EEL 5666 FINAL REPORT

PINKY AND THE BRAIN MAZE SOLVING MICROMICE

MIL FALL 2000

PROFESSOR:

A.A. ARROYO

PRESENTED BY:

EDISON RODRIGUEZ

TABLE OF CONTENT

ABSTRACT

3

EXECUTIVE SUMMARY

4

INTRODUCTION

5

INTEGRATED SYSTEM

6

PLATFORM

6

ACTUATION

6

SENSORS

7

BEHAVIOR

11

DISCUSSION

12

CONCLUSSION

13

APPENDIX A- TJPRO BOARD

14

· TJPRO BOARD SCHEMATICS

15

APPENDIX B- ICC CODE

16

I.
Abstract

The objective this robot is, for Brain, to search and find the quickest way to the center of a maze. This will be accomplished by utilizing the bellman algorithm. Three infrared sensors are used to determine open paths, and to accomplish 90° and 180° turns. Four reflective switches are used to keep the micro-mouse heading straight forward. Three micro-switches are used just incase the micro-mouse accidentally collides with a wall or some obstacle.

ii.
Executive Sumary

The main purpose of this design was to locate a micro-mouse at one corner of a maze, x,y = [0,0]. Then have the mouse search through the maze and find the center. Since two dimensional arrays cannot be used in ICC11, the center is then located in array[65], array[66], array[77] and array[78]. These four cells represent the center of the maze in a one-dimensional array. The MTJPRO11 will serve as a controller for this micro-mouse. This board contains a Motorola MC68HC11 micro-controller, 32 kilobytes of SRAM. The platform is constructed from the Talrik Junior platform. Modifications are made to this platform to fit the constraints of the maze.

iii.
Introduction

This robot is designed to remember where is has been by initializing the maze array to an unexplored value, which was chosen to be 255. If the robot hasn’t been through a certain cell, the initial value of the cell would be 255 once the robot has been through that cell the value would be on value greater than the previous cell value that was explored. This procedure is continued until it reaches a closed path. At this point it will retract its steps and decrement its counter until it reaches an intersection where it has cells that have not been explored. This is done several times until the center of the maze is located. The center of the maze is initialized with a –1 value. Once the center is found the coordinate system gets inverted. East becomes West and North becomes South, this is done because it is retracting its steps. The robot will also count backwards, down to 0. Then It will know the quickest path to the center of the maze at this point. The coordinate system gets changed again. The micro-mouse can step back through the shortest path to the center of the maze. All this is done while using its sensors to determine wall gaps and using micro-switches to keep it going straight.

IV.
Body

IV.I
Integrated System

Brain utilizes a Motorola MC68HC11E9 micro-controller mounted on a MTJPro11 board, purchased from Mekatronix. The board layout and schematics can be found in Appendix A. The following are features of the MTJPro11:

	· 32 Kilobytes of SRAM memory
· PortE(7 downto 0): 8 analog input pins.
· PortA(2 downto 0): 3 available digital input pins.
· PortA(3), PortA(7): output compare.
· Various headers: LED, Battery, Charger, ModA, ModB, Power.
· 6 Pin header for SCI (Serial Communication Interface).
IV.II Mobile Platform

The platform was constructed based on the Talrik Junior platform. Some modification were made no the platform to accommodate for the maze dimensions. The top plate was not place directly on the chassis; it was elevated 2.5 cm from its default position. This was done to ensure that the top plate does not touch any part of the walls. Wings were placed 6.5 cm away, 7 cm ahead of the chassis. This was done to ensure that the photo-micro switches can be at close range to the walls. The platform was shortened to 12cm x 7 cm. This measurement does not include wheel base. The wheels base was shortened to 12.5 cm. This was done by placing the servos on the inside of the chassis and using narrower wheels.

IV.III Actuation

The mobility of the robot is controlled by two hacked MS492, 43oz-in standard servos. These servos did not perform equally. Therefore accommodations had to be made to get them to match up. This adjustment was done in the program and not in the servos. To hack these servos the servo horn was adjusted to approximately the center. Then the top cover was removed by unscrewing four screws at the bottom of the servo. Then from the output gear the potentiometer tab was removed, and a white tab stopper was cut from this same gear. A thorough description of these procedures is explained in the tjproam.pdf(pg. 29) file located in www.mekatronix.com

IV.IV Sensors

IV.IV.I Photo-micro Switch

Four kinds of sensors are utilized to explore the environment of this micro-mouse. The the first of which are the photo-micro switches. These digital switches are close proximity sensors. The placement on top of the wall is shown below (figure 1).

[image: image1.png]

figure 1.

