

EEL 4914 Senior Design

Final Design Report

December 5
th

 Fall 2007

Fresh Water Aquarium Monitor

Team Name: “Finding Nemo”

Submitted by:

Mike Arms
marms@ufl.edu

727.560.1663

Beth Spalding
beth02@ufl.edu

352.870.7232

Table of Contents

I. INTRODUCTION 1
II. ABSTRACT 1
III. TECHNICAL OBJECTIVES 2
IV. PROJECT FEATURES 2
V. CONCEPT/TECHNOLOGY 3
VI. PRODUCT COMPARISON 5
VII. PROJECT ARCHITECTURE 6
VIII. HARDWARE/SOFTWARE 8
IX. DESIGN PROCEDURE 13
X. FLOWCHARTS/DIAGRAMS 14
XI. BILL OF MATERIALS 15
XII. USER MANUAL 16
XIII. GANTT CHART/RESPONSIBILITIES 19
XIV. APPENDICIES 21

I. INTRODUCTION

This project has very practical applications to almost every individual who has interest in

owning a fresh water aquarium or who already owns a fresh water fish aquarium. For

example, if a family leaves their home for a week long vacation, instead of trying to find

someone to care for the aquarium while they are away, the fish monitor will feed the fish,

monitor the temperature and PH levels, and adjust accordingly. This device will have

great value for those individuals who value the health of their fresh water friends.

Existing commercial products are very costly and provide many features that the average

aquarium owner may not use or need. Commercial available features include password

protection, water conductivity, weather simulation, sunrise and sunset simulation, and

ORP (oxidation reduction potential). All of these features are excess for the average

owner. Costs range anywhere from $150 upwards to $400, more than an owner would

want to pay if their aquarium only cost around $50. Our product will minimize cost and

provide only the basic features needed to successfully monitor and maintain a fresh water

aquarium.

II. ABSTRACT

This project was realized over the summer when a close friend received a fresh water

aquarium as a gift. One afternoon, the fish were found with small white spots all over

them. It turned out to be a bacterial infection and something that could have easily been

prevented if the water temperature was kept between a certain levels.

Project “Finding Nemo” aims to monitor and control the temperature, PH levels, and feed

the fish in a fresh water fish aquarium. The temperature will be monitored using a basic

temperature sensor and the temperature adjustment will be performed by turning on or off

a light. The PH levels will be monitored using a color sensor and the levels will be

adjusted according to the user’s discretion. The technical challenges this team will face

is programming the monitor for temperature and PH, and working with the color sensor.

Typical PH sensors are difficult to work with and on average, last only a year.

At the end of the term, this outcome we expect is to build a working aquarium monitor to

monitor the temperature and PH levels within the tank. The device will be able to store

user input as to when and how often the fish will be fed, at what temperature the water

should be kept, and the required PH levels. It will a provide feedback of the current

levels and adjust the temperature accordingly if the levels are out of the specified user

input.

III. TECHNICAL OBJECTIVES

This project will use basic DC wall power. There will be a temperature sensor to monitor

the water and another sensor to measure the pH. The pH levels can be adjusted at the

user’s discretion while the temperature will be corrected automatically. A step motor will

be used to dispense food. A microprocessor will take in the data from the sensors and

output the data to an LCD screen. The user will input the range of acceptable conditions

of the aquarium as well as the desired number of feedings per day on a keypad.

IV. PROJECT FEATURES

In order to minimize cost and facilitate ease of use, this product will have the necessary,

but minimal features.

Main Objective

Our goal is to market this product to the average aquarium owner, so a basic, user-

friendly product is a must.

Features

 LCD Display – this part of the device will be used to enter user-defined inputs for

temperature, pH and fish feeding time, through basic push buttons and display the

current temperature and pH levels.

 Push-Button Input – minimal push-buttons will be used as the means for entering

the desired data.

 Temperature monitoring and control – the device will monitor the temperature of

the aquarium and then display the temperature of the aquarium, and if the

temperature is out of the user-specified range, the device will turn on/off a lamp

to adjust the temperature.

 PH monitoring – the device will monitor and display the current pH readings and

notify the user if the pH is out of the user-defined range.

 Fish feeder – the device will contain a step motor with rotating cavity to provide

food to feed the fish. At the user-defined time, the motor will dispense the food to

the aquarium.

V. CONCEPT/TECHNOLOGY

PIC Microcontroller
We chose the PIC over other controllers based on the wide array of features

available which are appropriate for the needs of this project. It is widely available,

has a very low cost, wide range of available development tools, and the

availability of a real-time clock. It has a variety of features including a CPU,

RAM, ROM, I/O lines, and can store and run a program.

LCD Display
A basic LCD display will interface with the PIC Microcontroller in order to

display the information pertaining to the temperature and pH sensors.

Real-Time Clock
We chose to use a separate Real-Time Clock instead of the one on the PIC

Microcontroller because it is more stable than the PIC. It is more accurate and

will not fluctuate with a change in load.

Temperature Sensor
This sensor will take analog temperature data and then convert the value to a

digital format through the use of the microcontroller. There are many temperature

sensors available that easily interface with the PIC Microcontroller. We chose a

Fahrenheit temperature sensor because converting to Kelvin or Celsius with the

PIC loses some accuracy in the decimal place.

PH sensor
PH sensors test how basic or acidic the liquid is and can be translated into a

concentration of hydrogen ions. The measurement ranges between 0 and 14. A

very acidic solution has a low pH value from 0 to 2, corresponding to a large

concentration of hydrogen ions. A basic solution has a high pH value from 12 to

14, corresponding to a small number of hydrogen ions. It is important to note that

over time, the electrical properties in the pH measuring electrodes change, so the

electrode will eventually have to be replaced. This makes typical pH sensors

unfavorable to use.

