
 PSoC Creator Component datasheet

Rev. *A Revised Feb 15, 2020

u

Features

 Implements interface between PSoC and SerialPlot software
 Data types: int8, int16, int32, uint8, uint16, uint32, float
 Doesn’t use hardware resources

 Up to 8 channels

General description

The SerialPlot(*) component implements interface to the real-time charting software SerialPlot

[1]. Using this component, PSoC data can be easily visualized on personal computer.

Component doesn’t consume hardware resources, performing all operations by CPU, which is

useful for systems with little resources, such as PoC4. Multiple instances of the component can

run simultaneously in the project.

When to use SerialPlot component

Component was developed for monitoring temperature profile from several sensors. It can be

useful whenever digitized signals need to be visualized or saved on external computer, such as:

voltage, current or temperature monitoring, PID parameters tune-up, etc. Component is useful

for a system with limited hardware resources, such as PSoC4. Component was tested using

CY8KIT-059 PSoC5LP Prototyping Kit and CY8KIT-042 PSoC4 Pioneer Kit. Demo projects are

provided.

*
 Hereafter referred to as “Chart”

SerialPlot: interface to real-time data charts
0.0

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 2 of 18 Rev. *A

Input-output connections

Component does not have any input/output connections. It is, in essence, a software library,

performing all operations by API. Unlike library, multiple instances of the component can run

simultaneously in the project.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 3 of 18

Parameters and Settings

Basic dialog provides following parameters(*):

DataFormat [Simple Binary / ASCII / Custom Frame]

Sets communication format. Valid options are: Simple Binary, and ASCII, Custom Frame. Default

setting is Simple Binary. Value can’t be changed during the run-time.

DataType [int8 / int16 / int32 / uint8 / uint16 / uint32 / float]

Sets data type. Valid options are int8, int16, int32, uint8, uint16, uint32, and float. Default value

int8. The value can’t be changed during the run-time.

NumChannels (uint8)

Sets number of output channels. Each channel appears as a separate line on the chart. Valid

options are [1 to 8]. Default value is 1. The value can’t be changed during the run-time.

UART (string)

Sets name of the complementary UART component, which is used for communication with

SerialPlot software. Component doesn’t have UART built-in; it must be added to the project. For

full functionality, the UART selected must provide access to procedures PutChar(), PutArray()

and PutString(). Default name is UART_1. The value can’t be changed during the run-time.

*
 Component was intentionally compiled using Creator 4.0 for compatibility with older versions.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 4 of 18 Rev. *A

Advanced dialog provides following parameters:

CheckSum (bool)

Enables checksum calculation. This option has effect only in the Custom Frame mode. Enabling

checksum increases transmission reliability but adds some overhead. Default value is false. The

value can’t be changed during the run-time. See Implementation section for details.

FrameHeader (string)

Sets frame header(*) preamble. Frame header is a unique set of bytes inserted at the start of

each data frame, which is used for synchronization by the SerialPlot. This option has effect only

in the Custom Frame mode. The value should be typed as string of 8-bit Hex characters,

separated by the comma. The length of the header can be in the range between 2 to 8 bytes.

Longer header size improves transmission reliability, but reduces communication speed.

Default value is “0xAA, 0xBB” (2 bytes long). The value can’t be changed during the run-time.

FrameHeaderSize (uint8)

Sets frame header size. This option has effect only in the Custom Frame mode. The value must

match the FrameHeader string. Default value is 2. The value can’t be changed during the run-

time.

FrameSizeFormat [fixed]

This version of Component supports only fixed frame format. This parameter can’t be changed.

*
 In the SerialPlot software it is also called “Frame Start”

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 5 of 18

Endianness [little]

PSoC devices are little endian. This parameter can’t be changed.

Application Programming Interface

Function Description
Chart_Plot() Sends single data packet

void Chart_Plot(data_t V1, data_t V2, … , data_t Vn)

Description: Sends one set (column) of data samples to the COM port.

Parameters: input data. The data_t type represents one of the selected data types: int8,

int16, int32, uint8, uint16, uint32 or float32. The number of the arguments in the

list equals the number of channels. Upon compiling the project, component

generates overload version of the Plot() procedure based on the Dialog settings.

See Implementation section for details.

