
University of Florida

Department of Electrical and Computer Engineering

EEL 5666

Intelligent Machines Design Laboratory

Belle the Transformer Robot

Final Written Report

Date: 12/11/00

Student Name: Jeremy Anderson

 TA: Scott Nortman

Rand Chandler

 Instructor: A.A. Arroyo

Table of Contents

Abstract

page 3

Executive Summary

 page 3

Introduction

page 3

Integrated System

page 4

Mobile Platform

page 4

Actuation

page 5

Sensors

page 6

Behaviors

page 8

Experimental layout and Results
page 8

Conclusion

page 9

Documentation

page 10

Appendices

page 10

Abstract

The goal of my project is to build a robot that changes its shape when the lights are turned on or off. The robot must also avoid obstacles while moving around a room in either mode. By using motors, sensors and a microcontroller, the robot will be able to move around and make decisions based on the surrounding environment.

Executive Summary

Belle is alive but I need to put her body cover on. Though Belle does have a minimal obstacle avoidance routine, she still collides with obstacles due to a dead spot in between her left and right infrared detectors. Due to the way I had to drive the electronic speed control, Belle is also moving around but her motor stutters as she moves. Her motion detector is very good, as she can sense approaching people and even approaching cats.

Introduction

The desire to build this robot stems from childhood. When I was younger I played with Gobots and Transformers, and I always wanted them to change shape by themselves. Therefore, the purpose of this project was to build a robot that will change its shape. Since the first transformer I owned was a car that turned into a standing figure – my first autonomous robot will do the same. Further, my first automobile was named Belle so my first autonomous device will also be named Belle. In this paper I will explain the requirements for my robot and how they will be met.

Integrated System

To see the block diagram for the process of transformation and the layout of the platform -- please see the figure marked integrated system. Based on the diagram, the platform satisfies the shape changing criteria of the robot.

Belle’s brain -- a Motorola 68HC11 connected to the TJ-PRO board, relies on the following software structure to make decisions and perform actions.

a.) A routine to sample all detectors

b.) A routine to make decisions based on the sampled IR values

c.) A routine to make decisions based on the sampled detector values

d.) Five output compare routines to generate pulse widths

Belle does not have an operating system. She operates by performing each routine one at a time, and then repeating the loop. Please see appendix for code.

Mobile Platform

Since the goal was to build a robot the changed its shape from a car to a standing figure I needed a platform that would support this behavior. Further, the robot had to be able to move around in either mode. I got help from Randy Wells, a mechanical engineering student, to solve the transformation problem.

To transform I used a 4-bar linkage system to make Belle stand up. The original linkage system allowed for Belle’s trunk to fold down during transformation. Unfortunately, I had to minimize the original linkage system because I could not make Belle short enough. After I modeled the linkages using MATLAB and cardboard I set out to make the actual platform pieces. By drawing the platform parts with Auto-Cad and cutting the parts out with the T-Tec machine, the platform was modeled and cut into shape. For Belle’s drive train I chose the gearbox and universal joints of a radio controlled car. I purchased these parts from Schumacher.

The most embarrassing lesson I learned with the platform was that I needed a second set of wheels to keep the robot from tipping backward when it changed shape – what a terrible oversight.

Actuation

A servo is used to move the legs up or down during the transformation process. Two servos, one for each arm, are used to move the arms during transformation. A single servo is used to steer the robot. A radio controlled car motor is used to drive the robot forward or backward.

Using the 68HC11’s output compare system I operated all of the servos with 800Hz PWM signals. By varying the pulse width I relied on the electronics of the servos to move the servomotors to the correct position. As for the drive motor I used an electronic speed control to move the drive motor. By varying the pulse width it received, I could make the motor move forward or backward.

The most difficultly had in this phase, was developing a good method for controlling the electronic speed control. When I adjusted its internal pots for very slow forward and reverse motion it would gradually speed up. After a few minutes, Belle would be moving too quickly for the IR detectors to react. Then she would crash into objects. To solve this problem I decided to send the speed control a 15ms burst of pulses to drive the motor and then I would send the speed control a pulse width that would return it to neutral. This solution worked but Belle stutters as she moves.

