
Atocha Atocha
TooToo

Donald MacArthur

Center of Intelligent Machines and Robotics
&

Machine Intelligence Laboratory

Intelligent Machines Design Laboratory
EEL 5666C

 2

TABLE OF CONTENTS
Abstract 3
Executive Summary 3
Introduction 3
Integrated System 3
Mobile Platform 4
Actuation 4
Sensors 5
Behaviors 8
Experimental Layout 9
Conclusion 9
Appendix 10

ABSTRACT

The “Atocha Too” is an autonomous robot that is used to find metallic objects on the east
coast beaches of Florida. The robot operates using a Motorola microprocessor, servos,
and various common robotic parts. The “Atocha Too” incorporates an Ultrasonic
Ranging module and Infrared emitters and receivers for obstacle avoidance. The
behaviors that were incorporated into the project allow for the “Atocha Too” to perform
surveying and mapping of an area for obstacles and metal objects.

EXECUTIVE SUMMARY

The “Atocha Too” is an autonomous robot that was designed to search for buried treasure
on the beaches of Florida’s East coast. Designed to be an aid to beach combers, the
“Atocha Too” can also be used to survey and area for obsticals.

The robot uses many sensors to allow for the robot to better “feel” it’s environment. The
robot incorporates an Ultrasonic Ranging board, and Infrared detectors and emitters to
allow the robot to see it’s environment. The metal detecting circuit that is used on the
robot give the robot the ability to sense metal objects.

The robot is controlled by a Motorolla HC11 microcontroller. This acts as the brains of
the robot. The HC11 was programmed using Image Craft C. All behaviors and sensors
were integrated into the HC11 using C programming code.

INTRODUCTION

The purpose of this report is to present the development and the construction of the
“Atocha Too”. The robotic entity employs several types of sensors that allow the robot to
traverse its surroundings and better perform its duties according to the environment. This
report will discuss the different types of sensors, actuators, and programming that was
used for the project.

INTEGRATED SYSTEM

The organization of the robot was arranged so that given the constraints of the
microcontroller, the different functions of the robot could be performed without
interaction or confusion. The robot operated by first sensing the environment, then
performing actions accordingly to the perceived data.

The microcontroller controlled the actuation, sensors, and decision processes of the robot.
The robot would sense the environment, decide on a course of action, and then actuate
the robot accordingly. The microcontroller integrated sensory data from the Ultrasonic
Ranging board, the IR receivers, and from the Metal detecting circuits. All of the sensory
data was recorded so that the information could be used latter for mapping or surveying.

 4

MOBILE PLATFORM

The platform that was used for the robot is illustrated below.

The mobile platform utilizes two modified servos for main drive power, with a rear
caster. Changing the direction or speed, of the left and right wheels, controled the robot’s
direction. The left and right legs of the robot, incorporates a suspension system which
was used to overcome the pitfalls of the tricycle design.

ACTUATION

Generating a PWM signal from the microcontroller actuated the main drive wheels. The
rotation of the wheels was controlled by modifying the PWM signal, which were
associated with reverse and forward motion commands.

Another servo was used to control the panning head of the robot. The panning head of
the robot contains the Sonar transducer, and the IR emitter and receiver. An illustration
of the panning head is shown below.

 5

The servo was connected to a gear train with a 2:1 ratio which was then connected to the
panning head. This allowed for the 180 degree rotation of the servo to cause a 360
degree rotation of the panning head. Actuating this servo allowed for sensor data to be
taken around the periphery of the robot.

SENSORS

There were several types of sensors that were used on the Atocha Too. The organization
of the sensors is shown below in Figure 1.

Micro-Controller

Metal Detection SystemSonar

Position System Obstacle Avoidance

 6

Fig.1

The micro-controller acts as the center were all sensor data is collected and processed. A
TJ pro main board was used as the micro-controller to control and process all sensors and
actions of the robot. The current sensors consist of a metal ordinance detector and a
sonar ranging system which are shown below as Figure 2.

Fig. 2

SONAR
The Atocha Too will be primarily used in an outdoor environment where the use of IR
detectors will be useless if they are flooded with sunlight. Therefore, sonar was used as
the primary sensor for obstacle avoidance and obstacle ranging. The sonar modules that
were used are Polaroid 6500 Ultrasonic Ranging Boards with the corresponding
transducers. These modules have an ultimate range of ~35 feet. The sonar modules will
be used for obstacle avoidance and an Ultrasonic Positioning System.

The SPS (Sonar Positioning System) is currently under development. All hardware
required for the system is available, and all that is required for a complete system is
software integration and further testing.

