

EEL 4924 Senior Design, Spring 2012
Final Report

April 25, 2012

FPGA NES

Submitted by:
Art King

art.king@ufl.edu
352-263-1403

2

Table of Contents

Table of Figures .. 2

Project Summary .. Error! Bookmark not defined.

Background ... 4

Prior Art .. 4

Technical Objectives ... 5

Core Functional Description ... 5

Technology Selection.. 7

Hardware ... 10

Software .. 13

References ... 16

TABLE OF FIGURES

Figure 1 Abbreviated FPGA NES system-level block diagram. ... 5

Figure 2 Nintendo Entertainment System block architecture. .. 6

Figure 3 System core and audio/video block architecture. ... 8

Figure 4 Power regulation block architecture. .. 9

Figure 5 Consolidated PCB layer masks... 10

Figure 6 3D representation of PCB design with most components modeled. 11

Figure 7 Assembled hardware with top of enclosure removed to expose PCB. 12

Figure 8 Block diagram of communication between microcontroller and Bluetooth module.. 13

Figure 9 Simplified block representation of synthesized subsystems....................................... 14

3

ABSTRACT
The goal of this project is to design a stand-alone emulator of the Nintendo Entertainment

System video gaming platform whose major architecture is based primarily around a modern

programmable logic device in conjunction with additional external peripheral components. The

design will include a FPGA core developed in VHDL, video and audio output, and human

interface controller. A simple pong demo is written to demonstrate basic system functionality.

4

BACKGROUND
Emulation of the Nintendo Entertainment System is a popular pastime amongst hobbyists

and hackers alike. However, the overwhelming bulk of community effort has been placed on

high-level software approaches—without a doubt driven by the relative accessibility of software

development tools vs. a hardware approach—relying on observations made from community

reverse engineering efforts to incorporate “soft hacks” that replicate the many nuances and

quirks of the original system, let alone basic functionality. Furthermore, the multiple layers of

abstraction that software emulators must incorporate introduces real-time errors that are difficult

to compensate for without direct register transfer level manipulation. The approach this project

will take is to use existing reverse engineered documentation available throughout the web to

synthesize a low-level emulator on a FPGA and to integrate all the necessary peripherals needed

to support such a design.

PRIOR ART
 As of writing, there are several known projects that have successfully emulated the NES

using a FPGA as its core. Of these, three projects are noted to have given a fair general top-level

description and are worth noting:

 Kevin Horton – developed on a custom 2-layer Altera Cyclone I platform [1].

 Dan Leach – developed in VHDL on a Altera UP3 development board as part of a

Master’s project at Bradley University [2].

 Dan Strother and Brent Allen – developed in VHDL as undergraduates at Washington

State University; Dan has since expanded the project with numerous enhancements on a

Digilent Nexys development board based on a Xilinx Spartan-3E and has ported a large

section of his original code to Verilog [3].

This project will differ from the above known attempts in that 1) a modular prototype will be

consolidated into a single multi-layer design whilst facilitating future expansion and

development, and 2) a modern 60-nm technology node FPGA will serve as the system’s

programmable core, and 3) a Nintendo Wii controller will be integrated into the design as the

primary user interface.

5

TECHNICAL OBJECTIVES
The intent of this project is to encapsulate multiple facets of electrical engineering in a

single design, emphasizing techniques in FPGA development, PCB design for high-speed signal

integrity, microcontroller integration, and analog design. Figure 1 depicts a basic system-level

block diagram of interaction between major components. Since a modular design has already

been prototyped and tested, the next goal will be to attend to previously unforeseen limitations

and consolidating the segmented design into a single multi-layer PCB encased in a proper

enclosure, with the only external devices needed being a standard AC/DC power adapter, game

controllers, external display and speakers.

Figure 1 Abbreviated FPGA NES system-level block diagram.

CORE FUNCTIONAL DESCRIPTION
The Nintendo Entertainment System functions around two main chips: a Ricoh 2A03 and

Ricoh 2C02 [5], as shown in Figure 2. The 2A03 can be thought of as the “brains” of the system,

an ASIC containing a MOS Technology 6502 processing core with its binary coded decimal

arithmetic functions disabled, and a custom pseudo-Audio Processing Unit integrated as a

memory-mapped peripheral subsystem to the core. The 6502 is responsible for processing data

stored in an external cartridge, interpreting controller input, and sending image data to the 2C02;

the pAPU is responsible for producing five analog audio channels—two pulse waves, one

6

triangle wave, one white noise, and one differential PCM) which are mixed to produce all game

sound.

