

EEL4914 Senior Design
Final Design Report

April 21, 2009

Project Title: Integrated Car Anti-Theft System (ICATS)
Team Name: SQAN

Submitted by:
Angelique Dawkins
adawkins@ufl.edu

Tyler Schlichter
slick@ufl.edu

Project Abstract:

The goal of this project was to prevent vehicle theft through a car alarm system. The
system has a user interface that allows the owner to arm and disarm the vehicle with a 4
digit code, and if in armed mode ultrasonic sensors will detect if someone has entered the
car. An alarm will then sound, as well as notify the owner of the car via cell phone, and
take pictures of the criminal.

Table of Contents

Project Abstract:.. 1
Table of Contents.. 2
List of Tables and Figures... 3
Project Features/Objectives .. 4
Analysis of Competitive Projects.. 5
Concept/Technologies... 6
Project Architecture .. 7
Flowcharts... 8
Final Division of Labor... 9
Bill of Materials .. 10
Gantt Chart.. 11
Appendices.. 12
 Appendix A: PICBasic Code .. 13
 Appendix B: Camera Code ... 24

List of Tables and Figures

Table 1: Division of Labor.. 9
Table 2: Bill of Materials.. 10

Figure 1: System Level Block Diagram.. 7
Figure 2: User Interface Code Flowchart.. 8
Figure 3: Gantt Chart .. 10

Project Features/Objectives

 Arming and Disarming – The car owner will be able to arm or disarm the system
through the LCD and keypad interface with a four digit code. While disarmed,
none of the peripherals will be activated. In armed mode, the system will
constantly check the A/D input from the sensor to detect a break-in.

 Detecting car entry – Using an ultrasonic sensor to determine the presence of

someone in the vehicle. Because the user interface would be located in the door of
the car and a person has to physically get into the car to trigger the alarm, this will
allow the car owner to arm and disarm the system without setting the alarm off.

 Alarm – The system will use a “quiet” alarm, one that will relay a message and be

clear and audible to whoever is in the immediate vicinity of the car, but will not
disturb others who are far away.

 Pictures – When the car alarm is activated, a camera located in the vehicle will

begin immediately snapping pictures of the interior. This can be used at a later
time to identify the thief.

 Cell phone interfacing – When the alarm is triggered, the system will send a text

to the user’s phone indicating that a break-in is occurring.

 Powered independently of car circuitry – The entire system is run off of batteries
that are independent of the car battery. This will ensure that the car battery is not
drained and that tampering with the internal circuitry of the car will not affect the
system.

Analysis of Competitive Projects

Due to the unique nature of this project, there is no other car alarm system that
accomplishes the exact same goals as ICATS. In order to prevent vehicle detection,
pricier car alarm systems that can be bought and integrated with the car allow the owner
to monitor many aspects of the vehicle through remote, but these systems all have a
specified range and will not work outside of that. For ICATS, while the system does not
allow for remote monitoring in this way, if a break-in occurs the car owner will be
notified via cell phone even outside a range of several miles. The following are some
state-of-the-art car alarm systems:

Viper 5901 Responder LC3 SuperCode SST 2-Way Security and Remote Start
System ($649.99):

Comes with a portable remote with LCD screen,
and has a 1 mile range. Lets the car owner know the
current temperature inside the car, allows the owner
to disable the alarm to only get alerts via remote,
and displays alerts if anything happens to the car, all
if the owner is within the 1 mile range.

Commando FM-870 Remote Car Starter, Car Alarm with 2-Way FM Pager
($169.99):

This product comes with a portable remote with
LCD screen, and allows the car owner to remote
start the car, monitor car doors and the hood and
trunk, and if the vehicle is experiencing any hard
impacts. The system works if the remote is within
the 2500 foot range.

Concept/Technologies

The main parts chosen for use in this project were an ultrasonic sensor, the PIC
microprocessor, LCD and keypad for the user interface, camera, cell module, and the
voice record chip.

The sensor chosen for this project was the Ultrasonic Range Finder
– Maxbotix LV-EZ0. This particular model was chosen because it
had the widest cone of detection of the Maxbotix products, which
was good for sensing people. While originally a vibration sensor
was going to be used to sense window break-ins, the ultrasonic
sensor would be able to cover any scenario where a car thief would
actually enter a car.

The cell module used in this project was the GM862 Cellular
Quad Band Module. It has a wide range of capabilities that were
useful for this project, including texting, making calls, and a GPS
system. Because it is cell phone technology, it allows the entire
system to be effective even if the car owner is miles away from
the car since they will still receive text alerts.