The photo-micro switches have a range of 0mm – 5mm. However, the switches are placed about 1 – 1.5cm away from the top of the wall. Each wing has two micro-switches, each is separated by 2.5 cm. These switches are connected directly to PortA(2 downto 0). These switches are always read to check which sensors are directly on the wall, and make the desired adjustments to maintain the micro-mouse in the center of the path. The circuit layout of these micro-switches is shown below (figure 2). The specifications are located in the appendix.

[image: image2.png]
figure 2.

IV.IV.II Infrared

This type of sensor was used to do two functions. One of which was combined with the photo-micro switch to ensure proper 90° turns. The IR receiver was hacked to obtain analog values to measure distance. The following is an illustration of the procedures that were performed to hack the IR receiver (figure 3).

	
[image: image3.png]

	Figure 3.

The IR emitters were connected with a 1k(resister attached to the cathode. This is done to lower the light intensity emitted from the LED. Also, a 2 cm barrel was placed on the emitter to collimate the light. Both the emitter and collector are placed at close approximation to each other to ensure accurate readings. The obtained tests are shown below.

Experiment 1: IR reception vs. distance between robot and maze wall.
Pinky

Brain

Distance

IR1

IR2

IR1

IR2

5cm

128

128

128

128

10cm

127

128

128

128

20cm

127

128

127

128

30cm

127

127

127

127

40cm

127

127

127

127

50cm

127

127

127

127

60cm

127

127

127

127

70cm

125

126

126

126

80cm

123

124

125

124

90cm

122

123

123

123

100cm

119

120

118

120

110cm

117

118

116

118

120cm

114

115

116

117

130cm

113

114

115

116

140cm

111

112

113

114

150cm

108

109

110

111

160cm

106

107

105

109

170cm

105

105

104

106

180cm

102

103

102

105

190cm

101

103

100

104

200cm

99

100

99

103

210cm

97

98

97

100

220cm

94

95

96

98

270cm

92

93

96

95

Experiment 1.

A graph plotting the distance vs. reading is shown below (figure 3).

[image: image4.wmf]IR SENSOR

70

75

80

85

90

95

100

105

110

115

120

125

130

1

4

7

10

13

16

19

Distance(cm)

Reading

RIGHT

LEFT

figure 3.

The thresholds were selected from using this graph. The threshold for left and right IR was chosen to be a reading of 100 at the analog ports.

IV.IV.III CdS

The Cadmium Sulfide cells were used to determine when a white strip was crossed. This strip would increment the CdS counter. At the same time stop the micro-mouse, make necessary adjustments and proceed forward. The values obtained from these reading are presented in the following table.

Experiment 2: CdS readings vs. Color and Distance

	Distance
	CdS0
	CdS1

	0.5cm
	23
	28

	1.0cm
	39
	41

	1.5cm
	52
	53

	0.5cm
	100
	102

	1.0cm
	124
	122

	1.5cm
	152
	149

Experiment 2.

The underlined values were the values used for selecting the thresholds. The circuit layout for each CdS that was used is shown below (figure 4). A green LED was placed between each CdS cell to ensure that sufficient light was reaching the Cells.

[image: image5.png]
figure 4.
IV.IV.IV Level Switches

These switches were placed in the front of the chassis and on the side in front of the wheels. This is done to prevent the micro- mouse from colliding with the walls, or any other obstacle. This proved to be very useful, because obtaining a straight path is very difficult and with such a narrow path this task becomes more difficult.

V. BEHAVIORS

This micro-mouse has several behaviors. The first behavior uses the photo micro-switches, to guide the micro-mouse straight through the path. This behavior uses four photo micro-switches. In the program these is one big case statement that has all the several conditions possible and the functions that they call. The second behavior is determining wall gaps. This behavior is achieved by using the IR detectors if there is an open path either to the left or right the IR detectors will have a low reading. If this is the case and a left or right turn is requested, this leads to another behavior. The behavior that allows for 90° turns, uses the front IR and either the left or right IR do complete the turn. The function has a while(front_ir > front_turn_threshold && left_ir > left_turn_threshold) motorp(1,100); Another behavior is to accomplish 180° this turn checks all IR sensors if all three are less than the threshold, this is an indication of a closed path. At this moment the micro-mouse uses only the front IR to do a 180° turn. The last behavior is done just in case the micro-mouse runs into a wall or any obstacle. If either the left or right level switch gets triggered, the mouse would move back for a 35 micro seconds, stop and move in the opposite direction of the level switch that was triggered, then it will move forward once again.