We chose to use a color sensor instead of the more common pH sensors because

of its wide range of uses, consistent readings and the fact that it will not need to

be replaced, unlike basic pH sensors. The current method for testing the pH is

adding the appropriate chemicals to a small vial of the aquarium water and then

inserting it into the pH testing device, where the color sensor reads the intensity of

the water color in the vial and displays the results on the LCD. The color sensor

could also be adapted to test for ammonia and nitrate levels.

Stepper Motor
The stepper motor is ideal for feeding the fish. A stepper motor will run after a

pulse of electricity and this pulse will rotate the motor by a predefined increment

in a step fashion and has a high degree of precision. By using the step motor, we

will be able to control precisely how much food we want to feed the fish and

while using minimal power, unlike other types of motors.

VI. PRODUCT COMPARASION

After deciding on this design product, we researched to see if there were any comparable

existing products. We can see from the monitors introduced below that they are not only

expensive, but have many more features than the average aquarium owner would need.

Digital Aquatics ReefKeeper 2
(AquaDirect Link)

Features – fully enclosed stand-alone

device. PH monitor, interface with PC,

several channels, different modes,

timers, wavemaker, digital

thermometer and temperature control,

fan/chiller control, high power

Cost - $49.00

AquaController Jr, 3 and 3 Pro (Neptune Systems Link)

Features – fully enclosed, stand-alone device. This device includes pH, Temperature,

ORP, Cond and DO monitoring and control, Ethernet port, e-mail alarms, telnet server,

lighting control, wavemaker, seasonal variations, digital calibration (a picture of each

device is shown below).

Cost – $149.95 to $649.95

http://www.aquadirect.com/store/product.php?productid=17501&cat=515&page=1
http://www.neptunesys.com/index.htm

VII. PROJECT ARCHITECTURE

PCB Schematic

Project Architecture – A high level description of how the parts in your project work
together.

VIII. HARDWARE/SOFTWARE

PIC Microcontroller
 We chose to use the PIC18F4620 because it is the largest one available with a

wide range of features required for our design.

- Operating voltage: 2.0V to 5.5V

- Internal real-time clock and oscillator

- 10-bit ADC, 13 channels at 100K samples per second

- Program Memory: 65536 bytes

- RAM size: 3968 bytes

- EEPROM data size: 1024 bytes

- I/O pins: 36

Figure – PIC18F4620 Pin-out

LCD Display
 The LCD display provided in the senior design class was very basic and provided

two lines with twenty characters each, which is sufficient for our design.

Figure – 20x2 LCD Screen and Device Front Panel

Real-Time Clock

We used the PCF8583 to keep track of time and to store memory that needed a battery

back-up.

Temperature Sensor
 Since we wanted to display the temperature in Fahrenheit, the LM34 temperature

sensor was the most feasible solution. It was very inexpensive and widely available. The

output voltage of the sensor is linearly proportional to the Fahrenheit temperature on a

10.0mV/°F scale, has a range of -50°F to 300°F range, has low self heating, and does not

require any outside calibration or programming conversions to obtain the correct value.

 The figure below shows the configuration for a basic temperature sensor and its

corresponding current and temperature curve. For the basic configuration without using

any resistors, the temperature range stops at 0°F, which is sufficient because the

temperature of the fish tank is not expected to drop below 65°F.

Figure – LM34 Fahrenheit Temperature Sensor DIP and Curve

PH sensor

The TCS230 was used to read the color of the pH from a standard liquid test kit. The

color sensor outputs a PMW signal that is read by the microprocessor. As the intensity of

the red, green, or blue light increases the pulse widths get smaller. The time between two

pulses is measured of one particular color and then compared to that of the other colors.

The ratio is used to determine the shade of the color.

The vial containing the water to be tested and pH chemicals will be inserted into the

opening at the face of the device. A diagram of the color sensor compartment can be

seen in Figure X. The color sensor will then take samples of the color in the vial and

output the results to the LCD. If the pH is out of the desired range, the user can make the

decision to adjust the pH of the water.

Figure. PH Sensor Enclosure with Color Sensor and Test Vial.

Many samples were recorded of solutions varying in pH. The samples were grouped to

what they appear to represent on the color chart. The data was plotted and equations were

calculated. The red to green ratio was the best fit and most predictable. This equation was

implemented into the Microprocessor.

y = 0.6339x - 3.5348

R2 = 0.9241

y = 0.0002e1.349x

R2 = 0.9666

y = 1.2504x - 6.2334

R2 = 0.9912

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

5.25

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

pH

R/G vs pH

R/B vs pH

G/B vs pH

Linear (G/B vs pH)

Expon. (R/B vs pH)

Linear (R/G vs pH)

This technology can also be adapted to testing for Ammonia, Nitrate and Oxidation levels,

as the less advanced method of using test strips or litmus paper is the same method to test

for pH. These elements will obtain a certain color depending on the level of each in the

water, and the color sensor can be programmed to identify the range for those elements.

Stepper Motor

 A stepper motor is an electromechanical device that rotates in discrete angular

steps. The angle of rotation is dependent on the sequence of pulses applied at the input.

It has very precise control and is ideal for this situation because the fish feeding

mechanism needs precise and limited rotation.

We are using the 20M020D1B bipolar, two-phase stepper motor which has 18º of

precision, meaning each step it rotates 18º. In conjunction we are also using a FAN8200

low voltage stepping motor driver. The device we built to contain the fish food and

dispense it to the fish tank has four compartments with dividers located 90 º apart. This

means we need 90º/18º = 5 steps in order to rotate enough to dispense the food.

The first figure is a drawing of the feeding mechanism. There is a food reservoir

that holds the food until the dispenser is rotated. After the stepper motor rotates the

dispenser, gravity brings food into the next empty compartment.