The ISD25120P chip was used to record messages to be played as the alarm. This was
used as opposed to text-to-speech chips for ease of use in recording different messages
and to have a realistic sounding voice as the alarm.

The camera small enough to be placed and hidden in the car, and had the ability to take
rapid pictures, as well as record video.

For the user interface, a four line LCD and keypad were chosen. The larger LCD was
needed to provide a more user-friendly interface and to have more space to display
menus, while the keypad was needed to receive input for added security.

The microprocessor chosen for the project was the 40 pin PIC18F4620 because of ease of
programming, the wide array of functions it possessed, and the large number of pins
which made it easier to control all peripherals from the same chip. It is able to be run
anywhere from 2 to 5.5 V and possesses 36 I/O lines and a 10 bit A/D converter.

Project Architecture

Figure 1: System Level Block Diagram

The PIC18F4620 takes input from the keypad and displays it on the LCD as part
of the user interface. Through the keypad, the user is able to input a 4 digit code to arm
and disarm the system. The code is stored in the PIC’s EEPROM memory so that even
when the power is turned off the code will not be erased. If the system is set to armed,
after a 10-second delay the system PIC will start reading A/D input from the ultrasonic
sensor. If the result of the A/D conversion falls below a set threshold, that means a person
has been detected. The PIC will then immediately set the appropriate output ports high to
turn on the camera, cell module, and voice record chip. The camera will then begin
snapping pictures at pre-set intervals set in code, the cell module will immediately send a
text, and the voice record chip will turn on and play the pre-recorded message through the
set of speakers over and over again. At any time during this sequence, the user may enter
the 4 digit code through the keypad to set the system to disarm. Once disarmed, all of the
peripherals will turn off.

Ultrasonic
Sensor

PIC
18F4620

Camera

Cell
Module

Cell
Phone

LCD

Keypad SpeakersVoice
Record
Chip

 Flowcharts

Asks user for first
code and stores in
EEPROM memory

Yes

System Turned On

No

Disarmed Subroutine:
All external components
turn off. Waits for user
input.

Button
pressed?

No

* Button
pressed?

No Yes

Is a code in
memory
already?

Asks user for the 4
digit code already
in memory

Code
correct?

Yes

Asks user for new
code and stores it
in memory

Yes

After the 3rd time
if still incorrect,
returns to disarm
subroutine

No

Code
correct?

Returns to
disarmed
subroutine

No Yes

Goes to Armed
subroutine. Receives A/D
input from sensor and
waits for user input.

Figure 2: User Interface Code Flowchart

Final Division of Labor

Table 1: Division of Labor
Item Angelique Dawkins Tyler Schlicter
Ultrasound sensor integration with
microprocessor, and A/D
conversion code 100% 0
Cell module coding, design with
system, and PCB design 0 100%
Camera coding, camera board
PCB design 0 100%
Voice chip coding and integration
with amplifiers and speakers,
message recording, and PCB
design 100% 0
User interface coding, coding for
arm/disarm modes, and PCB
layout for LCD and keypad 100% 0
Fabrication of housing to enclose
and present project 0 100%

Bill of Materials

Table 2: Bill of Materials

Item Cost/Unit Quantity Total
LCD $19.99 1 $19.99
Keypad $13.66 1 $13.66
Microprocessor $7.50 2 $15.00
LM386 amplifier $1.09 1 $1.09
4 Ohm Speaker $7.85 2 $15.70
Cell Module $120.00 1 $120.00
Ultrasound Sensor $27.95 1 $27.95
Camera $25.00 1 $25.00
Miscellaneous $50.00 1 $50.00
Total $288.39

Gantt Chart

Project ICATS
Angelique and Ty

7-
Ja

n-
09

21
-Ja

n-
09

4-
Feb

-0
9

18
-F

eb
-0

9

4-
M

ar-
09

18
-M

ar-
09

1-
Apr

-0
9

15
-A

pr
-0

9

Research (both)

Order/Acquire Parts (both)

Sensor Circuitry Build & Test
(Angelique)

A/D Conversion (Angelique)

Camera Circuitry Build & Test(Ty)

Cell Module Circuitry Build &
Test(Ty)

Voice Alarm - Build/Test (Angelique)

Whole System Testing (both)

PCB Board/ Final Tests (both)