The 2C02 is a custom chip developed by Ricoh dedicated to processing image data

received from the 6502 and produces 256×240 pixel resolution video in NTSC format; the actual

displayed image is slightly reduced as a byproduct of NTSC formatting, which eliminates the

upper and lower 8 scanlines for an effective visible area of 256×224 pixels. Due to the limited

address mapping capability of the 6502, most cartridges were equipped with on-board memory

map controllers for bank switching in the case where the game being played required more than

the 32KB of program ROM that the 6502 could map to at any given time.

Figure 2 Nintendo Entertainment System block architecture.

The Nintendo Wii is a modern gaming system and immediate successor of the

GameCube. Of particular interest is not the system itself, but the means in which humans interact

with the system—the Wii controller, informally known as the wiimote. This controller is unique

in that a conjunction of wireless technology and a host of on-board sensors are integrated to

invoke a user experience that is unlike any other commercial implementation. Typically,

manufacturers encode wireless signals in such a way that inhibits control and direct access to the

raw data stream to anything other than the original system that it is intended to function with.

7

However, in the case of the wiimote, no such encoding is implemented, allowing a motivated

hacker the opportunity to incorporate this unique, mass-produced, and relatively inexpensive

piece of hardware into his/her design.

TECHNOLOGY SELECTION
The highlighted blocks shown in Figure 3 will compose the main core of the system. An

Altera Cyclone IV FPGA was chosen to implement the bulk of the architecture. Despite being

comparatively more expensive than an equivalent or better offering from Xilinx (in particular,

the Spartan-6 class), the Cyclone IV was chosen due to availability of development tools. Since

the FPGA is SRAM-based, and due to the required internal block RAM needed to synthesize the

architecture, a 4Mbit configuration device will be integrated into the design; this enables both in-

circuit serial programming of the configuration device for automatic power-on configuration and

direct JTAG programming of the FPGA to speed up development. It is the author’s intent to

eventually migrate the completed architecture to reap the benefits of a Xilinx Spartan-6,

however, that endeavor is beyond the scope of this project’s objective. Another decision driving

the selection of this particular FPGA is supply availability of an acceptable prototype package: a

144-pin QFP. Despite BGA packages being more prevalent and often cheaper, it was neither

economically feasible nor time permitting to incorporate such a package into a prototype design

due to the necessity of test equipment necessary to both mount the device and inspect for

potential short circuits. Furthermore, the fine ball pitch of such devices would require trace width

and via tolerances that bordered the minimum requirements of the chosen board manufacturing

house.

Bluetooth module selection was directly driven by proprietary firmware capability; all

other factors, including cost, were secondary at best and did not directly contribute to the success

of integration. Several modules were tested for compatibility and it was ultimately determined

that the Bluegiga WT12 was an ideal candidate for several reasons to be discussed. This device

is a surface mount integrated RF module whose components are hidden beneath a ground shield

with the exception of a built-in ceramic chip antenna.

Although multiple microcontrollers were tested, the ultimate factor which drove selection

was package and pin layout. A TI MSP430 in SOP38 package was tested successfully and was

able to perform the relatively simple tasks that it was assigned to do, however, it was anticipated

that the pinout of the device would complicate routing due to the inflexibility of multiplexed pins

and asymmetrical programming pin layout. A QFP Atmel AVR was ultimately selected to

perform peripheral microcontroller duties for several reasons: 1) it allowed the writer to gain

experience in developing a different device, and 2) price was significantly lower, and 3) Atmel

8

chips tend to map their device pins in such a way that is symmetrically appealing for board

layout and prototyping.

Figure 3 System core and audio/video block architecture.

For producing audio, a solution was attempted in which “jellybean” op amps and discrete

filtering would be employed. However, it was later determined that a much cheaper solution can

be had with lower component count while still achieving acceptable sound quality. A National

LM4876 was chosen as the main device for audio amplification. This device was selected due to

its purpose-designed topology intended for audio amplification, single-supply operation, stability

at unity gain, and not requiring an output coupling capacitor to filtering out the DC component

(which could in itself cost as much—if not more—than the amplifier itself). Since the original

Nintendo did not have such stringent audio requirements and produced simple “synthetic”

sounds, this was an ideal choice. To insure that clipping does not occur, a trimming

potentiometer is also integrated for manual adjustment. Audio output is wired to a standard

3.5mm TRS jack for compatibility with off-the-shelve desktop stereo speakers that are typically

used with computers.

The primary means of generating video was through standard VGA. Although a chip

solution could have been pursued, this would have added unnecessary complexity and cost to the

9

prototype. Thus, it was easily settled that a R-2R DAC using 1% precision resistors would be

implemented. Although multiple resistors would be necessary to implement this design, this

nevertheless simplifies layout and reduces component count since only two carefully selected

values are needed. This also gave the writer the flexibility of simultaneous impedance matching

to ensure that voltage swing remains below the prescribed level.