VI. DISCUSSION

This project was built in collaboration with Shawn Gux. Without his knowledge in programming this project could not have been accomplished. He provided insight to the algorithm that was being used, he also made modifications to the existing bellman algorithm. Many test were made to ensure that the components were behaving appropriately. The circuits were modified several times because they would not function properly with the board. For example, the photo micro-switches were draining too much current. If three were connected the board would run well. If a fourth switch were added then the board would reset. I believe that the reason for this is because too much current was being drawn from the photo micro-switches. It took several days to come to this conclusion. Modifications to the CdS circuit was done several times also. The reason for this is because originally the intention was to use one voltage source for each cell. But this created disturbances in the output signal. The output value would change by only millivolts. We were short of one behavior for this project. The behavior was to transmit the directions from one mouse to the other. The coordinates were stored at address b600, simply we did not have enough time to implement the SPI properly.

VII. CONCLUSION
Brain worked properly during demo day, but did not work correctly for Media day. The only explanation for this, is that there was plenty of IR from the cameras. Or the mico-mouse is camera shy. All the behaviors worked to expectation. To enhance the performance of the micro-mouse, IR emitters could be placed in front of the photo micro-switches, to detect wall gaps before the photo micro-switches make undesired adjustments.

APPENDIX A.

MTJPRO11 BOARD

[image: image6.png]
[image: image7.png]
APPENDIX B. BRAIN3000.C – ICC CODE.

/***

*

BRAIN 3000

*

*Programmer: Xuan Gu, with contribution from Edison Rodriguez
*

*Date: November, 23 2000

*

*Description: Bellman style with Gux flavors added maze solving
*

*

 program for Micromouse robots Pinky and the Brain.
*

***/

/***/

#include <analog.h>

#include <motortjp.h>

#include <clocktjp.h>

#include (vectors.h>

#include <tjpbase.h>

#include <stdio.h>

#include <hc11.h>

/**/

/***************** constants for motor control ******************/

#define LEFT_MOTOR

0

#define RIGHT_MOTOR

1

#define L_MAGIC_SPEED
70

#define R_MAGIC_SPEED
155

#define MIN_SPEED

0

#define LEAN_SPEED

90
// need to be tested and adjusted

#define L_AROUND_SPEED
100

#define R_AROUND_SPEED
120

/**/

/************* sensor definitions and sensor masks *************/

#define BUMPER

analog(0)

#define FRONT_IR
analog(1)

#define RIGHT_IR
analog(2)

#define LEFT_IR
analog(3)

#define LRS0

analog(6)

#define CDS_FRONT
analog(7)

#define CDS_BACK
analog(4)

#define SENSOR_MASK 0x0007 // 0000 0111 for LRS1, RRS1, and RRS0

#define LRS1_MASK
0x0004 // 0000 0100 for LRS1

#define RRS1_MASK
0x0002 // 0000 0010 for RRS1

#define RRS0_MASK
0x0001 // 0000 0001 for RRS0

#define RRS10_MASK
0x0003 // 0000 0011 for RRS1 and RRS0

/***/

/********************* sensor thresholds ***********************/

#define FRONT_IR_THRESHOLD

100

#define LEFT_IR_THRESHOLD

100

#define RIGHT_IR_THRESHOLD

105

#define CDS_FRONT_THRESHOLD

185

#define CDS_BACK_THRESHOLD

120

#define FRONT_TURN_THRESHOLD

93

#define LEFT_TURN_THRESHOLD

95

#define RIGHT_TURN_THRESHOLD

95

/***/

/**************** constants for Bellman algorithm **************/

#define FALSE
0

#define TRUE
1

#define UNEXPLORED
255
//Bellman number for unexplored cells

#define CENTER
-1

//...................center cells

#define NORTH
0

//direction the mouse is traveling in

#define SOUTH
1

#define WEST
2

#define EAST
3

#define LOOK_N
12

//array index offsets

#define LOOK_S
-12

#define LOOK_W
1

#define LOOK_E
-1

/***/

/******************** miscellenous constants *******************/

#define LEFT
0

#define RIGHT
1

#define LRS0_THRESH 200

/**/

/***** global variables used for motor control and Bellman *****/

int SPEED_L, SPEED_R;

// left and right motor speeds

int PORTA_TEMP;
// Unsiged is 16 bits, maybe not the best choice. Decided to use integer.

int LEAN_DIR;

//indicates which way the robot leaned toward last time

int direction = NORTH;

// Holds the current direction of the mouse's motion

int cell_ptr = 0;

// array index pointer

int LOOK_F;

// array index offsets used when peeking to adjacent cells

int LOOK_B;

int LOOK_L;

int LOOK_R;

int WALL_F;