Prepare for Final Presentation/ Demo

Main Task Extension

Figure 3: Gantt Chart

Appendices

Appendix A: PICBasic Code

'Keypad Arm/Disarming Code

'LCD Definitions
DEFINE LCD_DREG PORTC 'define lcd data ports RC0:3
DEFINE LCD_DBIT 0
DEFINE LCD_RSREG PORTC 'define lcd register select port RC4
DEFINE LCD_RSBIT 4
DEFINE LCD_EREG PORTC 'define lcd enable port RC5
DEFINE LCD_EBIT 5
DEFINE LCD_BITS 4 'lcd bus size = 4
DEFINE LCD_LINES 4 'lcd lines = 4
DEFINE LCD_COMMANDUS 2000 'command delay time

'A/D Definitions
TRISA.0 = 1 'setting AN0 as an analog input
TRISA.1 = 0 'setting AN1 as an output (digital)
ADCON1 = %00001110 'AN0 is the only analog port on PortA
ADCON0 = %00000001 'enables the A/D converter
ADCON2 = %00000111 'left justified, 0 TAD, and clock using A/D RC

 'oscillator of frequency 1 Mhz
result var byte 'result of A/D conversion
OSCCON = %00000000 'setting for external crystal

'Voice Circuit Pin definitions
TRISA.2 = 0
TRISA.3 = 0
TRISA.4 = 0
TRISA.5 = 1

M3 var porta.4
PD var porta.2
CE var porta.3
EOM VAR porta.5
P_R var porta.1
high ce
low m3

'Other Variable Definitions
ref var byte[4] 'value of code to be stored in memory
new_ref var byte[4] 'value of code to be read from memory
enter var byte [4] 'code to be entered to arm/disarm system
check var byte 'variable to count when code stored in memory
check = 0 'matches the one entered
i var byte
i = 0
lcd var byte[2] 'variable to keep values displayed on the same

'line
lcd = $D4
countdown var byte 'to be used for arming countdown
count_wrong var byte
count_wrong = 0
TRISD.4 = 1

'Reads values from memory to determined if this is first time entering
'a code
EECON1.0 = 0 'enables a read
for i = 0 to 3
 pauseus 50
 read i, ref[i] 'reads all four values of the code from
memory
 pause 15
next i

if (ref[0] == 255 and ref[1] == 255 and ref[2] == 255 and ref[3] = 255)
then
 change:

 lcdout $fe, $80 'if there was no previous code entered, then enter
 lcdout " Enter new 4 digit" 'a code to start
 lcdout $fe, $c0 'happens when chip is reprogrammed
 lcdout " code:"
 pause 500
 gosub write_code_to_mem 'goes to subroutine which will value of code

 'in memory
 lcd = $D4
 else
 goto disarmed
 endif

'disarmed subroutine disables appropriate functions and waits to arm
disarmed:

 low PORTB.7 'turning off all ports
 low PORTB.6
 low PORTB.5
 low PORTB.4
 low PORTB.3
 low PORTB.2
 HIGH PD 'and ends recording

lcdout $fe, 1
lcdout $fe, $80
lcdout " System Disarmed"
lcdout $fe, $c0
lcdout "Press * to change"
lcdout $fe, $94
lcdout "code or # to arm "
lcdout $fe, $D4
lcdout " system "

keycheck2:
count_wrong = 0
if PORTD.4 == 1 THEN
 select case PORTD 'option to press * or # key
 case $13
 lcdout "*"
 pause 300

 old_passcode: 'user must enter old password
 lcdout $fe, 1 'to create a new one
 lcdout $fe, $80
 lcdout " Enter old passcode:"

 gosub get_code

 lcd = $D4
 EECON1.0 = 0 'enables a read
 for i = 0 to 3
 pauseus 50
 read i, new_ref[i] 'reads code from
 pause 15 'memory
 if (new_ref[i] == enter[i]) then
 check = check+1 'compares entered code to one stored in

 'memory
 endif
 next i

 if (check == 4) then
 check = 0 'if code is right, user can enter a
 lcdout $fe, 1 'new passcode
 goto change 'if entered code is wrong, then loops
 else 'again. however, if user tries 3
 count_wrong = count_wrong + 1 'times to enter it and gets