Figure – Feeding Mechanism

 A certain sequence is required in order to power the stepper motor. A signal is

sent from the PIC through the driver and then the output to the driver moves the stepper

motor. The driver is basically two logic flip-flops or four inverters. The motor is

energized in full step mode, meaning two phases can be energized at a given time. A

diagram of the driver and the input and output sequences required to power the motor is

shown below.

 Once the entire device is set up on the fish tank with food in the food reservoir,

the motor will need to rotate the dispenser once in order for the food to be on either the 0

or 180 mark; this way, once the set time is reached to feed the fish, the food will dispense

properly.

Figure – Stepper Motor Driver and Input and Output Sequence

IX. DESIGN PROCEDURE

Once we came up with an idea for a project, we brainstormed about features and

hardware we would need to implement the task. Since we knew what features we wanted

– temperature and pH sensing, automatic feeding and a basic user interface, we

researched available options for these features.

We decided on each hardware device based on the project needs. We chose the PIC

18F4620 after adding up the I/O pins we would need – we originally calculated around

20 I/O pins and ended up using all but two of the pins. We chose the LM34 temperature

sensor because of its ease of use and the fact that the output voltage is linear to the

Fahrenheit. We chose a stepper motor for the fish feeder because it has very precise

control. After doing extensive research on pH sensors, we found a new approach to

testing the pH – using a color sensor. Later in the semester we also realized that the color

sensor could also be adapted to test for Ammonia levels, Nitrate levels and other

chemicals typically adjusted in aquariums. We used a separate real-time clock due to its

stability.

Once we received all the parts, we split the responsibilities between the two of us and

programmed on two breadboards. That way, each individual was in charge of certain

aspects of the project, and if one of the breadboards or one of the components on the

board failed, we wouldn’t have to move the entire project to a new board or risk

damaging other components.

For the enclosure, we chose materials that were easy to work with. The plastic housing

was purchased for a local retailer and was easy to drill and cut holes for the components.

We used balsa wood for the rotating portion of the feeder, once again, because it was

easy to shape. A basic funnel was the container to hold the fish food.

X. Flowcharts & Diagrams

PIC Microcontroller

LCD

Keypad

Temperature
Sensor

pH Sensor

120 VAC Relay

Light

Feeder
Motor

X. BILL OF MATERIALS

 P/N Amount

Price per

Each Total

PIC Microcontroller 18F4620 1 $10.20 $10.20

Temperature Sensor LM34 2 $2.51 $5.02

Color Sensor TCS230-LM 1 $59.95 $59.95

RTC 8583 1 $2.48 $2.48

Transistor 2N3189 1 $0.75 $0.75

Diode 1N4148 4 $0.10 $0.40

Cap (0.1 uf) 5 $0.25 $1.25

Cap (0.47 uf) 1 $0.20 $0.20

Cap electrolytic (33uF) 1 $0.12 $0.12

Resistor (10K) 2 $0.30 $0.60

Resistor (4.7k) 3 $0.30 $0.90

Resistor (1K) 1 $0.80 $0.80

Motor 1 $19.60 $19.60

Relay OUZ-SS-105D 1 $1.15 $1.15

Fuse 1 $2.87 $2.87

LCD 1 $10.00 $10.00

Motor Driver FAN8200 1 $0.80 $0.80

Crystal Oscillator S591 1 $1.16 $1.16

Potentiometer 6P320K 1 $3.00 $3.00

Total Cost $121.25

This cost, $121.25, is in the range between the two lowest priced competing

products. The color sensor was the most expensive part in this design. If we had decided

to use the more common pH sensor, the cost would be cut significantly, but the pH leads

would have to be replaced often which would increase the price over time. The product

with the color sensor might be more expensive, but it requires little to no maintenance

and can be kept in full working condition for years.

XII. USER MANUAL

XIII. Gantt Chart

Task Name Mike Beth Both

Project Research 0 0 0 1.5 1.5

Preliminary Design Report 1 0 2 0 3

Order Parts 2 2 0 0 4

Circuit Design 4 0 0 3 7

Breadboard (Preliminary Assembly) 4 0 0 2.5 6.5

Programming 5 0 0 4 9

Preliminary Debug 6 0 0 2 8

MIL PCB 7 1 0 0 8

Debug/Testing 7 0 3 0 10

Packaging 9 1 0 0 10

Fine Tune Project 9 0 0 2 11

Report 11 0 2 0 13

Final Presentation 12 0 0 1 13

RESPONSIBILITIES

At the beginning, we had alternately divided up the responsibilities. As the

semester went on, we divided up the responsibilities based on strengths and weaknesses.

Since Mike had the most programming knowledge and experience, he was responsible

for programming the color sensor, real-time clock and user interface for the device. He

was also responsible for the physical assembly of the feeder and installing the LCD and

buttons for the enclosure. Because Beth has a less diverse programming background, she

was responsible for programming the temperature sensors and the motor for the fish

feeder. She was also responsible for soldering the components to the PCB board and the

majority of the writing.