Sensors

In order to help the robot change shape when the lighting changes, a photo-resistor is used. To avoid obstacles I am using infrared detectors. To signal the robot when someone is approaching, I used a motion detector.

a.) A photo-resistor is used to monitor the intensity of the lighting in the room. I used a voltage divider circuit similar to the one we used in class. When the lights are on, the A/D value is 82. When the lights are off and the CDS cell is covered the A/D value is 207. If the A/D value to detect lighting rises above 150, the robot will be in the standing mode. The robot will be in the car mode if the A/D value is below 150. I verified the photo-resistor operation by running the sensor test program available on ICC.

b.) I can approximate the distance between the sensor and the wall by using hacked infrared detectors (Sharp #GP1U5). The outputs of the IR detectors give analog values relative to the amount of IR that is received. Then the A/D samples the detected values and gives the microprocessor a number it can use. Since the sensitivity of an IR detector is limited by the surrounding environment and the intensity of the transmitted IR signal, I verified the detectors by running the sensor test program available on ICC. When using the 40kHz output signal from the TJ-Pro board and a hacked Sharp IR detector at different ranges, I got the following results:

 IR-left

IR-right

Ambient

85

84

2-foot distance
91

95

 1-foot distance
102

101

 Saturated

129

126

c.) A motion detector is used to monitor people approaching the robot. The motion detector senses the movement
 of heat across its pyro-detector. When no movement is detected, it gives a 0 volt output, when motion is detected, the output rises to 5 volts. Since the output of the motion detector is connected to the input capture system, the microprocessor only responds to the rising edge of the motion detectors output.

I hacked a Radio Shack motion detector (#49-425), to detect motion in front of the robot. I hacked the motion detector to save the time, rather than build a supporting circuit for the pyro-detector. To perform the hack, I used an oscilloscope to find the output when the motion sensor is triggered. I found two pins that respond to changes in motion. Pin 17 on its micro-controller, rests at 0V and then rises to 5V when motion is detected. Pin 16 works in the opposite manner. After connecting the sensor the output of pin #17, and connecting the motion detector’s ground to my board’s ground -- I verified the hack by running the sensor test program available on ICC. While performing the test with the micro controller’s A/D system, I got the following range of values

	
	Pin #17
	Pin #16

	No motion detected
	255
	0-1

	Motion detected
	0-1
	255

According to Radio Shack, the range of the detector is 30 feet and the angle of detection is 60 degrees. After testing, I found the threshold of the detector, was 15 feet straight ahead or 10 feet and 20 degrees off center.

The drawback to using this motion detector is that it costs $24.00. The advantages to this motion detector include, very simple hack procedure, and the detector runs off a 9-volt battery.

Behaviors

Belle’s has a simple set of behaviors. She will change her shape based on the lighting conditions or she will change her shape when humans approach her. She can also move around and avoid obstacles in car mode or in the standing mode.

The most difficult part was getting Belle’s obstacle avoidance to work correctly. Once I shielded the IR emitters, the obstacle avoidance worked better. The most embarrassing lesson I learned was that the motion detector will detect movement if its position changes quickly. To correct this mistake I mounted the motion detector to the hood of the car because it does not move during transformation.

Experimental Layout and Results

For my minimal obstacle avoidance program I chose to subtract the sampled values of the detectors from one another. If one side had a considerably larger reading than the other, then my obstacle avoidance routine would turn the wheels. Since both detectors respond differently to the same stimulus, I made sure that when the two values were subtracted there was a large enough difference between the two values to avoid false detections.

 IR-left

IR-right

Ambient

85

84

2-foot distance
91

95

 1-foot distance
102

101

 Saturated
 129

 126

Since the motion detector worked like a switch, I chose to use the input capture system to monitor detections.

	
	Pin #17
	Pin #16

	No motion detected
	255
	0-1

	Motion detected
	0-1
	255

Conclusion

After demonstrating Belle in lab she does meet all of my initial specifications. However, her obstacle avoidance needs to be improved, and her speed control needs to be upgraded in order for her to move around without getting confused. With more time and sensors, I will be able to develop a robust obstacle avoidance algorithm. I could have allowed myself more time if I finalized my platform sooner. During the semester, I made platform changes all the way into November, which gave me very little time to write software. I also satisfied a personal goal, which was to use assembly language to program Belle. To accomplish my goal, I had to use a combination of my EVBU board from EEL4744, and a trial and error method to write Belle’s code. I could not get PC Bug11 to work with the 68HC11A1.

In the immediate future I would like to mount the lexan car body to Belle’s chassis. Then I would like to shorten Belle’s wheelbase as a standing figure. Finally I would like to build a next generation robot that can drive around as a car and then stand up and walk.

Documentation

Fred Martin, The 6.270 Robot Builder’s Guide 2nd edition, MIT Media Lab, Cambridge, MA, 1992.

Joseph Jones, Bruce Seiger and Anita Flynn, Mobile Robots: Inspiration to implementation 2nd edition, A.K. Peters Publishers, Nattick, MA, 1998

Keith L. Doty.
TJ-PRO Assembly Manual; Mekatronix 1999.