// holds the wall information of the current cell

int WALL_B;

int WALL_L;

int WALL_R;

int FOUNDIT = FALSE;
//found center flag, set when center is found

int TRACEDONE = FALSE;
//trace back complete flag, set when maze entrance is reached

int FINISHED = FALSE;
//race finished, set when center is reached again

int maze[144];

//array that holds the Bellman numbers of the 144 cells in the maze

int temp;

//a temporary variable

int path[144];

//array that holds the recorded path

int path_ptr = 0;
//path array pointer

int PATH_END;

//points to the last step in the recorded path

/**/

/************************** Function Prototypes *******************************/

void read_walls();

void move_forward();

void turn_left();

void turn_right();

void turn_around();

void lean_left();

void lean_right();

void command_motor();

void stop();

void change_dir_reverse();

void change_dir_left();

void change_dir_right();

void record_path();

void report_path();

/**/

/****************************** Main Program **********************************/

void main(void)

{

int i;

init_analog();

//three functions must be called first

init_motortjp();

init_clocktjp();

//
while(BUMPER < 120);

//
report_path();

//
wait(2000);

*(unsigned char *) 0x7000=0x0B; // Turn on 3 IR emitters, 0000 1011

SPEED_L = MAX_SPEED;
// initial motor speeds

SPEED_R = MAX_SPEED;

// Initialize the array

maze[0] = 0;

for (i=1; i<=143; i++)

maze[i] = UNEXPLORED;

maze[65] = CENTER;

maze[66] = CENTER;

maze[77] = CENTER;

maze[78] = CENTER;

while(BUMPER < 120);
// wait for bumper to be pressed to start

wait(1000);

// 2 seconds to run away from the robot!!!

 while (FINISHED == FALSE)

 {

read_walls();

//get values for WALL_F, WALL_L, WALL_R. WALL_B isn't really necessary...

if (direction == NORTH)

{

LOOK_F = LOOK_N;

LOOK_B = LOOK_S;

LOOK_L = LOOK_W;

LOOK_R = LOOK_E;

}

else if (direction == SOUTH)

{

LOOK_F = LOOK_S;

LOOK_B = LOOK_N;

LOOK_L = LOOK_E;

LOOK_R = LOOK_W;

}

else if (direction == WEST)

{

LOOK_F = LOOK_W;

LOOK_B = LOOK_E;

LOOK_L = LOOK_S;

LOOK_R = LOOK_N;

}

else if (direction == EAST)

{

LOOK_F = LOOK_E;

LOOK_B = LOOK_W;

LOOK_L = LOOK_N;

LOOK_R = LOOK_S;

}

if (FOUNDIT == FALSE)

 {

//if doesn't see a clear entrance into the center of the maze

if (((cell_ptr+LOOK_F > 143 || cell_ptr+LOOK_F < 0) || (maze[cell_ptr+LOOK_F] != CENTER) || (maze[cell_ptr+LOOK_F] == CENTER && WALL_F != 0))

 &&

 ((cell_ptr+LOOK_B > 143 || cell_ptr+LOOK_B < 0) || (maze[cell_ptr+LOOK_B] != CENTER) || (maze[cell_ptr+LOOK_B] == CENTER && WALL_B != 0))

 &&

 ((cell_ptr+LOOK_L > 143 || cell_ptr+LOOK_L < 0) || (maze[cell_ptr+LOOK_L] != CENTER) || (maze[cell_ptr+LOOK_L] == CENTER && WALL_L != 0))

 &&

 ((cell_ptr+LOOK_R > 143 || cell_ptr+LOOK_R < 0) || (maze[cell_ptr+LOOK_R] != CENTER) || (maze[cell_ptr+LOOK_R] == CENTER && WALL_R != 0)))

{

if (WALL_F == 0) // if front wall is open

{

 if (maze[cell_ptr+LOOK_F] == UNEXPLORED) //and if forward cell is unexplored,

 {

move_forward();

cell_ptr = cell_ptr + LOOK_F;

// update cell pointer (position in maze)

maze[cell_ptr] = maze[cell_ptr+LOOK_B]+1; // assign Bellman number

 }

 else //if forward cell is explored, and not the center

 {

if (WALL_L == 0 && maze[cell_ptr+LOOK_L] == UNEXPLORED) //and if left is open and unexplored

{

//explore left cell

turn_left();

move_forward();

cell_ptr = cell_ptr + LOOK_L;

change_dir_left();

maze[cell_ptr] = maze[cell_ptr+LOOK_R]+1;

}

else if (WALL_R == 0 && maze[cell_ptr+LOOK_R] == UNEXPLORED)
//else if right is open and unexplored