Mike

1. Programming

- Color Sensor

- Real-Time Clock

- User Interface

2. Protel

3. Mechanical

Beth

1. Programming

- Temperature Sensor

- Stepper Motor

2. Soldering board

XIV. APPENDICIES

'**

'* Name : FishMonitor *

'* Author : Mike Arms, Beth Spalding *

'* Notice : Copyright (c) 2007 *

'* : All Rights Reserved *

'* Date : 10/9/2007 *

'* Version : 1.0 *

'* Notes : *

'* : *

'**

DEFINE LCD_DREG PORTA 'LCD data port

DEFINE LCD_DBIT 0 'LCD data starting bit 0 or 4

DEFINE LCD_RSREG PORTA 'LCD register select port

DEFINE LCD_RSBIT 4 'LCD register select bit

DEFINE LCD_EREG PORTB 'LCD enable port

DEFINE LCD_EBIT 3 'LCD enable bit

DEFINE LCD_BITS 4 'LCD bus size 4 or 8

DEFINE LCD_LINES 2 'Number lines on LCD

DEFINE LCD_COMMANDUS 2000 'Command delay time in us

DEFINE LCD_DATAUS 50 'Data delay time in us

DEFINE HSER_RCSTA 90h

DEFINE HSER_TXSTA 20h

DEFINE HSER_BAUD 9600

DEFINE HSER_SPBRG 6

DEFINE HSER_CLROERR 1

'*****ALIASES**

CS_S0 VAR PORTC.0

CS_S1 VAR PORTC.1

CS_INPUT VAR PORTC.2

CS_S2 VAR PORTA.6

CS_S3 VAR PORTA.7

CS_OE VAR PORTC.5

CS_LED VAR PORTC.6

ALERT VAR PORTB.0

LIGHT_EN VAR PORTC.7

SDA VAR PORTC.4

SCL VAR PORTC.3

i2c_read CON 1

i2c_write CON 0

i2c_out VAR BYTE

i2c_in VAR BYTE[6]

i2c_ack VAR BIT

temp VAR WORD

UP VAR PORTB.7

DOWN VAR PORTB.6

LEFT VAR PORTB.5

RIGHT VAR PORTB.4

SEL VAR PORTB.1

Position VAR BYTE

Hours VAR BYTE

Minutes VAR BYTE

'****REGISTER CONFIGURATION**************************************

OSCCON = %01100010

CCP1CON = %00000101 'Capture on rising edge

T3CON = %10000001

T1CON = %10001001

'*********************A/D Setup***

DEFINE ADC_BITS 10 ' Set A/D for 10-bit operation

DEFINE ADC_CLOCK 3 ' Set A/D clock

DEFINE ADC_SAMPLEUS 50 ' Set A/D sampling time @ 50 uS

' bit# 76543210

ADCON1 = %00001000 ' ADCON1 - A/D control reg 1

 ' bit3-0 = 0010, A/D port config, AN0-AN6 analog,

 ' bit4 = 0, VREF+ = VDD

 ' bit5 = 0, VREF- = VSS

ADCON2 = %10111110 ' bit7: right Justified

'*****PORT DIRECTION ASSIGNMENTS**********************************

TRISE.0 = 1 ' set RE1/AN5 to input for water temp reading

TRISA = %00100000 ' set all of port A output for LCD

 ' set RA5/AN4 to input for room temp reading

TRISB.0 = 0 ' B.0 is output

TRISC.2 = 1 'Input for CCP1

TRISC.7 = 0

TRISC.0 = 0

TRISC.1 = 0

TRISC.3 = 0

TRISC.4 = 0

TRISC.5 = 0

TRISC.6 = 0

TRISC.3 = 0 'SCL output

TRISB.1 = 1

TRISB.7 = 1

TRISB.6 = 1

TRISB.5 = 1

TRISB.4 = 1

'*****VARIABLES**

'********************Room temp A/D Variable Definitions********************

rsamples VAR WORD ' Multiple A/D sample accumulator

rsample VAR BYTE ' Holds number of samples to take

rtemp VAR BYTE ' room temp storage

rbinary1 VAR BYTE ' storage for binary value

rtemp1 VAR BYTE

DEG CON 223 ' write a degree mark on the LCD

rsamples = 0

'********************Water temp A/D Variable Definitions*******************

wsamples VAR WORD ' Multiple A/D sample accumulator

wsample VAR BYTE ' Holds number of samples to take

wtemp VAR BYTE ' water temp storage

wbinary1 VAR BYTE ' storage for binary value

wtemp1 VAR BYTE

wsamples = 0

H20Temp VAR BYTE 'Variable that holds the set temp

TempAdd VAR BYTE

TempAdd=$20 'Address on RTC where set temp in backed up

'********************Motor Variable Definitions***************************

steps VAR WORD ' storage for the # of steps

stepArray VAR BYTE(4) ' sets the number of available arrays

run VAR WORD ' storage for variable run

steps = 0 ' initializes the step # to zero

run = 0 ' initializes the run # to zero

'clear ' clears all registers

TRISD = %11110000 ' sets D.0,1,2 to low (output) and the rest high

'CE1 var PORTD.0

'IN1 VAR PORTD.1

'IN2 VAR PORTD.2

'CE2 VAR PORTD.3

stepArray[0] = %00001001

stepArray[1] = %00001011

stepArray[2] = %00001111

stepArray[3] = %00001101

'****CS VARIABLES***

OldCap VAR WORD

NewCap VAR WORD

PulseW VAR WORD

Red VAR WORD

Green VAR WORD

Blue VAR WORD

T3OF VAR BYTE

SampDone VAR BYTE

EN_CS VAR BIT

pH VAR WORD[2]

DONE VAR BIT

RG VAR WORD

'****RTC VARIABLES***

Address VAR BYTE

SAddR VAR BYTE

SAddW VAR BYTE

Sec1 VAR BYTE

Sec10 VAR BYTE

Min1 VAR BYTE

Min10 VAR BYTE

Hour1 VAR BYTE

Hour10 VAR BYTE

WHour VAR BYTE

WMin VAR BYTE

IAMPM VAR BIT

AMPM VAR BYTE

AlarmNum VAR BYTE

AlarmAdd VAR BYTE

i VAR BYTE

AMin1 VAR BYTE 'LCD View of Alarm Contents

AMin10 VAR BYTE

AHour1 VAR BYTE

Ahour10 VAR BYTE

AAMPM VAR BYTE

AHour VAR BYTE[4] 'Raw Alarm Data

AMin VAR BYTE[4]