IMDL class: Instruction from Dr. Arroyo, Dr. Schwartz, Rand Chandler, and Scott Nortman

IMDL Web Page: http://mil.ufl.edu/imdl/handouts.

Appendices

Please see attached code.

* Title : Belle robot code

* Filename : BELLE.ASM

* Programmer : JEREMY ANDERSON

* Date : December 12, 2000

* Version : Version 1.00

* Description : This program is designed to control Belle -- the shape

* changing robot. This program uses five output copares.

* Four to control servos that manipulate Belle's legs, arms,

* and steering. One to control Belle's electronic speed

* control. One input capture is used to help Belle

* respond to detected motion. The A/D converter is used to

* help Belle's sensors detect the distance between them and

* an object. As well as when the photo-resistor detects a

* lighting change. Seperate subroutines are used to gather

* the detetor values, avoid obstacles, change shape, move

* forward, move backwrd, waste time (delays), and detect

* motion.

**

* NOTE: The number of lines in the comments does not necessarily

* correspond to the number of lines in the program code.

**

**

* Define the address locations of the various registers and user-defined

* constants used in the program

**

*

BAUD EQU $102B ; Baud-rate control register to set the baud rate

OC1M EQU $100C ; Baud-rate control register to set the baud rate

OC1D EQU $100D ; Baud-rate control register to set the baud rate

SCCR1 EQU $102C ; Serial Communication Control Register-1

SCCR2 EQU $102D ; Serial Communication Control Register-2

SCSR EQU $102E ; Serial Communication Status Register

SCDR EQU $102F ; Serial Communication Data Register

OPTION EQU $1039 ; Used to power up the A/D

PACTL EQU $1026 ; Pulse accumulator control

TOC1 EQU $1016 ; OC2 Timer output compare register

TOC2 EQU $1018 ; OC2 Timer output compare register

TOC3 EQU $101A ; OC3 Timer output compare register

TOC4 EQU $101C ; OC4 Timer output compare register

TOC5 EQU $101E ; OC5 Timer output compare register

TCTL1 EQU $1020 ; Timer control 1 register

TCTL2 EQU $1021 ; Timer control 1 register

TFLG1 EQU $1023 ; Timer interrupt flag register

TMSK1 EQU $1022 ; Timer interrupt mask register

ADR1 EQU $1031 ; Address 2 conversion register

ADR2 EQU $1032 ; Address 3 conversion register

ADR3 EQU $1033 ; Address 2 conversion register

ADR4 EQU $1034 ; Address 3 conversion register

ADCTL EQU $1030 ; A/D control status register

EOS EQU $04 ; Unused

CR EQU $0D ; Unused

LF EQU $0A ; Unused

FLUFF EQU 100 ; Unused

 ORG $8000

VOLTAGE RMB 1 ; Unused variable

VOLTAG1 RMB 1 ; Unused variable

RIR RMB 1 ; The converted input voltage of the right IR detector

LIR RMB 1 ; The converted input voltage of the left IR detector

BUMP RMB 1 ; The converted voltage of the bump detector UNUSED

PHOTO RMB 1 ; The converted input voltage of the light detector

PRIOR RMB 1 ; Unused variable

ESC FDB 2 ; Variable for the high part of the PWM - speed control

Temp1 RMB 1 ; Unused variable

VENDA RMB 2 ; Unused variable

FENDA RMB 2 ; Unused variable

LVL RMB 1 ; Unused variable

PWMP1P RMB 2 ; Variable for the number of counts to add

OFFHI RMB 2 ; Variable for the number of counts to add

OFFLO RMB 2 ; Variable for the number of counts to add

WELP RMB 1 ; Unused variable

BUFF RMB 1 ; Unused variable

KOUNT FDB 2 ; Variable used as a 16 bit counter

COUNT RMB 1 ; Variable used as an 8 bit counter

PWMHI RMB 2 ; Unused variable

PWM RMB 2 ; Unused variable

L_ARM FDB 2 ; Variable for the high part of the PWM - left arm

R_ARM FDB 2 ; Variable for the high part of the PWM - right arm

STEER FDB 2 ; Variable for the high part of the PWM - steering

LEGS FDB 2 ; Variable for the high part of the PWM - legs

CENTR FDB 2 ; Unused variable

**

* Initialize Interrupt Jump Vectors

**

 ORG $FFFE ; Reset jump vector. Upon reset

 FDB Main ; go to the start of the program

 ORG $FFE0 ; TOC5/PA3 interrupt vector

 FDB LG_ISR ; to move Belle's legs

 ORG $FFE2 ; TOC4/PA4 interrupt vector

 FDB ST_ISR ; to control Belle's steering

 ORG $FFE4 ; TOC3/PA5 interrupt vector

 FDB RA_ISR ; to move Belle's right arm

 ORG $FFE6 ; TOC2/PA6 interrupt vector

 FDB LA_ISR ; to move Belle's left arm

 ORG $FFE8 ; TOC1/PA7 interrupt vector

 FDB ESCISR ; to move Belle's speed control

 ORG $FFEC ; IC2 interrupt vector used to

 FDB IC2_ISR ; monitor Belle's motion detector.