Return Value: none

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 6 of 18 Rev. *A

Functional Description

The SerialPlot is open source real-time plotting software, which graphically displays data

received by computer through a serial port. It is available for Linux and Windows platforms, and

supports several data formats with multichannel operation. The program can receive data as: (i)

simple binary data stream; (ii) ASCII data in CSV format; (iii) user-defined custom frame format.

The SerialPlot software is ideal tool for displaying data produced by microcontrollers, such as

various sensors outputs, control and debugging information (Figure 1).

The Chart component implements easy interface solution between PSoC microcontrollers and

the SerialPlot software using UART communication. The component doesn’t include any UART

blocks by itself, requiring complimentary external UART for operation. The Chart component

merely formats the data for the UART communication buffer, while UART handles actual

transmission of the data. Such separation allows for greater flexibility in the UART selection.

The Chart component supports many, but not all of the features available on the SerialPlot

software. It is designed to simplify data output from PSoC microprocessors to the SerialPlot

software running on personal computers. Upon compiling the project it will automatically

generate proper overload version of the Plot() procedure, based on the options selected in the

Dialog.

Figure 1. Example of the SerialPlot output of data received through a serial port.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 7 of 18

Implementation

The Simple Binary format

In the Simple Binary format, data is transmitted as a stream of data packets, one at a time. Data

packet structure for single- and dual-channels transmission is shown of Figure 2.

Figure 2. Structure of data packets in the Simple Binary format, each square represents a byte:

(A)- single channel of int8 / int16 data type; (B)- 2 channels of int8 / int16 data type.

There is no option to synchronize the data stream in this mode – the loss of a single byte

catastrophically corrupts the rest of the data received. The only exception presents 1-byte

single channel transmission, where each byte corresponds to the individual data point. For that

reason the Single Binary mode is recommended only when data packet fits one byte - a single

channel of int8 or uint8 data.

Upon compiling the project, the component automatically generates overload version of the

Plot() procedure, based on the Dialog settings (see Appendix 1, Simple Binary section).

The ASCII format

In the ASCII format, received data is formatted as a string of human-readable values, separated

by the comma, with each string is terminated by the standard escape sequence: [CR][LF]. For

example, when configured for the 2-channels of float data type, the output string looks like:

-1.23456E+01, 2.34567E+02[CR][LF]

Due to hard-separation of the data strings by the escape sequence, this method of data

transmission is relatively immune: a loss of a data byte doesn’t corrupt the rest of data. This

format is slow and CPU-hungry (see Performance section) due to conversion of the data into

human-readable form and not recommended for plotting. It may be useful, however, for

debugging purposes using character Terminal. See Appendix 1, ASCII section for details.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 8 of 18 Rev. *A

The Custom Frame format

In the Custom Frame format(*), the data is packed into individual frames, preceded with a frame

header(†), a column of data, and optional checksum byte at the end of the frame. Each frame is

transmitted separately. It offers performance comparable to the Single Binary with robustness

of the ASCII format.

The frame header allows re-synchronizing data stream if some bytes are lost or corrupted. It

consists of several unique user-selectable characters (up to 8 bytes long), for example: “0xAA,

0xBB, 0xCC, 0xDD”, which would rarely occur naturally. Longer header strengthens sync lock,

but adds overhead. The default header “0xAA, 0xBB” is 2-byte long, which is sufficient for non-

demanding applications. For example, when the number of channels is 2 and selected data type

is int16 (2-byte), the frame structure is:

Figure 3. Example of the data packet in the Custom Frame format, where each square
represents a byte. Header size is 2 bytes, number of channels is 2, data type is int16.

(A)- checksum disabled, (B)- checksum enabled.

Optional checksum allows protection against data being lost or corrupted. If checksum doesn’t

match, the entire frame is discarded by the SerialPlot software. The checksum byte is obtained

by simply summing all data bytes in the transmitted array. See Appendix 1, Custom Frame

section for details.

Features not implemented

 Multiple data packets per frame in Custom Frame format.

 Variable frame length in Custom Frame format

 Bidirectional communication (Rx + Tx)

 USB-UART communication

*
 This simplified implementation is limited to only Fixed size format with a single data column per frame.

†
 Also called as “Frame Start”.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 9 of 18

Performance

Component was tested using CY8KIT-059 PSoC5LP Prototyping Kit and CY8KIT-042 PSoC4

Pioneer Kit. The component performs all operation entirely by the CPU. Results for PSoC5LP are

presented below(*). Results for PSoC4 are typically ~20% slower.