rHours VAR BYTE

rMinutes VAR BYTE

EN_Alarm VAR BIT

Buttons VAR BYTE

Busy VAR BIT

'*****INTERRUPT INITIALIZATION**********************************

ON INTERRUPT GoTo IntHandler

INTCON = %11000000 ' Enable global and pir interrupts

INTCON.3 = 1 'PORTB INTERRUPT

INTCON.0 = 0 'CLEAR PORTBIF

IPR1 = %00000100 ' Set CCP to high priority

'PIE2 = %00000010 ' Enable TMR3I

'PIE1 = %00000100 ' Enable CCP1 interrupt

PIR2.1 = 0 ' Clear TMR3IF

PIR1 = %00000000 ' clear flags

'*****MAIN**

Buttons=PORTB

PORTB.0 = 1

T3OF = 0

SAddR = %10100001 'Slave Read

SAddW = %10100000 'Slave Write

EN_CS = 0 'CS Off

AlarmNum = 0 'No Alarms on Fresh Start

AlarmAdd = $10 'Address of First Alarm

EN_Alarm = 0 'Turn of Alarm Condition

Light_EN=0

DONE=0

Busy=0

Pause 2000

GoSub Init_Clock

GoSub CS_INT

'^^^

Main:

GoSub I2C_READ_TIME

GoSub WaterTemp

GoSub RoomTemp

Pause 500 ' Wait 500mS for LCD to startup

LCDOut $fe, 1 ' Clear LCD screen

Pause 1 ' Wait 1 millisecond

LCDOut $fe,$80 ' Move cursor to the beginning of the first line

LCDOut DEC1 Hour10,DEC1 Hour1,":",DEC1 Min10,DEC1 Min1,":",DEC1 Sec10,

DEC1 sec1, " "

IF AMPM == 0 Then

 LCDOut "AM"

Else

 LCDOut "PM"

EndIF

LCDOut " ",DEC2 rtemp1,DEG, "F"

LCDOut $FE,$C0

LCDOut "Water Temp=", DEC2 wtemp1,DEG, "F"

GoTo Main

'*****INITIALIZE COLOR SENSOR FOR READING***********************

CS_INT:

 PIR2.1 = 0 ' Clear TMR3IF

 PIR1 = %00000000 ' clear flags

 sampdone = 0

 CS_S0 = 0 ' Set division for 1:50

 CS_S1 = 1

 CS_S2 = 0 's2s3'---red='00', blue='01', clear='10', green='11'

 CS_S3 = 0

 CS_LED = 0

 CS_OE = 1

 Return

'**********************Room Temp Reading Loop*************************

RoomTemp:

 ADCON0 = %00010001

 Pause 10

 For rsample = 1 TO 20 ' Take 20 samples

 ADCIN 4, rtemp ' Read analog chan AN4 into rtemp var

 rsamples = rsamples + rtemp ' Accumulate 20 samples

 Pause 10 ' Wait 10ms per loop

 Next rsample

 rtemp = rsamples/20 ' divide by # of samples

 rbinary1 = rtemp ' store the number into the binary storage

 rtemp1 = (rtemp*/500)>>2

 rsamples = 0 ' Clear old sample accumulator

 Pause 75

Return

'**********************water Temp Reading Loop***************************

WaterTemp:

 ADCON0 = %00010101

 Pause 10

 For wsample = 1 TO 20 ' Take 20 samples

 ADCIN 5, wtemp ' Read analog chan AN5 into wtemp var

 wsamples = wsamples + wtemp ' Accumulate 20 samples

 Pause 10 ' Wait 10ms per loop

 Next wsample

 wtemp = wsamples/20 ' divide by # of samples

 wbinary1 = wtemp ' store the number into the binary storage

 wtemp1 = (wtemp*/500)>>2

 wsamples = 0 ' Clear old sample accumulator

 Pause 75

Return

'*****Get Color Sample***

GetSample:

 PIR2.1 = 0 ' Clear TMR3IF

 PIR1 = %00000000 ' clear flags

 pie2.1 = 1 'Turn on TMR3I

 PIE1.2 = 1 'Turn on CCPI

 Done = 0

 LCDOut $fe,1

 Pause 1

 LCDOut $fe, $80

 LCDOut "pH = "

 While Done==0

 Wend

 GoSub DisplayColors

 Buttons=PORTB 'Reading PortB will update the resting state, avoiding false

inturrupts

 INTCON.0 = 0

Return

'***Display Colors**

DisplayColors:

 'LCDOut $fe, 1 ' Clear LCD screen

 'Pause 1 ' Wait 1 millisecond

 'LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 'LCDOut "Red=", dec5 Red," ","Blue=", Dec5 Blue

 'LCDOut $fe,$c0 ' Move cursor to the beginning of the second line

 'LCDOut "Green=", dec5 Green, " "

 RG=Green/10

 IF (Red//RG)>(RG/2) Then

 RG=8*((Red/RG)+1)

 Else

 RG=8*(Red/RG)

 EndIF

 pH[0]=(RG/10)+50

 pH[1]=pH[0]//10

 pH[0]=pH[0]/10

 LCDOut DEC1 pH[0],".", DEC1 pH[1]

 Pause 2000

Return

'**********************Fish Feeding Loop*********************************

FishFeed:

 PORTD.0 = 1 ' sets portd.0 high for chip enable1

 PORTD.3 = 1 ' sets portd.3 high for chip enable2

 For run = 1 TO 5 ' step through the sequence 5 times

 GoSub motorRun ' go to the subroutine motorRun

 Pause 150

 Next run ' increment the run count

 Pause 100

 PORTD.0 = 0 ' sets portd.0 low for chip enable1 to disable

 PORTD.3 = 0 ' sets portd.3 low for chip enable2 to disable

Return

'**********************Motor Rotation Loop*******************************

' Input 1234 Output 1234

' CE1 1111 Out1 1001

' IN1 0110 Out2 0110

' IN2 0011 Out3 1100

' CE1 1111 Out4 0011

motorRun:

 Pause 100

 steps = steps + 1

 PORTD = stepArray[steps //4]