{

//explore right cell

turn_right();

move_forward();

cell_ptr = cell_ptr + LOOK_R;

change_dir_right();

maze[cell_ptr] = maze[cell_ptr+LOOK_L]+1;

}

else

{//F is open but explored, L and R are either closed or explored, simply go forward

move_forward();

cell_ptr = cell_ptr + LOOK_F;

}

 }

}

else if (WALL_L == 0) // if front is closed, and left is open

{

 if (maze[cell_ptr+LOOK_L] == UNEXPLORED) //and if left cell is unexplored

 {

turn_left();

move_forward();

cell_ptr = cell_ptr + LOOK_L;

change_dir_left();

maze[cell_ptr] = maze[cell_ptr+LOOK_R]+1;

 }

 else //if left cell is already explored

 {

if (WALL_R == 0 && maze[cell_ptr+LOOK_R] == UNEXPLORED) // and if right is open and unexplored

{

//explore right cell

turn_right();

move_forward();

cell_ptr = cell_ptr + LOOK_R;

change_dir_right();

maze[cell_ptr] = maze[cell_ptr+LOOK_L]+1;

}

else if (WALL_R != 0) //F is closed, L is open but explored, R is closed, simply go left

{

turn_left();

move_forward();

cell_ptr = cell_ptr + LOOK_L;

change_dir_left();

}

 }

}

else if (WALL_R == 0)
// if F and L are closed, and right is open

{

turn_right();

move_forward();

cell_ptr = cell_ptr + LOOK_R;

change_dir_right();

if(maze[cell_ptr+LOOK_R] == UNEXPLORED) // if right is unexplored

maze[cell_ptr] = maze[cell_ptr+LOOK_L]+1;

}

else

{
// reached a deadend, reverse course

turn_around();

move_forward();

cell_ptr = cell_ptr + LOOK_B;

change_dir_reverse();

}

}

else //if at the only entrance to the center, just move in

{ //if center is in the front adjacent cell with a clear path, go inside

 if(maze[cell_ptr+LOOK_F] == CENTER && WALL_F == 0)

 {

FOUNDIT = TRUE;

cell_ptr = cell_ptr + LOOK_F;

move_forward();

 }

 //if center is in the left adjacent cell with a clear path, go inside

 else if(maze[cell_ptr+LOOK_L] == CENTER && WALL_L == 0)

 {

FOUNDIT = TRUE;

cell_ptr = cell_ptr + LOOK_L;

turn_left();

move_forward();

change_dir_left();

 }

 //if center is in the right adjacent cell with a clear path, go inside

 else if(maze[cell_ptr+LOOK_R] == CENTER && WALL_R == 0)

 {

FOUNDIT = TRUE;

cell_ptr = cell_ptr + LOOK_R;

turn_right();

move_forward();

change_dir_right();

 }

}

 }

/******************start of the traceback process, from center to the maze entrance******************/

 else if (FOUNDIT == TRUE && TRACEDONE == FALSE)

 {

 if(maze[cell_ptr] == CENTER)
//if at center,

 {

temp = maze[cell_ptr+LOOK_B]; //transfer the bellnumber of last cell travelled to temp

cell_ptr = cell_ptr+LOOK_B;
 //point to the last cell travelled

turn_around();

 //turn around

maze[cell_ptr] = maze[cell_ptr+LOOK_F]+1;
//add 1 to the center's bellnumber, assign to that cell

change_dir_reverse();

while(BUMPER < 120);
// wait for bumper to be pressed to start traceback

wait(2000);

// 2 seconds to run away from the robot!!!

move_forward();

 //move forward

 }

 else

 {

if(((cell_ptr+LOOK_F <= 143 && cell_ptr+LOOK_F >= 0) && //if the forward adjacent cell ptr is within range

(maze[cell_ptr+LOOK_F] == temp-1 && WALL_F == 0))) //and its bellnumber is ONE less the current cell's

{

//bellnumber, and the front wall of the current cell is open:

cell_ptr = cell_ptr+LOOK_F;

//Point to the forward adjacent cell

temp = maze[cell_ptr];

// temp holds the current cell's bellnumber

if (maze[cell_ptr] == 0)

// if the forward adjacent cell is the start of the maze

TRACEDONE = TRUE;

// then set TRACEDONE flag

maze[cell_ptr] = maze[cell_ptr+LOOK_B]+1;
// add 1 to current cell's bellnumber and assign to the front cell

move_forward();

// move to the forward cell

}

else if(((cell_ptr+LOOK_L <= 143 && cell_ptr+LOOK_L >= 0) && //if the left adjacent cell......