Figure 4 Power regulation block architecture.

The power section shown in Figure 4 will consist of the appropriate step-down and

regulation circuitry needed to power all devices within the system. This segment of design is

critical in that it must be capable of sourcing all voltage levels necessary for the main FPGA and

all peripheral components. A 5V, 2.5A wall switching supply will provide main power to be

stepped down and regulated. Although it not expected that the system will require more than

1.5A at any given time for this design, a 2.5A main source was chosen to allow for future

expansion as necessary. The first stage regulator is a National LM2853 Buck regulator which

will step down 5V to 3.3V for use by the FPGA I/O banks. This Buck regulator is capable of

sourcing as much as 3A and will be sufficient to handle future peripheral expansion. The 3.3V

output from the LM2853 will then be sent to a National LM26420 dual Buck regulator. The first

channel will step down 3.3V to 1.2V for FPGA core switching. The second channel will step

down 3.3V to 2.5V explicitly for the FPGA’s analog PLL rail, which must be powered regardless

of its use. Each channel is capable of providing 2A of current, with the higher load expected to

come from the 1.2V rail. Both regulators switch at a nominal frequency of 550kHz and

incorporate synchronous rectification, providing a reasonable compromise between reducing

10

board real estate and maximizing efficiency. Due to the inherent sensitivity of switching

regulators, a high level of attention to detail must be placed on PCB to ensure clean power and to

minimize the effects of electromagnetic interference, in particular, from the digital devices on the

core section of the system. It will also be necessary to filter rails which will provide power for

sensitive segments, in particular, the 2.5V analog PLL rail used by the FPGA. Furthermore, a

National LM3940 LDO regulator is also integrated to better isolate heavy FPGA I/O switching

from the microcontroller and Bluetooth module.

HARDWARE

Figure 5 Consolidated PCB layer masks.

11

 Figure 5 depicts the final PCB layer masks of the hardware design. The board cutout

itself is intended to be a drop-in for a Serpac A31 enclosure whose front and rear panels are

modified to accommodate protruding components for interfacing with external devices. Since the

original layout was prototyped on three separate PCBs, it was anticipated that component density

would be greater (although manageable). This had the potential to cause serious noise coupling

issues, so care was taken to the best of the writer’s knowledge to reduce this possibility by

incorporating ground nodes around each sensitive device, which was then liberally stitched to an

inner ground plane. Prior to having the multi-layer board manufactured, an attempt at basic 3D

modeling was performed to gauge component placement and pre-emptively visualize the final

product, as shown in Figure 6 below. 3D modeling was an important aspect of the design process

as it enabled to writer to visual inspect component clearances prior to manufacturing, which

reduced the possibility of have to spin multiple iterations for minor discrepancies that can be

easily corrected. A few components were not included in this model, however, sufficient room

was allocated for these components.

Figure 6 3D representation of PCB design with most components modeled.

Figure 7 depicts the final assembled product with the enclosure top removed to expose

the PCB. Despite being largely successful on first attempt, a few correctable errors were

encountered. The first was that the SOT-23 transistor used for driving LEDs was incorrectly

mapped to its footprint. This was corrected by removing the surface mount component and

temporarily replacing them with an equivalent TO-92 device. The second error was discovered in

the audio amplification section. The ring of the 3.5mm TRS jack, which was supposed to be

12

wired to the virtual ground signal generated by the op amp, was accidently wired to proper signal

ground in error. To correct this issue, the net was electrically disconnected from ground and hand

wired from op amp to jack as can be seen in the top right corner of Figure 7.

Figure 7 Assembled hardware with top of enclosure removed to expose PCB.

13

SOFTWARE

Figure 8 Block diagram of communication between microcontroller and Bluetooth module.

 Figure 8 depicts the general wiring and software flow of communication between the

microcontroller and Bluetooth module. Upon power up, the microcontroller initiates all registers

necessary before communication can begin, to include establishing an appropriate UART baud

rate and enabling externally driven interrupts. The Bluetooth module is then held in the reset

state to insure that when synchronization is requested by the user, the device will be in a known

state. The microcontroller waits for the Bluetooth sync input to be triggered, which executes the

INT0 interrupt service routine. After debouncing and button release, the Bluetooth module is

released from the reset state and its boot sequence initializes. When the boot sequence is

complete—known by the microcontroller by parsing of the boot message through UART—the

microcontroller attempts to connect to the MAC of a known wiimote within the area by

establishing a L2CAP connection on PSM 13. Since the wiimote communicates via the HID

protocol in an atypical manner, it was necessary to bypass the Bluetooth abstraction and connect

directly to PSM 13, which happens to be the standard HID interrupt channel. It’s worth noting

that the ability to access the L2CAP layer is the primary driving factor for the success of WT12.