**

* MAIN PROGRAM

* Description: This program calls the InitSCI routine, prints your text,

* and your list. Then, it returns to BUFFALO.

* Calls: samps, AVOID, Delay, DETECT

**

*

 ORG $9000 ; Start of Main program

Main LDS #$A000 ; Define a stack

 LDAA #%10000000 ; Set up the data direction for

 STAA PACTL ; Port A bit 7 (output)

 LDAA #%10000000 ; Power up the A/D

 STAA OPTION

 LDAA #%00010000 ; Set up the A/D for single

 STAA ADCTL ; channel multiscan

 LDD #3700 ; Set the pulse width so that the

 STD TOC1 ; speed control starts in neutral

 std ESC ;

 LDD #4400 ; Set the pulse width so that the

 STD TOC2 ; left arm starts in the down

 std L_ARM ; position for car mode.

 LDD #2100 ; Set the pulse width so that the

 STD TOC3 ; right arm starts in the down

 std R_ARM ; position for car mode.

 LDD #3250 ; Set the pulse width so that the

 STD TOC4 ; steering starts out centered

 std STEER

 LDD #4800 ; Set the pulse width so that the

 STD TOC5 ; legs start in the down position

 std LEGS ; for car mode.

 LDAA #0 ; Use zero to initially clear the

 STAA RIR ; right infrared sensor variable the

 STAA LIR ; left infrared sensor variable and

 STAA PHOTO ; the photo resistor sensor variable

 LDD #0 ; Use zero to initially clear the

 STD KOUNT ; two bit counting variable

 LDAA #0 ; Use zero to initially clear the

 STAA COUNT ; one bit counting variable

 LDAA #%10000000 ; Set bit seven of the OC1 mask register

 STAA OC1M ; to control PA7

 LDAA #%00000000 ; Preset the output of OC1 data register

 STAA OC1D ; to low

 LDAA #%10101010 ; Set OC2 OC3 OC4 OC5 to clear the

 STAA TCTL1 ; output pin

 LDAA #%00000100 ; Set IC2 to capture on rising edges

 STAA TCTL2 ; to enter interrupt

 LDAA #%11111010 ; Clear the OC1 OC2 OC3 OC4 OC5 IC2

 STAA TFLG1 ; interrupt flags

 LDAA #%11111010 ; Enable interrupt for

 STAA TMSK1 ; OC1 OC2 OC3 OC4 OC5 IC2

 jsr FWD ; Call the subroutine to get

 ldaa #15 ; Belle moving forward

 staa PRIOR ; Currently not used

 CLI ; Turn on the interrupt system

HERE LDAA #$FF ; Set all of the bits to turn on

 STAA $7000 ; the 40kHz LED enitters

 jsr samps ; Sample all of the sensors

 jsr Delay ; Run the delay to pad the time sample time

 jsr samps ; Sample sensors again to get better values

 JSR AVOID ; Call the obstacle avoidance subroutine

 JSR Detect ; Call the motion and light detection routine

 jsr Delay ; Run the delay to pad the time sample time

 bra HERE ; Restart the loop

**

* This interrupt service routine uses OC2 (PA6), to generate a PWM signal

* to control the servo that moves Belle's left arm.

* The frequency of the PWM signal is 800Hz.

**

LA_ISR LDAA TFLG1 ; Check if the OC2 flag is set

 ANDA #%01000000 ; if not get out

 BEQ END_WAV ;