The API execution time in binary modes is clearly dominated by the UART performance, while in

ASCII mode by the string formatting procedure. The fastest time is obtained in Single Binary

mode with UART Tx buffer size of 4 (hardware FIFO enabled). For larger buffer sizes execution

time jumps due to UART switching to the RAM buffer instead of FIFO.

Table 1. Execution time (bus clocks) in Single Binary format, 1 channel.

Tx buffer size int8 int16 int32 float

4 bytes 17 62 83 83

128 bytes 47 128 196 196

Table 2. Execution time (bus clocks) in Custom Frame format, Header 2 bytes, 2 channels
(†)

.

Tx buffer size int8 int16 int32 float

4 74 2410 10730 10770

128 185 294 460 455
(†)

 Enabling checksum adds overhead 50-60 clocks.

Table 3. Execution time (bus clocks) in ASCII format, 2 channels.

Tx buffer size int8 int16 int32 float

4 12600 17000 31500 45000

128 2560 2600 3100 14000

*
 Results obtained using UDB UART v2.50 at 115.2 kbd, release mode with compiler optimization set to speed

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 10 of 18 Rev. *A

Resources

Component does not consume hardware resources. It doesn’t use interrupts, clocks or UDB.

Component does not have built-in DMA capabilities.

Sample Firmware Source Code

Demo project is provided, see Appendix 2 for details.

Component Changes

Version Description of changes Reason for changes/impact
0.0 Version 0.0 is the first beta release

of the component

References

1. Serial PLOT v0.10.0, by Hasan Yavuz Özderya,
https://hasanyavuz.ozderya.net/?p=244

https://hackaday.io/project/5334-serialplot-realtime-plotting-software/discussion-88924

https://bitbucket.org/hyOzd/serialplot

2. PSoC Annotation Library v1.0,
https://community.cypress.com/thread/48049

https://hasanyavuz.ozderya.net/?p=244
https://hackaday.io/project/5334-serialplot-realtime-plotting-software/discussion-88924
https://bitbucket.org/hyOzd/serialplot
https://community.cypress.com/thread/48049

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 11 of 18

Appendix 1

Simple Binary format

When data packet fits a single byte (1-channel of int8 or uint8 data type), the component

generates overload version of the Plot() procedure, along with suggested SerialPlot settings:

void Chart_1_Plot(int8 V1)

{

 // Format: Simple Binary

 // Channels: 1

 // Number Type: int8

 // Endianness: Little Endian

 UART_1_PutChar(V1);

}

Suggested settings should be manually(*) put in the SerialPlot Data Format tab (Figure 4).

Recommended size of the complimentary UART Tx buffer in this mode is 4 (hardware FIFO), see

Performance section for details.

Figure 4. SerialPlot settings for Simple Binary data format, matching component parameters:
Number of Channels: 1; Number Type: int8; Endianness: Little Endian.

*
 Current version of the SerialPlot software (v0.10.0) doesn’t support remote configuration.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 12 of 18 Rev. *A

If data packet doesn’t fit a single character (for example 2-channels of int8 data type),

component generates overload version of the procedure:

void Chart_1_Plot(int8 V1, int8 V2)

{

 // Format: Simple Binary

 // Channels: 2

 // Number Type: int8

 // Endianness: Little Endian

 int8 val[2] = {V1, V2};

 UART_1_PutArray((uint8 *) &val, sizeof(val));

}

Suggested settings should be manually put in the SerialPlot Data Format tab (Figure 5). The

UART Tx buffer size should be set enough to fit all bytes in the data packet. Best performance is

achieved when data packet fits UART FIFO buffer (4 bytes). See Performance section for details.

Figure 5. SerialPlot settings for Simple Binary data format, matching component parameters: Number of
Channels: 2; Number Type: int8; Endianness: Little Endian.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 13 of 18

ASCII format

Upon compiling the project, based on the Dialog settings, the component generates overload

version of the Plot() procedure, along with suggested SerialPlot settings:

void Chart_1_Plot(float32 V1, float32 V2)

{

 // Format: ASCII

 // Channels: 2

 // Delimiter: comma

 char abuff[36];

 sprintf(abuff, "%g,%g\r\n", V1, V2);

 UART_1_PutString(abuff);

}

Suggested settings should be manually put in the SerialPlot Data Format tab (Figure 6). When

selecting float data format, the newlib-nano Float Formatting must also be enabled in the

Project settings. The size of the complimentary UART Tx buffer must be set to no less than the

size of the abuff[].