 'it wrong
 if (count_wrong < 3) then 'goes back to beginning of

 'subroutine
 check = 0

 goto old_passcode
 else
 check = 0
 goto disarmed
 endif
 endif
 case $17 'if * key is pressed
 lcdout "#"
 pause 300 'goes to subroutine to enter pin if #
 lcdout $fe, 1 'key is pressed
 goto enter_code
 case else
 goto keycheck2
 end select
ELSE
 GOTO keycheck2
endif

enter_code:
lcdout $fe, 1
lcdout $fe, $80
lcdout "Enter 4 digit code:"

gosub get_code 'goes to sub for user to enter a 4 digit code
 'can only be the numbers 0 to 9
lcd = $D4
EECON1.0 = 0 'enables a read

for i = 0 to 3
 pauseus 50
 read i, new_ref[i] 'reads code from
 pause 15 'memory
 if (new_ref[i] == enter[i]) then
 check = check+1 'compares entered code to one stored in
memory
 endif
next i

if (check == 4) then
 check = 0
 goto armed 'if entered code is wrong, then
loops
else 'until right code is entered
 check = 0
 goto disarmed
endif

return

'armed subroutine enables appropriate pins and waits to disarm
armed:
lcdout $fe, 1
countdown = 10

for i = 0 to 9 'a 10 second delay once the system is set to on
lcdout $fe, $80
lcdout " System will arm in:"
lcdout $fe, $c0
lcdout " ", #countdown
pause 1000
countdown = countdown - 1
lcdout $fe, 1
next

armed_2:

lcdout $fe, 1
lcdout $fe, $80
lcdout " System Armed"
lcdout $fe, $c0
lcdout "Enter code to disarm"

gosub get_code_and_AtoD 'goes to subroutine where user can enter 4
digit code

lcd = $D4
EECON1.0 = 0 'enables a read
for i = 0 to 3
 pauseus 50
 read i, new_ref[i] 'reads code from
 pause 15 'memory

 if (new_ref[i] == enter[i]) then
 check = check+1 'compares entered code to one stored in
memory
 endif
next i

if (check == 4) then
 check = 0
 goto disarmed 'if entered code is wrong, then loops
else 'until right code is entered
 check = 0
 goto armed_2

endif

return

'main A/D subroutine
Main_A_D:

ADCON0.1 = 1 'turns Go/Done bit high
 'to start conversion process

conversion:
pause 5

if ADCON0.1 == 1 then 'while GO/DONE bit is high, keep converting
 goto conversion 'when bit goes low, stop and return
endif

result = 0
result = ADRESH ‘reads result from high address register to only get

'8 bits

return

'below are all keypad subroutines to get and/or write data to PIC
memory
get_code:

 PAUSEUS 50

 for i = 0 to 3

 keycheck6:
 if PORTD.4 == 0 THEN keycheck6
 if PORTD.4 == 1 THEN
 select case PORTD
 case $10
 pauseUS 50
 enter[i] = 1
 lcdout $fe, lcd, "1"
 pause 200

 case $18

 pauseUS 50
 enter[i] = 2

 lcdout $fe, lcd, "2"
 pause 200

 case $14
 pauseUS 50
 enter[i] = 3

 lcdout $fe, lcd, "3"
 pause 200

 case $12
 pauseUS 50
 enter[i] = 4

 lcdout $fe, lcd, "4"
 pause 200

 case $1a
 pauseUS 50
 enter[i] = 5

 lcdout $fe, lcd, "5"
 pause 200

 case $16
 pauseUS 50
 enter[i] = 6

 lcdout $fe, lcd, "6"
 Pause 200

 case $11
 pauseUS 50
 enter[i] = 7

 lcdout $fe, lcd, "7"
 pause 200

 case $19
 pauseUS 50
 enter[i] = 8

 lcdout $fe, lcd, "8"
 pause 200

 case $15
 pauseUS 50
 enter[i] = 9

 lcdout $fe, lcd, "9"
 pause 200

 case $1b
 pauseUS 50

 enter[i] = 0

 lcdout $fe, lcd, "0"
 pause 200

 case else
 goto keycheck6
 end select
ELSE
 GOTO keycheck6

 endif

 lcd = lcd + 1
next i

return

get_code_and_AtoD:

 pauseUS 50

 for i = 0 to 3

 keycheck3:

 gosub Main_A_D

 if (result < 7) then

 high PORTB.7 'set extra pins high
 HIGH PORTB.6
 HIGH PORTB.5
 HIGH PORTB.4
 HIGH PORTB.3
 HIGH PORTB.2

 low pd
 pause 25
 high P_r
 pause 25
 PULSOUT ce, 50
 pause 50
 high M3
 play:
 if (Eom == 1) then

