breakpoints can either be extremely helpful or unnecessary to the debugging
effort. In general, the easiest way to use breakpoints with D-Bug4744 is to add
SWI instructions at critical points in the program's execution. The easiest way to
do this is not with the built-in breakpoints but by assembling them into the code
by hand. This is a fast, simple way of utilizing the capabilities of the monitor to
view the state of the system at a given place in the code using the register and
memory view/modify routines.

It is better to reserve use of the monitor's internal breakpoints for situations
where you don't have easy access to an assembler to add your own.

5.2 Print Debugging Information

The D-Bug4744 monitor has general purpose subroutines for printing strings,
hex words (4 characters), hex bytes (2 characters) and simple characters to the
SCI. These subroutines can be called from the user code by doing a jsr to the
proper place in memory. (You can find the locations of all of these functions in
the subroutine table in Section 6.) Using these functions for debugging can be
as simple as printing a character after each subroutine call in a piece of code to
see which routine is causing the system to halt. A common practice is to print
letters of the alphabet ('a', 'b', 'c', etc) such that if the last character printed is 'd',
then you know that the subroutine coming after 'd' is causing problems.

The printing subroutines in D-Bug4744 makes it easy to print addresses to
determine if a jmp is going off-target, for example. You can also print values in
registers before comparisons, values in memory and more.

5.3 Start Small

When writing large assembly programs, it is best to start with small, manageable
subroutines that you can test independently of any other code. In fact, it is
sometimes useful to write these subroutines and code to test them in completely
separate files. Then, when all of the subroutines are tested, combine them into
the final product. (Use of the #include assembler directive can be helpful here.)

© 2001,2002 Patrick O'Malley Page 12 D-Bug4744 User Manual

6. Utility Subroutines

The following D-Bug4744 subroutines can be called by user code.

Function print_string

Address ef27

Inputs Y : pointer to null-terminated string

Outputs None

Modifies A, Y

Description Prints a null (0x00) terminated string to the SCI port

Function print_address

Address ef4f

Inputs X : address to print

Outputs None

Modifies None

Description Prints an address (ex: 4faa) in hex to the SCI port

Function print_number

Address ef33

Inputs A : Number to print

Outputs None

Modifies None

Description Prints a number (ex: 4f) in hex to the SCI port

Function put_char

Address ef20

Inputs A : character to print

Outputs None

Modifies A

Description Sends a character to the SCI port

© 2001,2002 Patrick O'Malley Page 13 D-Bug4744 User Manual

Function get_address

Address e7e7

Inputs None

Outputs X : Address

Modifies None

Description Waits for a 4-character hex address (ex: 43ff) from the SCI port
and returns it in X

Function get_char

Address ef03

Inputs None

Outputs A : Character from SCI port

Modifies A

Description Returns a character from the SCI port if one is available – it
doesn't block.

Function get_char_wait

Address ef0c

Inputs None

Outputs A : Character from SCI port

Modifies A

Description Returns a character from the SCI port if one is available – it
does block (it waits for a character from the SCI port before it
returns.)

© 2001,2002 Patrick O'Malley Page 14 D-Bug4744 User Manual

Function get_line

Address e884

Inputs X : Pointer to character buffer (where line will be stored)

B : Total number of bytes to return (limits line length)

Outputs None

Modifies None

Description Grabs characters from the SCI port and fills the character buffer
until a 0x13 (linefeed) is received or until it receives the number
of bytes given in register B. This function does NOT null-
terminate the string it receives.

© 2001,2002 Patrick O'Malley Page 15 D-Bug4744 User Manual

6.1 Example Code for Calling D-Bug4744 Subroutines

The following snippet shows how to call built-in D-Bug4744 subroutines from
within user code.

That code produces the following output at the SCI port:

One helpful string is the “newline” string that sends a CRLF (carriage return, line
feed) to an attached console (Minicom, Hyperterminal, etc.)

© 2001,2002 Patrick O'Malley Page 16 D-Bug4744 User Manual

print_address equ $ef4f

put_char equ $ef20

print_number equ $ef33

print_string equ $ef27

org $d000

string db.c 'This is a test: ',0

newline db.c 13,10,0

test_code_begin:

ldy #string

jsr print_string

ldx #$1234

jsr print_address

test_code_end equ *

This is a test: 1234

A. About D-Bug4744 and the Motorola 68HC12B32

A.1 Origin of D-Bug4744

This section has been removed. See the comments in the D-Bug 4744 source
code for more information.

Contact the author if you're really curious.

A.2 The Motorola 68HC12B32

The argument goes that the 6812 is better than the 6811. It isn't. In fact, the
6812 is the biggest hack of a processor that I've ever seen. (And I don't use
hack in a good sense.) It is poorly designed and poorly documented. The
development tools are substandard by any comparison with their competitors. It
has functionality (“fuzzy logic instructions”) that demonstrates the same
misunderstanding of the market that led to the Iridium disaster. They offer only
one package type – a very non-standard 80-pin TQFP. Its slow by comparison to
other similarly-priced microcontrollers. It can only be programmed by using a
special tool or one of Motorola's eval boards (and some software that we wrote
for the purpose.) The interface to external memory is a terrible non-standard
clock-stretching scheme that doesn't quite work the way an ordinary engineer
would make it work. (In fact, it can be argued that it simply doesn't work, period.)

Processors that the 68HC12B32 is inferior to: Atmel AVR, Microchip PIC,
AMD186, IBM PowerPC 4xx and Motorola ColdFire.

I think Motorola needs to wake up and take a look at what Atmel and Microchip
and a slew of other companies are doing with their processor designs. They
need to give out (free) better dev tools like compilers, assemblers, simulators
and downloaders. Or at least support an open-source development of those
tools. They should remove the “special” instructions, get more flavors of the chip
going in more packaging options, make programming the device easier and
make it faster. But I think that as long as Motorola sticks to the CISC
architecture, not too many changes will be made.

© 2001,2002 Patrick O'Malley Page 17 D-Bug4744 User Manual

B. Contact Info

If you want to report bugs in this code, please send email to:

bugs4744@mil.ufl.edu

For non-technical questions (like more information on how not to design a
microprocessors class) you could send email to me personally at

pomalley@mil.ufl.edu

I say could because you may never hear from me. When I'm busy, I can
withstand to have a million emails in my inbox without worrying about replying.

The lab where D-Bug4744 was written and the hardware for the microprocessors
class was designed is the Machine Intelligence Lab at the University of Florida.
You can check out what we do at

http://www.mil.ufl.edu

The microprocessors class (EEL4744) is usually hosted off the MIL website
under “courses”.

We usually design robots and things like that at the Lab but through doing that,
we've also put together a good group of hardware designers. And we can write
code, too. (Well, we think we can.)

My website is at

http://www.mil.ufl.edu/~pomalley

Enjoy!

© 2001,2002 Patrick O'Malley Page 18 D-Bug4744 User Manual