Figure 6. SerialPlot settings for ASCII data format, matching component parameters: Number
of Channels: 2; Column Delimiter: comma.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 14 of 18 Rev. *A

Custom Frame format

The code example of sending 2 channels of the int16-type data in Custom Frame format. Upon

compiling the project, the component automatically generates overload version of the

procedure, along with corresponding settings for SerialPlot software:

void Chart_1_Plot(int16 V1, int16 V2)

{

 // Format: Custom Frame

 // Frame Start: 0xAA, 0xBB

 // Channels: 2

 // Frame Size: Fixed, Size=4

 // Number Type: int16

 // Endianness: Little Endian

 // Checksum: false

 struct {

 uint8 head[2];

 int16 val[2];

 } __attribute__ ((packed)) Frame = { {0xAA, 0xBB}, {V1, V2} };

 UART_1_PutArray((uint8 *) &Frame, sizeof(Frame));

}

If Checksum validation enabled, the component generates overload version of the procedure,

including checksum calculation:

void Chart_1_Plot(int16 V1, int16 V2)

{

 // Format: Custom Frame

 // Frame Start: 0xAA, 0xBB

 // Channels: 2

 // Frame Size: Fixed, Size=4

 // Number Type: int16

 // Endianness: Little Endian

 // Checksum: true

 struct {

 uint8 head[2];

 int16 val[2];

 uint8 CS;

 } __attribute__ ((packed)) Frame = { {0xAA, 0xBB}, {V1, V2}, 0};

 // calculate checksum

 uint8 * pVal = (uint8 *) &Frame.val[0];

 uint8 * pCS = (uint8 *) &Frame.CS;

 while (pVal < pCS) { * pCS += * pVal++; }

 UART_1_PutArray((uint8 *) &Frame, sizeof(Frame));

}

Settings provided in the comments header should be manually put in the SerialPlot Data Format

tab (Figure 7). The size of the complimentary UART Tx buffer in this mode should be set to no

less than the frame size.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 15 of 18

Figure 7. SerialPlot Data Format settings for Custom Frame mode: Frame Start: “0xAA, 0xBB”;
#Channels: 2; Frame Size: Fixed, Size=4; Number Type: int16; Checksum Enabled: True.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 16 of 18 Rev. *A

Appendix 2

Component demo project

The PSoC5 project schematic using SerialPlot component is shown on Figure 8. Test data

samples are generated on clock timer and streamed to the host computer using (UDB) UART

v2.50 through USB-UART bridge, built into the KitProg.

Figure 8. SerialPlot demo project schematic.

The test data are generated on 100 Hz timer clock. The Chart component is configured for

Custom Frame format, 4 channels, int16 data type. The SerialPlot software viewport and

configuration page are shown on Figure 9. UART Tx buffer size is 128 bytes.

Figure 9. Demo project output and settings. Custom Frame mode: Frame Start: “0xAA, 0xBB”;
#Channels: 4; Frame Size: Fixed, Size=4; Number Type: int16; Checksum Enabled: True.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *A Page 17 of 18

Figure 10. Project annotation for PSoC5 CY8CKIT-059 using PSoC Annotation library
(*)

.

*
 PSoC Annotation Library v1.0, https://community.cypress.com/thread/48049

https://community.cypress.com/thread/48049

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 18 of 18 Rev. *A

Appendix 3

Off-chip annotation component

The SerialPlot component is accompanied with off-chip annotation component facilitating

schematic drawing and enhancing visibility. It can be used in conjunction with the PSoC

Annotation library [2] and KIT-042, KIT-044 and KIT-059 annotation stubs.

Figure 11. SerialPlot off-chip annotation component.

Figure 12. Project annotation for PSoC4 Pioneer Kit (CY8CKIT-042) using KIT-042
(*)

 stub and
PSoC Annotation library [2].

*
 KIT-042: annotation component for CY8CKIT-042 Pioneer Kit, https://community.cypress.com/thread/48741

https://community.cypress.com/thread/48741