 7

The sonar system operates on the premise that sound travels at a constant rate in air. The
system produces an Ultrasonic chirp that bounces off of any object lying in front of the
transducer. By timing the duration between the initiation of the chirp and the received
signal, the distance from the transducer and the object can be obtained. Figure 3 shown
below demonstrates ranging data taken using the sonar modules.

Fig. 3

There exists an inherent flaw in the sonar modules. The minimum range that the
transducers can operate is ~1.6 feet. This is caused by the fact that the transducers still
vibrate immediately after the Ultrasonic chirp is initiated. This can cause noise on the
receive line which can be interpreted as a receive signal at close distances.

Therefore the sonar modules are suited for operations where the robot will not be
expected to require low range data. Figure 4 shown below shows the configuration of the
sonar modules integrated with a Tjpro board.

Sonar Range Data Versus Actual Range

0

1

2

3

4

5

6

7

8

0 2 4 6 8
Distance From Sonar (ft)

R
an

ge
 M

ea
su

re
m

en
t (

ft)

Range Data

Actual Range

 8

Fig. 4

The sonar module operates by first receiving an Init signal. The sonar transducer is then
sent a signal, and the Echo line goes high when a signal is received. The sonar system
utilizes the input capture routines of the 68HC11 micro-controller.

By multiplying the difference between the times that PA1 and PA2 go high by the
propagation speed of sound through air, the range of an object can be obtained. This
forms the basis of the sonar ranging system.

METAL DETECTION
The metal detection circuit was constructed from a kit. The circuit is designed to detect
metal objects in walls and homes to avoid electrocution while performing home
modifications. The circuit has an LED that lights when a metal object is placed close to
the search coil.

By placing taps across the LED, an analog signal can be drawn from the circuit that
relates to metal detection. The voltage across the LED varies from .6-.8 volts when no
object is close to the search coil, and 2-2.4 volts when a metal object is against the search
coil. These taps are connected to an analog port on the TJ-pro board. This allows for the
TJ-pro board to receive and process metal detection sensor data and act accordingly.

BEHAVIORS

The robot’s behaviors consist of auto-calibration, obstacle avoidance, metal search, and
surveying behaviors. When the robot is first turned on, the auto-calibration behavior sets
threshold values for the IR detector, and metal detector circuit so that the robot can
perform it’s functions in environments with varying IR and metal conditions.

The obstacle avoidance behavior utilizes sensor data from multiple positions of the
panning sensor head and maneuvers the robot to avoid obstacles.

The metal search behavior reads the input from the metal detecting circuit and spins the
robot to indicate to the user that the robot has found a metal item.

 9

The surveying behavior actuates the panning sensor head and records the corresponding
sensor data into vectors that can be used for mapping and surveying purposes.

EXPERIMENTAL LAYOUT

The Sonar experiments were conducted with the vehicle completely assembled.
Obstacles were placed a measured distance from the robot and the range data returned
from the robot was recorded. Without any modifications made to the constants or
hardware, the accuracy for the Sonar was on the order of a fraction of an inch.

The metal detector experiments were conducted with the metal detecting circuit separated
from the robot. The analog taps were used to measure the voltage as various metallic
object were placed near the inductive coil of the metal detecting circuit.

CONCLUSION

This paper has discussed the development and systems of the “Atocha Too”. This project
has inspired several other projects for Graduate research. Among those is the SPS
system, which still needs to be constructed and implemented into a working system. The
IMDL class has inspired my interest with robotics and electronics and has cause me to
shift my research interests into this field.

 10

APPENDIX
ICC code for the “Atocha Too”
/*~~~

 Title FINAL3.c
 Programmer Donald MacArthur

 Date 12/20/2000
 Version 3

 Description
 This program incorporates all of the functionality of the Atocha Too
 and organized the software for modularity and clarity
 Systems:
 -BRAINS
 -Behaviors
 -Sensors
 -IR
 -Sonar
 -Metal Detector
 -Motor Control
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
 
/*************************** Includes ********************************/ 
 
#include <tjpbase.h> 
#include <stdio.h> 
#include <mil.h> 
#include <hc11.h> 
#include <math.h> 
 
 
/************************ End of Includes ****************************/ 
 
 
/*************************** Constants ********************************/ 
 
#define SONAR_AVOID_THRESHOLD  2500 
#define IR_head    analog(2)  //IR sensor located on 
panning head 
#define IR_BIAS     10   //IR 
additional value of obsticle 
#define LOOP_COUNT    5000  //# of loops before 
LOOK_FOR_METAL exits 
#define METAL_THRESH   5   //threshold for metal 
detector 
 