(maze[cell_ptr+LOOK_L] == temp-1 && WALL_L == 0)))

{

cell_ptr = cell_ptr+LOOK_L;

temp = maze[cell_ptr];

if (maze[cell_ptr] == 0)

TRACEDONE = TRUE;

maze[cell_ptr] = maze[cell_ptr+LOOK_R]+1;

turn_left();

move_forward();

change_dir_left();

}

else if(((cell_ptr+LOOK_R <= 143 && cell_ptr+LOOK_R >= 0) && // if the right adjacent cell......

(maze[cell_ptr+LOOK_R] == temp-1 && WALL_R == 0)))

{

cell_ptr = cell_ptr+LOOK_R;

temp = maze[cell_ptr];

if (maze[cell_ptr] == 0)

TRACEDONE = TRUE;

maze[cell_ptr] = maze[cell_ptr+LOOK_L]+1;

turn_right();

move_forward();

change_dir_right();

}

 }

 }

/***********************get from the start to finish as quick as possible***********************/

//Follows the path mapped by the TRACEBACK process and go from the start to center of maze.

//Similar process as the TRACEBACK routine, except start from the entrance and end at the center,

//also, search for the adjacent cell that has a bellnumber ONE less than the current cell's, and

//move to that cell. Also, this process does NOT update any bellnumbers.

 else if (TRACEDONE == TRUE && FINISHED == FALSE)

 {

if(((cell_ptr+LOOK_B <= 143 && cell_ptr+LOOK_B >= 0) &&

(maze[cell_ptr+LOOK_B] == maze[cell_ptr]-1 && WALL_B == 0)))

{

//

path[path_ptr] = 1;

//

path_ptr++;

cell_ptr = cell_ptr+LOOK_B;

if (maze[cell_ptr] == CENTER)

{

FINISHED = TRUE;

PATH_END = path_ptr - 1 ;

}

turn_around();

change_dir_reverse();

while(BUMPER < 120);
// wait for bumper to be pressed to start the race

wait(2000);

// 2 seconds to run away from the robot!!!

move_forward();

}

else if(((cell_ptr+LOOK_F <= 143 && cell_ptr+LOOK_F >= 0) &&

(maze[cell_ptr+LOOK_F] == maze[cell_ptr]-1 && WALL_F == 0)))

{

//

path[path_ptr] = 0;

//

path_ptr++;

cell_ptr = cell_ptr+LOOK_F;

if (maze[cell_ptr] == CENTER)

{

FINISHED = TRUE;

PATH_END = path_ptr - 1 ;

}

move_forward();

}

else if(((cell_ptr+LOOK_L <= 143 && cell_ptr+LOOK_L >= 0) &&

(maze[cell_ptr+LOOK_L] == maze[cell_ptr]-1 && WALL_L == 0)))

{

//

path[path_ptr] = 2;

//

path_ptr++;

cell_ptr = cell_ptr+LOOK_L;

if (maze[cell_ptr] == CENTER)

{

FINISHED = TRUE;

PATH_END = path_ptr - 1 ;

}

turn_left();

move_forward();

change_dir_left();

}

else if(((cell_ptr+LOOK_R <= 143 && cell_ptr+LOOK_R >= 0) &&

(maze[cell_ptr+LOOK_R] == maze[cell_ptr]-1 && WALL_R == 0)))

{

//

path[path_ptr] = 3;

//

path_ptr++;

cell_ptr = cell_ptr+LOOK_R;

if (maze[cell_ptr] == CENTER)

{

FINISHED = TRUE;

PATH_END = path_ptr - 1 ;

}

turn_right();

move_forward();

change_dir_right();

}

 }

 }

record_path();

// record the path

}

/******************************* End of Main Program ****************************/

/****************************** read_walls **************************************/

void read_walls(void)

{

if (LEFT_IR < LEFT_IR_THRESHOLD)

WALL_L = 0;

else

WALL_L = 1;

if (RIGHT_IR < RIGHT_IR_THRESHOLD)

WALL_R = 0;

else

WALL_R = 1;

if (FRONT_IR < FRONT_IR_THRESHOLD)

WALL_F = 0;

else

WALL_F = 1;

}

/**/

/******************************* command_motor **********************************/

void command_motor(void)

{

motorp(LEFT_MOTOR, SPEED_L);

motorp(RIGHT_MOTOR, SPEED_R);

wait(35);

}

/**/

/*********************************** stop ***************************************/

void stop(void)

{

SPEED_L = MIN_SPEED;

SPEED_R = MIN_SPEED;

}

/**/

/****************************** move_forward ************************************/

void move_forward(void)