 Pause 100

 Return

 Enable

'#######I2C COMMUNICATION###

I2C_READ_TIME:

 GoSub I2C_START 'Read Time

 i2c_out=SAddW

 GoSub I2C_TX

 i2c_out=$02 'Start reading at Seconds address

 GoSub I2C_TX

 GoSub I2C_START

 i2c_out=SAddR

 GoSub I2C_TX

 ShiftIn SDA, SCL, 0, [i2c_in[0]] 'Shift in first byte MSBF

 ShiftOut SDA, SCL, 1, [%0\1] 'Send ACK = 0

 ShiftIn SDA, SCL, 0, [i2c_in[1]] 'Shift in second byte MSBF

 ShiftOut SDA, SCL, 1, [%0\1] 'Send ACK = 0

 ShiftIn SDA, SCL, 0, [i2c_in[2]] 'Shift in first byte MSBF

 ShiftOut SDA, SCL, 1, [%1\1] 'Send not acknowledge (NACK)=1

 GoSub I2C_STOP

 rMinutes = i2c_in[1] 'raw time data

 rHours = i2c_in[2]

 sec1 = i2c_in[0] & %00001111 'LCD viewable Time Format

 Sec10 = i2c_in[0] >> 4

 Min1 = i2c_in[1] & %00001111

 Min10 = i2c_in[1] >> 4

 Hour1 = i2c_in[2] & %00001111

 Hour10= (i2c_in[2] >> 4) & %00000011

 AMPM = (i2c_in[2] >> 6) & %00000001

 IF AlarmNum !=0 AND AlarmNum <5 Then

 GoSub I2C_START 'Read Alarms

 i2c_out=SAddW

 GoSub I2C_TX

 i2c_out=$10 'AlarmAdd

 GoSub I2C_TX

 GoSub I2C_START

 i2c_out=SAddR

 GoSub I2C_TX

 For i=0 TO (AlarmNum-1) 'i= 0,1,2,3

 ShiftIn SDA, SCL, 0, [Amin[i]] 'Shift in AMinutes from ADDR=$00,02,O4,6

 ShiftOut SDA, SCL, 1, [%0\1] 'Ack=0

 ShiftIn SDA, SCL, 0, [Ahour[i]] 'Shift in MHour from ADDR=$01,03,05,07

 IF i != (AlarmNum-1) Then 'Send ACK if more to read

 ShiftOut SDA, SCL, 1, [%0\1] 'Send ACK = 0 if more data to get

 EndIF

 Next i

 ShiftOut SDA, SCL, 1, [%1\1] 'Send not acknowledge (NACK)=1

 GoSub I2C_STOP

 For i=0 TO (AlarmNum-1)

 IF rHours == Ahour[i] AND rMinutes == AMin[i] AND sec1 == 0 AND sec10 == 0

Then

 GoSub FishFeed

 EndIF

 Next i

 EndIF

 IF H20Temp > WTemp1 Then

 Light_EN=1

 Else

 Light_EN=0

 EndIF

 Return

I2C_START:

 High SDA

 High SCL

 Low SDA

 Low SCL

 Return

I2C_STOP:

 Low SDA

 High SCL

 High SDA

 Pause 1

 Return

I2C_RX:

 ShiftIn SDA, SCL, 0, [i2c_in[0]] 'Shift in first byte MSBF

 ShiftOut SDA, SCL, 1, [%0\1] 'Send ACK = 0

 ShiftIn SDA, SCL, 0, [i2c_in[1]] 'Shift in second byte MSBF

 ShiftOut SDA, SCL, 1, [%1\1] 'Send not acknowledge (NACK)=1

 Return

I2C_TX:

 ShiftOut SDA,SCL,1,[i2c_out] 'Shift out "i2c_out" MSBF

 ShiftIn SDA,SCL,0,[i2c_ack\1] 'Receive ACK bit

 IF i2c_ack != 0 Then

 GoSub error

 EndIF

 Return

I2C_WRITE_TIME:

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = Address 'Start at Minutes address

 GoSub I2C_TX 'Send Address

 i2c_out = WMin

 GoSub I2C_TX

 i2c_out = WHour

 GoSub I2C_TX

 GoSub I2C_STOP

 Return

Init_Clock:

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = $00

 GoSub I2C_TX

 i2c_out = %00000000 'RTC Control Setup

 GoSub I2C_TX

 GoSub I2C_STOP

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = $08

 GoSub I2C_TX

 i2c_out = %00000000 'Alarm Control Setup

 GoSub I2C_TX

 GoSub I2C_STOP

 GoSub I2C_START 'Read Temp Backup

 i2c_out=SAddW

 GoSub I2C_TX

 i2c_out=TempAdd 'Start reading TempAdd

 GoSub I2C_TX

 GoSub I2C_START

 i2c_out=SAddR

 GoSub I2C_TX

 ShiftIn SDA, SCL, 0, [i2c_in[0]] 'Shift in first byte MSBF

 ShiftOut SDA, SCL, 1, [%1\1] 'Send not acknowledge (NACK)=1

 GoSub I2C_STOP

 H20Temp=i2c_in[0]

 GoSub I2C_READ_TIME 'Get Time and Alarms

 IF hour10 == 0 AND AMPM == 0 Then 'Set up RTC on fresh start

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = $04

 GoSub I2C_TX

 i2c_out = %10010010 'Set default time to 12:00AM

 GoSub I2C_TX

 GoSub I2C_STOP

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = $0F 'Start at AlarmNum and clear everything

 GoSub I2C_TX

 i2c_out = $00

 GoSub I2C_TX 'AlarmNum

 GoSub I2C_TX 'A1

 GoSub I2C_TX

 GoSub I2C_TX 'A2

 GoSub I2C_TX

 GoSub I2C_TX 'A3

 GoSub I2C_TX

 GoSub I2C_TX 'A4

 GoSub I2C_TX

 GoSub I2C_STOP

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = TempAdd 'Start at temperature address