 ' lcdout $fe, $80
 ' lcdout "Playing..."
 pause 200
 gosub Main_A_D

 if (PORTD.4 == 0) then
 goto play

 else
 'lcdout $fe, 1
 GOTO KEYCHECK4
 endif

 endif

 endif

 if PORTD.4 == 0 THEN keycheck3

 keycheck4:
 if PORTD.4 == 1 THEN
 select case PORTD
 case $10
 pauseUS 50
 enter[i] = 1
 lcdout $fe, lcd, "1"
 pause 200

 case $18
 pauseUS 50
 enter[i] = 2

 lcdout $fe, lcd, "2"
 pause 200

 case $14
 pauseUS 50
 enter[i] = 3

 lcdout $fe, lcd, "3"
 pause 200

 case $12
 pauseUS 50
 enter[i] = 4

 lcdout $fe, lcd, "4"
 pause 200

 case $1a

 pauseUS 50
 enter[i] = 5

 lcdout $fe, lcd, "5"
 pause 200

 case $16
 pauseUS 50
 enter[i] = 6

 lcdout $fe, lcd, "6"
 Pause 200

 case $11
 pauseUS 50
 enter[i] = 7

 lcdout $fe, lcd, "7"
 pause 200

 case $19
 pauseUS 50
 enter[i] = 8

 lcdout $fe, lcd, "8"
 pause 200

 case $15
 pauseUS 50
 enter[i] = 9

 lcdout $fe, lcd, "9"
 pause 200

 case $1b
 pauseUS 50
 enter[i] = 0

 lcdout $fe, lcd, "0"
 pause 200

 case else
 goto keycheck3
 end select
ELSE
 GOTO keycheck3

 endif

 lcd = lcd + 1
next i

return

write_code_to_mem:

 pauseUS 50

 for i = 0 to 3

 keycheck5:
 if PORTD.4 == 0 THEN keycheck5
 if PORTD.4 == 1 THEN
 select case PORTD
 case $10
 pauseUS 50
 ref[i] = 1
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "1"
 pause 200

 case $18
 pauseUS 50
 ref[i] = 2
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "2"
 pause 200

 case $14
 pauseUS 50
 ref[i] = 3
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "3"
 pause 200

 case $12
 pauseUS 50
 ref[i] = 4
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "4"
 pause 200

 case $1a
 pauseUS 50
 ref[i] = 5
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "5"
 pause 200

 case $16
 pauseUS 50

 ref[i] = 6
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "6"
 Pause 200

 case $11
 pauseUS 50
 ref[i] = 7
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "7"
 pause 200

 case $19
 pauseUS 50
 ref[i] = 8
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "8"
 pause 200

 case $15
 pauseUS 50
 ref[i] = 9
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "9"
 pause 200

 case $1b
 pauseUS 50
 ref[i] = 0
 write i, ref[i]
 pause 15
 lcdout $fe, lcd, "0"
 pause 200

 case else
 goto keycheck5
 end select
ELSE
 GOTO keycheck5

 endif

 lcd = lcd + 1
next i

 return

Appendix B: Camera Code

' -----[I/O Definitions]---
 shutter VAR PortC.4
 power VAR PortC.6
 tripped VAR PortD.1
 sys_arm VAR PortD.2

' -----[Constants]---
 i VAR BYTE

' -----[Program Code]--

Main:
 i = 1
 Low tripped
 Low shutter
 Low power
 low sys_arm

 TRISC.4 = 0 'set PortC.4 to an output
 TRISC.6 = 0 'set PortC.6 to an output
 TRISD.1 = 1 'set PortD.1 to an input
 TRISD.2 = 1 'set PortD.2 to an input

 GoSub LCD_Initialize
 LCDOut "Welcome To The"
 Pause 1000
 LCDOUT $FE, $C0 'Cursor to beginning of 2nd line
 LCDOUT "Camera Program"

armed:
IF sys_arm then
 goto check_sensor
 else
 goto armed
 endif

check_sensor:
 IF tripped Then
 pulsout power, 500
 GoSub LCD_Initialize
 LCDOut "Alarm Actived"
 Pause 2000

 Loop:
 For i = 1 TO 5
 Pulsout shutter, 500
 GoSub LCD_Initialize
 LCDOut "Picture Taken"
 Pause 500
 Gosub LCD_Initialize
 LCDOUt "Between snapshots"
 Pause 8000
 Next i

 Else
 GoTo check_sensor

 EndIF

End

 ' -----[Subroutines]---

LCD_Initialize:
 LCDOut $fe, 1 'clear screen
 Pause 500
 LCDOut $fe, $80 ' cursor to beginning of first line
 Return
' --