{

int i = 3;

SPEED_L = L_MAGIC_SPEED;
// initial motor speeds

SPEED_R = R_MAGIC_SPEED;

command_motor();
// go straight ahead into the maze

while(CDS_FRONT > CDS_FRONT_THRESHOLD && CDS_BACK > CDS_BACK_THRESHOLD)

{

// checks the bumper switch, just in case...

if ((BUMPER > 10) && (BUMPER < 120))

{

stop();

command_motor();

wait(2000);

}

}

wait(280);

stop();

command_motor();

wait(100);

//do

// for (i = 0; i < 3; i++)

 while (i > 0)

 {

 i--;

 PORTA_TEMP = PORTA;

 PORTA_TEMP = PORTA_TEMP & RRS0_MASK;

 if (LRS0 < LRS0_THRESH || PORTA_TEMP != 0x0001)

 {

PORTA_TEMP = PORTA;

PORTA_TEMP = PORTA_TEMP & SENSOR_MASK;

if (LRS0 >= LRS0_THRESH)

PORTA_TEMP = PORTA_TEMP + 0x0010;

// steering routine, keeps Pinky centered

switch (PORTA_TEMP)

 // LRS0 LRS1 RRS1 RRS0

{

case 0x0000:

// 0 0 0 0

if (LEFT_IR > LEFT_IR_THRESHOLD && RIGHT_IR > RIGHT_IR_THRESHOLD)

{

if (LEAN_DIR == LEFT)

lean_right();

else

lean_left();

}

wait(300);

break;

case 0x0001:

// 0 0 0 1

if (LEFT_IR > LEFT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_left();

wait(300);

break;

case 0x0002:

// 0 0 1
 0

//

if (LEFT_IR > LEFT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

if (FRONT_IR < FRONT_IR_THRESHOLD)

lean_left();

wait(300);

break;

case 0x0003:

// 0
 0 1 1

if (LEFT_IR > LEFT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_left();

wait(300);

break;

case 0x0004:

// 0 1 0 0

//

if (RIGHT_IR > RIGHT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

if (FRONT_IR < FRONT_IR_THRESHOLD)

lean_right();

wait(300);

break;

case 0x0010:

// 1 0 0 0

if (RIGHT_IR > RIGHT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_right();

wait(300);

break;

case 0x0012:

// 1 0 1 0

if (LEFT_IR > LEFT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_left();

wait(300);

break;

case 0x0013:

// 1 0 1 1

if (LEFT_IR > LEFT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_left();

wait(300);

break;

case 0x0014:

// 1 1 0 0

if (RIGHT_IR > RIGHT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_right();

wait(300);

break;

case 0x0015:

// 1 1 0 1

if (RIGHT_IR > RIGHT_IR_THRESHOLD && FRONT_IR < FRONT_IR_THRESHOLD)

lean_right();

wait(300);

break;

default:

wait(300);

break;

}

 }

 }

 PORTA_TEMP = PORTA;

 PORTA_TEMP = PORTA_TEMP & SENSOR_MASK;

 if (RIGHT_BUMP || TILT);

 {

stop();

command_motor();

SPEED_L = -100;

SPEED_R = -150;

command_motor();

wait(700);

stop();

command_motor();

 }

// while(LRS0 < LRS0_THRESH || PORTA_TEMP != 0x0001);

}

/**/

/****************************** lean_left **************************************/

void lean_left(void)

{

LEAN_DIR = LEFT;

SPEED_L = MIN_SPEED;

SPEED_R = R_MAGIC_SPEED;

command_motor();

//
wait(10);

PORTA_TEMP = PORTA;

PORTA_TEMP = PORTA_TEMP & LRS1_MASK;

if (LRS0 < 200 && PORTA_TEMP != 0x0004 && LEFT_IR >= LEFT_IR_THRESHOLD)

wait(40);

stop();

command_motor();

}

/**/

/****************************** lean_right **************************************/

void lean_right(void)

{

LEAN_DIR = RIGHT;

SPEED_L = L_MAGIC_SPEED;

SPEED_R = MIN_SPEED;

command_motor();

//
wait(10);

PORTA_TEMP = PORTA;

PORTA_TEMP = PORTA_TEMP & RRS10_MASK;

if (PORTA_TEMP != 0x0003 && RIGHT_IR >= RIGHT_IR_THRESHOLD)

wait(40);

stop();

command_motor();

}

/**/

/******************************* turn_left **************************************/

void turn_left(void)

{

SPEED_L = -L_AROUND_SPEED;

SPEED_R = R_AROUND_SPEED;

command_motor();

if (WALL_F == 0)