 GoSub I2C_TX 'Send Address

 i2c_out = 70

 GoSub I2C_TX

 GoSub I2C_STOP

 EndIF

 AHour[0]=0 'Alway clear unknown memory contents on PIC boot

 AHour[1]=0

 AHour[2]=0

 AHour[3]=0

 AMin[0]=0

 AMin[1]=0

 AMin[2]=0

 AMin[3]=0

 GoSub I2C_START 'Read AlarmsNum backup

 i2c_out=SAddW

 GoSub I2C_TX

 i2c_out=$0F 'Point to AlarmNum backup Address

 GoSub I2C_TX

 GoSub I2C_START 'Repeat Start to read

 i2c_out=SAddR

 GoSub I2C_TX

 ShiftIn SDA, SCL, 0, [AlarmNum] 'Shift in first byte MSBF

 ShiftOut SDA, SCL, 1, [%1\1] 'Send not acknowledge (NACK)=1

 GoSub I2C_STOP

 Return

Set_Temp:

Disable

 Pause 200 ' Wait 10mS for LCD to startup

 LCDOut $fe, 1 ' Clear LCD screen

 Pause 1 ' Wait 1 millisecond

 LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 LCDOut "Water Temp <= ", DEC2 H20Temp, DEG, "F"

 repeat

 IF up == 1 Then

 Pause 50

 IF H20Temp <90 Then

 H20Temp=H20Temp+1

 EndIF

 GoTo set_temp

 EndIF

 IF down == 1 Then

 Pause 50

 IF H20Temp >65 Then

 H20Temp=H20Temp-1

 EndIF

 GoTo set_temp

 EndIF

 until Sel==1

 GoSub I2C_START

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = TempAdd 'Start at temperature address

 GoSub I2C_TX 'Send Address

 i2c_out = H20Temp

 GoSub I2C_TX

 GoSub I2C_STOP

Pause 50

Buttons=PORTB 'Reading PortB will update the resting state, avoiding false

inturrupts

INTCON.0 = 0

Enable

Return

TimeInput:

Disable

 Position = 0

 LCDOut $FE, $0F 'Blinking cursor on

Update: Pause 200 ' Wait 10mS for LCD to startup

 LCDOut $fe, 1 ' Clear LCD screen

 Pause 1 ' Wait 1 millisecond

 LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 LCDOut DEC2 Hours,":",DEC2 Minutes," "

 IF IAMPM == 0 Then

 LCDOut "AM"

 Else

 LCDOut "PM"

 EndIF

 IF Position == 0 Then

 LCDOut $FE, 2 'Return home (beginning of first line)

 LCDOut $FE, $14

 EndIF

 IF Position == 1 Then

 LCDOut $FE, 2

 For i=1 TO 4

 LCDOut $FE, $14

 Next i

 EndIF

 IF Position == 2 Then

 LCDOut $FE, 2

 For i=1 TO 6

 LCDOut $FE, $14

 Next i

 EndIF

 Repeat

 IF up == 1 Then

 Pause 50

 IF Position == 0 AND Hours < 12 Then

 Hours = Hours + 1

 Else

 IF Position == 0 AND Hours == 12 Then

 Hours = 1

 EndIF

 EndIF

 IF Position == 1 AND Minutes < 59 Then

 Minutes = Minutes + 1

 Else

 IF Position == 1 AND Minutes == 59 Then

 Minutes = 0

 EndIF

 EndIF

 IF Position == 2 AND IAMPM == 0 Then

 IAMPM = 1

 EndIF

 GoTo Update

 EndIF

 IF down == 1 Then

 Pause 50

 IF Position == 0 AND Hours > 1 Then

 Hours = Hours - 1

 Else

 IF Position == 0 AND Hours == 1 Then

 Hours = 12

 EndIF

 EndIF

 IF Position == 1 AND Minutes > 0 Then

 Minutes = Minutes - 1

 Else

 IF Position == 1 AND Minutes == 0 Then

 Minutes = 59

 EndIF

 EndIF

 IF Position == 2 AND IAMPM == 1 Then

 IAMPM = 0

 EndIF

 GoTo Update

 EndIF

 IF Left == 1 Then

 Pause 50

 IF Position == 1 Then

 Position = 0

 Else

 IF Position == 2 Then

 Position=1

 Else

 IF Position == 0 Then

 Position = 2

 EndIF

 EndIF

 EndIF

 GoTo update

 EndIF

 IF Right == 1 Then

 Pause 50

 IF Position == 1 Then

 Position = 2

 Else

 IF Position == 2 Then

 Position=0

 Else

 IF Position == 0 Then

 Position = 1

 EndIF

 EndIF

 EndIF

 GoTo update

 EndIF

 until sel==1

 LCDOut $FE, $0C

 WHour = ((Hours/10) << 4) | (Hours//10) | (IAMPM << 6) | %10000000

 WMin = ((Minutes/10) << 4)| (Minutes//10)

 GoSub I2C_WRITE_TIME

Pause 50

Buttons=PORTB 'Reading PortB will update the resting state, avoiding false

inturrupts

INTCON.0 = 0

Enable

Return

SetAlarms:

Disable

 Pause 50

 LCDOut $fe, 1 ' Clear LCD screen

 Pause 1 ' Wait 1 millisecond

 LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 LCDOut "How Many Feedings?"

