SPI Practice Problems

Create a C function, void spie_init(void), to configure the appropriate SPIE module such that [1] a serial clock
frequency 32 kHz is utilized (assume that the system clock frequency is 64 kHz), [2] data transmitted will be arranged
in a most-significant-bit-first ordering, [3] every transmission of a bit will occur upon on a rising edge of the serial
clock, [4] the default value of the serial clock, when not in use, will be zero (low), and [5] the module is enabled. Be
sure to review Figure 22-2 within doc8331. Additionally, within the function, appropriately configure the data
direction and output values for all relevant I/O port signals related to the SPIE module. Assume that the SPI system
will be inactive unless new SCI data is received.

C Code Comments/More C Code




SPI Practice Problems

Solve each of the following short problems.

a) Is the clock frequency for a SPI receiver faster than that of the corresponding transmitter? If so, why? If not, why
not?

b) Why are there four SPI transfer modes (see Figure 22-2 in doc8331) provided by the ATxmegal2841U (and most
other microcontrollers)?

¢) Describe the main advantage of using synchronous serial communication (i.e., communication via a protocol such
as SPI) instead of asynchronous serial communication (SCI) for bidirectional communication assuming the same
bit rates.

d) Describe the main advantage of using asynchronous serial communication (SCI) instead of synchronous serial
communication (i.e., communication via SPI) for bidirectional communication assuming the same bit rates.




SPI Practice Problems

In this problem, you will design a simple subsystem of some robot car and write a C program to utilize it. The
subsystem will contain [1] an ATxmegal28A1U microcontroller (assumed to have a system clock frequency of
16 MHz), and [2] an inertial measurement unit (IMU) much simpler than the LSM6DSL, consisting solely of an
accelerometer, that performs communication via an internal SPI system. A relevant block diagram for each component
is given below. (Within the IMU block diagram, SDI and SDO represent serial data input and serial data output,
respectively, and CLK represents the relevant serial clock.)

Overall, it is intended that the microcontroller must request three consecutive bytes of data from the IMU roughly
every ten milliseconds, where some TCO module and its appropriate interrupt should be configured to keep track of
ten millisecond intervals.

The three consecutive bytes to be read from the IMU will represent signed data for the X, Y, and Z axes of the
accelerometer, respectively (i.e., the first byte will represent data for the X-axis of the accelerometer, the second byte
for the Y-axis of the accelerometer, and the third byte for the Z-axis of the accelerometer). Data can be immediately
requested from the IMU by writing any value, i.e., there is no need to first specify an address or anything similar,
however [1] the serial clock frequency must be at most 3 MHz (but at least IMHz), [2] data should be set up on a
rising edge and sampled on a falling edge, with the least-significant bit being transmitted first, and [3] the serial clock
should be high when no data is being transmitted.

a) Assuming that all components are properly powered, complete the circuit diagram below for the relevant hardware
expansion, using only the appropriate signals and components. Additionally, whenever appropriate, use
legible labels to identify physical connections instead of drawing lines.

=PortK
= PortJ
RE

WE

ALEl]
ALE2

CS3
CS2
CSl1

| €S0

PortE0

PortEl

PortE2

PortE3

PortE4

PortES

PortE6

PortE7

g
@]
=%
T
A

SPI

IMU
SDI —
SDO |—
CLK | —

ATxmegal28A1U

RRRRRERRAAAI RN




SPI Practice Problems

3. b) Following the relevant previously stated assumptions (including the assumption that the system clock frequency
is 16 MHz), create a C function, void spi_init(void), to initialize the appropriate SPIE module to be able to
communicate with the relevant IMU.

C Code Comments/More C Code




SPI Practice Problems

c)

Assume that the relevant SPI module is already configured, and assume that both the array int8 ¢t accel data/3]
and the function void imu_report(int8_t *a_data) are already defined for you. Below, create a C function,
void imu_read(void), to [1] retrieve the relevant three bytes of data from the IMU, storing X, Y, and Z
accelerometer data into accel data array locations 0, 1, and 2, respectively, and then to [2] pass the accel data
array to the imu_report function, i.c., imu_report(accel_data). You may not utilize any previously written SPI
routine.

C Code Comments/More C Code




SPI Practice Problems

3. d) Assuming that the system clock frequency is 16 MHz and that a TCO prescaler of sixty-four is necessary, create
a C function, void timer_init(void), to initialize some TCO module such that an overflow interrupt is generated
roughly every ten milliseconds. Do not configure the PMIC system, nor set the global interrupt enable bit in this

function.

C Code

Comments/More C Code

e) Design an interrupt service routine for the relevant TCO module (using the relevant C macro function) to simply

call the previously written function void imu_read (void).

C Code

Comments/More C Code




SPI Practice Problems

Assuming that the previously provided variables and functions, as well as the previously required functions, can
be referenced via the header file “practice spi.h”, write the remainder of a complete C program (i.e., any relevant
compiler directives, a main routine, etc.) to simply initialize the relevant systems and enter an infinite loop. Any
functions previously written for this problem should be utilized whenever appropriate, and previously written
interrupt service routines do not need to be rewritten. Additionally, assume that the system clock frequency is
already configured to be 16 MHz.

C Code Comments/More C Code