{

wait(520);

stop();

command_motor();

}

else

{

//

wait(300);

while(LEFT_IR > LEFT_TURN_THRESHOLD || FRONT_IR > FRONT_TURN_THRESHOLD)

stop();

command_motor();

}

wait(2000);

}

/**/

/****************************** turn_right **************************************/

void turn_right(void)

{

SPEED_L = L_AROUND_SPEED;

SPEED_R = -R_AROUND_SPEED;

command_motor();

if (WALL_F == 0)

{

wait(320);

stop();

command_motor();

}

else

{

//

wait(200);

while(RIGHT_IR > RIGHT_TURN_THRESHOLD || FRONT_IR > FRONT_TURN_THRESHOLD)

stop();

command_motor();

}

wait(2000);

}

/**/

/****************************** turn_around *************************************/

void turn_around(void)

{

wait(2000);

SPEED_L = -L_AROUND_SPEED;

SPEED_R = R_AROUND_SPEED;

command_motor();

if (WALL_F == 0 || WALL_L == 0 || WALL_R == 0)

{

wait(850);

//

while(FRONT_IR > FRONT_TURN_THRESHOLD)

stop();

command_motor();

}

else

{

while(FRONT_IR > FRONT_TURN_THRESHOLD)

stop();

command_motor();

}

wait(2000);

}

/**/

/***************************** change_dir_reverse *******************************/

void change_dir_reverse(void)

{

if (direction == NORTH)

direction = SOUTH;

else if (direction == SOUTH)

direction = NORTH;

else if (direction == WEST)

direction = EAST;

else if (direction == EAST)

direction = WEST;

}

/**/

/****************************** change_dir_left *********************************/

void change_dir_left()

{

if (direction == NORTH)

direction = WEST;

else if (direction == SOUTH)

direction = EAST;

else if (direction == WEST)

direction = SOUTH;

else if (direction == EAST)

direction = NORTH;

}

/**/

/****************************** change_dir_right ********************************/

void change_dir_right()

{

if (direction == NORTH)

direction = EAST;

else if (direction == SOUTH)

direction = WEST;

else if (direction == WEST)

direction = NORTH;

else if (direction == EAST)

direction = SOUTH;

}

/**/

/******************************** victory_dance *********************************/

void record_path(void)

{

int i;

for (i = 0; i <= 143; i++)

{

*(unsigned char *) (0xB600 + i) = 0x00 + maze[i];

}

/*

for (i = 0; i <= PATH_END; i++)

{

switch (path[i])

{

case 0:
printf("FORWARD\n");

break;

case 1:
printf("BACKWARD\n");

break;

case 2:
printf("LEFT\n");

break;

case 3:
printf("RIGHT\n");

break;

default:
break;

}

}

*/

}

void report_path(void)

{

int i = 0;

int j = 0;

/* VT100 clear screen */

char clear[]= "\x1b\x5B\x32\x4A\x04";

/* VT100 position cursor at (x,y) = (3,12) command is "\x1b[3;12H"*/

char place[]= "\x1b[1;1H";
/*Home*/

//
printf("%s", clear);

//
printf("%s", place);

//
printf("\t\t\tPINKY'S MAZE MAP!!\n\n");

for (i = 143; i >= 0; i--)

{

if (j%12 == 0)

{

//

printf("\n\n");

j = 0;

}

j++;

if (i == 65 || i == 66 || i == 77 || i == 78)

{

//

printf("X ");

}

else

{

//

printf("%3d ", *(unsigned char *) (0xB600 + i));

}

}

}

1
16

_1037882038

_1037888260

_1037888574

_1037889834

_1037882883.xls
Chart2

		116		119

		117		119

		116		119

		116		118

		115		116

		112		112

		111		109

		109		106

		106		103

		104		101

		102		99

		100		97

		100		97

		99		96

		98		96

		96		94

		91		90

		90		89

		89		88

		89		88

		89		88

RIGHT

LEFT

Distance(cm)

Reading

IR SENSOR

Sheet1

				IR READINGS

		Distance(cm)		RIGHT		LEFT

		2		116		119

		3		117		119

		4		116		119

		5		116		118

		6		115		116

		7		112		112

		8		111		109

		9		109		106

		10		106		103

		11		104		101

		12		102		99

		13		100		97

		14		100		97

		15		99		96

		16		98		96

		17		96		94

		20		91		90

		22		90		89

		24		89		88

		26		89		88

		28		89		88

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

RIGHT

LEFT

Distance(cm)

Reading

IR SENSOR

Sheet2

		

Sheet3

		

_1037876052