 Repeat 'Wait for Select

 Pause 200

 LCDOut $fe, $c0

 LCDOut DEC1 AlarmNum

 IF up == 1 AND AlarmNum < 4 Then

 Pause 50

 AlarmNum = AlarmNum+1

 EndIF

 IF down == 1 AND AlarmNum >0 Then

 Pause 50

 AlarmNum = AlarmNum-1

 EndIF

 until Sel==1

 IF AlarmNum == 0 Then

 Buttons=PORTB 'Reading PortB will update the resting state, avoiding false

inturrupts

 INTCON.0 = 0

 Return

 EndIF

 For i=0 TO (AlarmNum-1) 'i=0,1 2 3

 Address = $10 + 2*i '$10,$12,$14,$06

 LCDOut $fe,1

 Pause 1

 LCDOut $fe,$80

 LCDOut "Feeding ", DEC1 (i+1)

 Pause 1000

 'Convert BCD

 IF Amin[i] != 0 AND AHour[i] != 0 Then 'Makes previously set alarms

viewable

 AMin1 = AMin[i] & %00001111

 AMin10 = AMin[i] >> 4

 AHour1 = AHour[i] & %00001111

 Ahour10= (AHour[i] >> 4) & %00000011

 AAMPM = (AHour[i] >> 6) & %00000001

 Minutes = AMin1+10*AMin10

 Hours = AHour1 + 10*AHour10

 IAMPM = AAMPM

 Else

 Minutes = 0 'Default Alarm Values

 Hours = 12

 IAMPM = 0

 EndIF

 GoSub TimeInput

 Next i

 GoSub I2C_START 'Backup the Number of Alarms

 i2c_out = SAddW

 GoSub I2C_TX

 i2c_out = $0F 'AlarmNum Backup Address

 GoSub I2C_TX 'Send Address

 i2c_out = AlarmNum

 GoSub I2C_TX

 GoSub I2C_STOP

Pause 50

Buttons=PORTB 'Reading PortB will update the resting state, avoiding false

inturrupts

INTCON.0 = 0

Enable

Return

error:

 Pause 500 ' Wait 500mS for LCD to startup

 LCDOut $fe, 1 ' Clear LCD screen

 Pause 1 ' Wait 1 millisecond

 LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 LCDOut "no ack received" ' Display

 Pause 500

 GoTo error

 Return

'*****INTERRUPT HANDLERS**

Disable

IntHandler:

'~~~~~CCP1~~~

IF pir1.2 == 1 AND PIE1.2 == 1 Then ' The CCP1 ISR

 PIR1.2 = 0 'Clear CCP1IF

 OldCap = NewCap

 NewCap = (CCPR1H << 8) | CCPR1L

 PulseW = Newcap - oldcap

 GoTo exitint2

EndIF

'~~~~~Timer 3~~

IF PIR2.1 == 1 AND PIE2.1 == 1 Then 'The TMR3OF ISR

 pir2.1 = 0 'Clear TMR3IF

 IF T3OF == 0 Then

 CS_S2 = 0 's2s3'---red='00', blue='01', clear='10', green='11'

 CS_S3 = 0

 CS_OE = 0

 IF SampDone == 0 Then

 Red=0

 Blue=0

 Green=0

 EndIF

 EndIF

 IF t3of == 1 Then

 CS_S2 = 0 's2s3'---red='00', blue='01', clear='10', green='11'

 CS_S3 = 1

 CS_OE = 0

 EndIF

 IF t3of == 2 Then

 CS_S2 = 1 's2s3'---red='00', blue='01', clear='10', green='11'

 CS_S3 = 1

 CS_OE = 0

 EndIF

 IF T3OF == 1 Then

 red = PulseW+Red

 EndIF

 IF t3of == 2 Then

 Blue = PulseW+Blue

 EndIF

 IF t3of == 3 Then

 Green = Pulsew+Green

 EndIF

 IF t3of == 3 Then

 IF sampdone = 1 Then

 PIE1.2 = 0 'Turn off CCP1

 PIE2.1 = 0 'turn of TMR3I

 SampDone=0

 T3OF=0

 Red=Red

 Green=Green

 Blue=Blue

 CS_OE=1

 DONE=1

 Else

 t3of = 0

 sampdone = sampdone + 1

 EndIF

 Else

 t3of = t3of + 1

 EndIF

 GoTo exitint2

EndIF

'+++++TIME/ALARM/Color Sensor+++++++++++++++++++++++++++++++++++

IF INTCON.0 == 1 AND Busy==0 Then

 Buttons=PORTB

 Buttons=Buttons>>4

 INTCON.0 = 0

 IF Buttons==%00000001 Then 'right

 Pause 200

 GoSub fishfeed

 GoTo exitint

 EndIF

 IF Buttons==%00000010 Then 'left

 Pause 200

 GoSub GetSample

 GoTo exitint

 EndIF

 IF Buttons==%00001000 Then 'up

 Pause 200

 Busy=1

 GoSub options

 Busy=0

 GoTo exitint

 EndIF

 IF Buttons==%00000100 Then 'down

 Pause 200

 Busy=1

 GoSub set_temp

 Busy=0

 GoTo exitint

 EndIF

 GoTo exitint 'no match

options:

 Pause 10 ' Wait 10mS for LCD to startup

 LCDOut $fe, 1 ' Clear LCD screend

 Pause 1 ' Wait 1 millisecond

 LCDOut $fe,$80 ' Move cursor to the beginning of the first line

 LCDOut "<=Clock | Feedings=>" ' Display

 LCDOut $fe,$c0 ' Move cursor to the beginning of the second line

 LCDOut "Select to Exit"

 Pause 250

 repeat

 IF right == 1 Then 'Set Feeding Alarm

 Pause 50

 GoSub SetAlarms

 GoTo endoptions

 EndIF

 IF left == 1 Then 'Set Clock

 Pause 50

 Address = $03

 Minutes = Min1+10*Min10

 Hours = Hour1 + 10*Hour10

 IAMPM = AMPM

 GoSub TimeInput

 GoTo endoptions

 EndIF

 until sel == 1

endoptions:

Return

EndIF

exitint:

 Pause 500

 Buttons=PORTB

 INTCON.0 = 0

exitint2:

'__

Resume

Enable