 
  
/************************ End of Constants ****************************/ 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Global Variables 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 int speedr, speedl, angle,CW,ok; 
    
   int PWpan;   //Panning head servo global Pulse Width 
    
   int sonar_range_array[8], IR_range_array[8]; 
     
   int IR_cal_const;   //calibration constant for IR sensor 
    
   int metal_cal_const;  //calibration constant for metal detector 
    
   int COUNT;     //loop counter 
    
   int found_metal;   //flag if metal is found 
    



 11

   float distance, thresh; 
    
   unsigned int command_message, status_message;  //message sets for 
robot 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 
 
 
/*************************** Prototypes *********************************/ 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Initialization Functions 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
void  INITIALIZE();   //initialize functions and global variables 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//BRAIN Functions 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
void  SENSE(); 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Motor Control Functions 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
void  turn();  
void  SPIN(); 
void  STOP(); 
void  GO(); 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Sensor Functions 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 
//Sonar Functions 
void  init_sonar();   //Initialize Sonar Registers 
void  sonar_ping();   //Start Sonar Ping and allow input capture to occur 
int  sonar_range();   //Calculate Range of Obsticle 
 
 
 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Behavior Functions 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
void SPIN(void); 
void LOOK_FOR_METAL(); 
 
 
/************************ End of Prototypes *****************************/ 
 
void main(void) 
/****************************** Main ***********************************/ 
{ 
  
 
 INITIALIZE(); 
   START;  /*Press the rear bumper to start the program*/ 
 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 BRAIN LOOP 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

 while(1)
 {
 ok=0;

 while(!ok)
 {
 SENSE();

 12

 if((sonar_range_array[2]<=SONAR_AVOID_THRESHOLD)||
 (sonar_range_array[3]<=SONAR_AVOID_THRESHOLD)||
 (sonar_range_array[4]<=SONAR_AVOID_THRESHOLD))

 {
 turn();
 STOP();
 }
 else ok=1;
 }

 ok=0;
 COUNT=0;
 found_metal=0;
 while(!ok)
 {
 LOOK_FOR_METAL();
 COUNT++;
 if((COUNT>LOOP_COUNT)||(found_metal==1))
 {
 ok=1;
 GO();
 wait(500);
 STOP();
 }
 }
 STOP();

 }
}
/**************************** End of Main ******************************/

void turn()
/**
 * Function: This function will avoid an
 * obstacle when found by the Sonar, and turn away
 * Returns: None *
 * *
 * Inputs *
 * Parameters: *
 * Globals: None *
 * Registers: TCNT *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: motorp(), wait() *
 * Notes: *
 **/
{
 int i;
 unsigned rand;

 rand = TCNT;

 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);

 i=(rand % 1024)*5;
 if(i>250) wait(i+250); else wait(250);

}

/***********************End Function turn ****************************/

void init_sonar()
/*~~
 Function: None

 13

 Description: None

 Returns: None

 Inputs: None
 Parameters: None
 Globals: None
 Registers: None
 Outputs None
 Parameters: None
 Globals: None
 Registers: None
 Functions called: None

 Notes: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
 
{ 
 SET_BIT(DDRD,0x4); 
 SET_BIT(TCTL2,0x14); 
 CLEAR_BIT(TCTL2,0x28); 
} 
 
void INITIALIZE() 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Function:   INITIALIZE 
  
 Description:  initializes Global variables and TJPro init functions 
  
   Returns:     None                                                        
                                                                       
 Inputs:       None                                                        
  Parameters:         None                                        
  Globals:      None                                                   
  Registers:          None                                            
  Outputs             None                                                  
  Parameters:   None                                                    
  Globals:      None                                                    
  Registers:    None                                                    
  Functions called:   
       
     init_analog() 
     init_motortjp() 
     init_clocktjp() 
   init_servotjp() 
   init_sonar() 
    
  Notes:              None                                                  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
{
 init_analog();
 init_motortjp();
 init_clocktjp();
 init_servotjp();
 init_sonar();
 PWpan=1000;
 ok=1;

 IRE_ON;
 IR_cal_const=IR_head;

 //calibrate metal detector
 metal_cal_const=analog(3);

}

void sonar_ping()
/*~~

 14

 Function: None

 Description: None

 Returns: None

 Inputs: None
 Parameters: None
 Globals: None
 Registers: None
 Outputs None
 Parameters: None
 Globals: None
 Registers: None
 Functions called: None

 Notes: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
 
{  
 TFLG1=0x0; 
 SET_BIT(PORTD,0x4); 
 wait(30); 
 CLEAR_BIT(PORTD,0x4); 
} 
 
int sonar_range() 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Function:   sonar_range 
  