Without this capability written into the module’s proprietary firmware, the only other option for

establishing a connection would be via HCI, which is not only significantly complex in terms of

stack implementation but resource demanding; HCI is typically how wiimote signal access is

performed by the hacker community since a proper computer has far more resources at its

disposal than the average custom embedded platform. Continuing, if the Bluetooth module is

unable to establish a connection with the requested MAC, the microcontroller’s parsing routine

14

will detect this and exit the ISR while alerting the user of the event through the front panel-

mounted LEDs. If, however, a successful link has been established, the microcontroller will them

command the associated wiimote to hold the P1 LED (as opposed to all LEDs flashing as can be

seen during the sync process) and enables the UART receive interrupt for active parsing of all

data packages.

 Whenever a button on the wiimote is either pressed or released, a formatted data package

is sent to the Bluetooth module, which in turn is relayed to the microcontroller for parsing. The

package 4 bytes of the sequence

0xA1 0x30 0xXX 0xYY

where the first two bytes contain the mode and channel respectively and remain the same for all

packages, while the last two bytes contain encoded button information. The microcontroller

receives this package sequence, parses it, and transmits the decoded sequence to the FPGA for

further processing. Since the microcontroller and FPGA operate on independent clock domains, a

mux recirculation synchronization scheme is employed; this was chosen over other methods

since the clock domains of both devices are static and well known.

Figure 9 Simplified block representation of synthesized subsystems.

A modified version of the T65 open source project available on OpenCores.org [6] was

used as a synthesizable basis for the required 6502 processor. Of the numerous synthesizable

15

6502 cores available across the internet, the T65 was chosen based on forum feedback as being

the most reliable open-source VHDL implementation. Despite praise from the online

community, the implementation is in fact ridden with a handful of relatively minor bugs and

features that are unnecessary for system realization; in the case of binary coded arithmetic

functions, undesirable altogether. It was therefore necessary to isolate and correct these bugs, and

remove unwanted functions prior to system integration in order to achieve the closest emulation

possible. In addition to the T65 core, a custom PPU and pAPU will need to be developed, along

with at least one of the more widely used Memory Map Controllers. A script was written to

convert a *.nes ROM file to *.mif file which can be loaded into internal block RAM

instantiations prior to synthesis. This script must be slightly modified to account for various

ROM sizes and mappings prior to execution.

 It’s worth noting that the FPGA is clocked by a single 25.175 MHz oscillator, which in

turn is sent through an instantiated PLL to acquire the 1.79 MHz and 5.37 MHz clock signals as

shown in Figure 9. This was done in an attempt to accurately emulate timing of the original

system and posed a significant challenge in itself. The frame buffer is an instantiated dual-port

RAM which is written to by the PPU in the 5.37 MHz clock domain and read out by the VGA

controller as each frame is generated. Since the NES has an effective palette of 64 colors, 56 of

which are unique, each address of the frame buffer was reduced to 6 bits wide, which was

subsequently mapped to control the 15 bits required for RGB output. Furthermore, since the

upper and lower eight scanlines are not actually displayed on screen, address space was further

reduced to 56K, which utilizes less than 60% of total internal BRAM resources, freeing up the

rest of the BRAM for other subsystems, including work RAM for the CPU, video RAM for the

PPU, and storing the cartridge ROM image. For the sake of demo, however, a simple pong demo

was written to demonstrate system functionality in general.

16

REFERENCES
[1] K. Horton. “FPGA Console of DOOOOOM!”

Internet: kevtris.org/Projects/console/sections/, [Aug. 25, 2011].

[2] D. Leach. “NES On-A-Chip.”

Internet: cegt201.bradley.edu/projgrad/proj2006/fpganes/, [Aug. 25, 2011].

[3] D. Strother. “FPGA NES”

Internet: danstrother.com/fpga-nes/, [Aug. 25, 2011].

[4] J. Donaldson. “VeriNES Nintendo Emulator.”

Internet: rm-rfroot.net/nes_fpga/, Aug. 14, 2011 [Aug. 25, 2011].

[5] P. Diskin. “Nintendo Entertainment System Documentation Version 1.0”

Internet: nesdev.parodius.com/NESDoc.pdf, Aug. 2004 [Aug. 25, 2011].

[6] OpenCores.org. “T65 CPU”

Internet: opencores.org/project,t65, Mar. 31, 2010 [Aug. 25, 2011].

17

18

19

20

21