 Description:  checks the flag TFLG1 to see if a signal was received 
  
   Returns:     float which represents the distance to obstical                                                       
                                                                       
 Inputs:       None                                                        
  Parameters:         None                                        
  Globals:      None                                                   
  Registers:          None                                            
  Outputs             None                                                  
  Parameters:   None                                                    
  Globals:      None                                                    
  Registers:    None                                                    
  Functions called:  None 
 
  Notes:              None                                                  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

{
 if (((TFLG1)&(0x4))==0)
 return -1;
 else
 if((((TIC2-TIC1)>>1)*.569)<0) return -(((TIC2-TIC1)>>1)*.569);
 else return(((TIC2-TIC1)>>1)*.569);
}

void SENSE()
/*~~
 Function: SENSE

 Description: This functions will pan the head servo and save the
 sensor values into arrays for examination.

 Returns: None

 Inputs: None
 Parameters: None
 Globals: sonar_range_array, IR_range_array, PWpan
 Registers: None
 Outputs None
 Parameters: None

 15

 Globals: PWpan
 Registers: None
 Functions called: sonar_range()

 Notes: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
{ 
 //local variables 
 int i,j;  //Generic Counter 
 int CCW; //Rotation 
  
  
 if(PWpan==1000) CCW=1; 
  
  else   CCW=0; 
 
  //Pan head servo 
  if(CCW==1)  //if counter clockwise rotation is preferred 
  { 
   for(i=1; i<=8; i++) 
   { 
    sonar_ping(); 
    sonar_range_array[i-1]=sonar_range(); 
    IR_range_array[i-1]=IR_head; 
       
    PWpan=1000+i*4000/8; 
    servo(0,PWpan); 
    wait(200); 
   } 
  } 
 else 
 { 
   for(i=1; i<=8; i++) 
   { 
    sonar_ping(); 
    sonar_range_array[8-i]=sonar_range(); 
    IR_range_array[8-i]=IR_head; 
    
    PWpan=5000-i*4000/8; 
    servo(0,PWpan); 
    wait(200); 
   } 
   
 } 
  
  
 //print to com for testing 
 printf("\nIR data:  "); 
 for(i=1; i<=8; i++) 
 { 
  printf("  %d", IR_range_array[i-1]); 
 } 
 printf("\nSonar data:  "); 
 for(i=1; i<=8; i++) 
 { 
  printf("  %d", sonar_range_array[i-1]); 
 } 
} 
 
 
 
void LOOK_FOR_METAL() 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Function:   None 
  
 Description:  None 
  
   Returns:     None                                                        
                                                                       
 Inputs:       None                                                        
  Parameters:         None                                        



 16

  Globals:      None                                                   
  Registers:          None                                            
  Outputs             None                                                  
  Parameters:   None                                                    
  Globals:      None                                                    
  Registers:    None                                                    
  Functions called:  None 
 
  Notes:              None                                                  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
{
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 if(analog(3)>metal_cal_const+METAL_THRESH)
 {
 found_metal=1;
 SPIN();
 }

}

void SPIN()
/*~~
 Function: None

 Description: None

 Returns: None

 Inputs: None
 Parameters: None
 Globals: None
 Registers: None
 Outputs None
 Parameters: None
 Globals: None
 Registers: None
 Functions called: None

 Notes: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
{ 
 motorp(RIGHT_MOTOR, -MAX_SPEED); 
    motorp(LEFT_MOTOR, MAX_SPEED); 
 wait(7000); 
 
 
} 
void STOP(void) 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Function:   None 
  
 Description:  None 
  
   Returns:     None                                                        
                                                                       
 Inputs:       None                                                        
  Parameters:         None                                        
  Globals:      None                                                   
  Registers:          None                                            
  Outputs             None                                                  
  Parameters:   None                                                    
  Globals:      None                                                    
  Registers:    None                                                    
  Functions called:  None 
 
  Notes:              None                                                  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

{

 17

 motorp(LEFT_MOTOR, 0);
 motorp(RIGHT_MOTOR, 0);

}

void GO(void)
/*~~
 Function: None

 Description: None

 Returns: None

 Inputs: None
 Parameters: None
 Globals: None
 Registers: None
 Outputs None
 Parameters: None
 Globals: None
 Registers: None
 Functions called: None

 Notes: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
{ 
 motorp(LEFT_MOTOR, -MAX_SPEED); 
 motorp(RIGHT_MOTOR, -MAX_SPEED); 
} 
 