 LDAA TCTL1 ; Check bit 6 of TCTL1

 ANDA #%01000000 ; if it is not set then it must be the

 BEQ LOW ; low time of the pulse so branch to low

 LDAA TCTL1 ; If here it must be the high time

 ANDA #%11000000 ; so toggle output high PA6 = 1

 ORAA TCTL1 ; Use OR so other routines are not effected

 LDD TOC2 ; Get the current time of TOC2

 ADDD L_ARM ; Add the high time for the pulse

 STD TOC2 ; Set the new value as the next TOC2 time

 BRA ROUND ; Go to the end of the routine

LOW LDD TOC2 ; Get the current time of TOC2

 ADDD #40000-L_ARM ; calculate the low time for the pulse

 STD TOC2 ; Set the new value as the next TOC2 time

 LDAA TCTL1 ; Get the present value of TCTL1

 ANDA #%10000000 ; so toggle the output low PA6 = 0

 ORAA TCTL1 ; Use OR so other routines are not effected

ROUND LDAA TCTL1 ; Get the current value of TCTL1

 EORA #%01000000 ; Toggle or clear TCTL1

 STAA TCTL1 ; Toggle output of PA6

END_WAV LDAA #%01000000 ; Clear the OC2 interrupt flag before

 STAA TFLG1 ; leaving the service routine

 RTI ; Return from interrupt

**

* This interrupt service routine uses OC3 (PA5), to generate a PWM signal

* to control the servo that moves Belle's right arm.

* The frequency of the PWM signal is 800Hz.

**

RA_ISR LDAA TFLG1 ; Check if the OC3 flag is set

 ANDA #%00100000 ; if not get out

 BEQ end_wav ;

 LDAA TCTL1 ; Check bit 4 of TCTL1

 ANDA #%00010000 ; if it is not set then it must be the

 BEQ low ; low time of the pulse so branch to low

 LDAA TCTL1 ; If here it must be the high time

 ANDA #%00110000 ; so toggle output high PA5 = 1

 orAA TCTL1 ; Use OR so other routines are not effected

 LDD TOC3 ; Get the current time of TOC3

 ADDD R_ARM ; Add the high time for the pulse

 STD TOC3 ; Set the new value as the next TOC3 time

 BRA round ; Go to the end of the routine

low LDD TOC3 ; Get the current time of TOC3

 ADDD #40000-R_ARM ; calculate the low time for the pulse

 STD TOC3 ; Set the new value as the next TOC3 time

 LDAA TCTL1 ; Get the present value of TCTL1

 ANDA #%00100000 ; so toggle the output low PA5 = 0

 orAA TCTL1 ; Use OR so other routines are not effected

round LDAA TCTL1 ; Get the current value of TCTL1

 EORA #%00010000 ; Toggle or clear TCTL1

 STAA TCTL1 ; Toggle output of PA5

end_wav LDAA #%00100000 ; Clear the OC3 flag before leaving

 STAA TFLG1 ; the interrupt service routine

 RTI ; Return from interrupt

* This interrupt service routine uses OC4 (PA4), to generate a PWM signal

* to control the servo that controls Belle's steering.

* The frequency of the PWM signal is 800Hz.

**

ST_ISR LDAA TFLG1 ; Check if the OC4 flag is set

 ANDA #%00010000 ; if not get out

 BEQ End_wav ;

 LDAA TCTL1 ; Check bit 4 of TCTL1

 ANDA #%00000100 ; if it is not set then it must be the

 BEQ Low ; low time of the pulse so branch to low

 LDAA TCTL1 ; If here it must be the high time

 ANDA #%00001100 ; so toggle output high PA4 = 1

 orAA TCTL1 ; Use OR so other routines are not effected

 LDD TOC4 ; Get the current time of TOC4

 ADDD STEER ; Add the high time for the pulse

 STD TOC4 ; Set the new value as the next TOC4 time

 BRA Round ; Go to the end of the routine

Low LDD TOC4 ; Get the current time of TOC4

 ADDD #40000-STEER ; calculate the low time for the pulse

 STD TOC4 ; Set the new value as the next TOC4 time

 LDAA TCTL1 ; Get the present value of TCTL1

 ANDA #%00001000 ; so toggle the output low PA4 = 0

 orAA TCTL1 ; Use OR so other routines are not effected

Round LDAA TCTL1 ; Get the current value of TCTL1

 EORA #%00000100 ; Toggle or clear TCTL1

 STAA TCTL1 ; Toggle output of PA4

End_wav LDAA #%00010000 ; Clear the OC4 flag before leaving

 STAA TFLG1 ; the interrupt service routine

 RTI ; Return from interrupt

**

* This interrupt service routine uses OC5 (PA3), to generate a PWM signal

* to control the servo that moves Belle's legs.

* The frequency of the PWM signal is 800Hz.

**

LG_ISR LDAA TFLG1 ; Check if the OC5 flag is set

 ANDA #%00001000 ; if not get out

 BEQ End_waV ;

 LDAA TCTL1 ; Check bit 0 of TCTL1

 ANDA #%00000001 ; if it is not set then it must be the

 BEQ LoW ; low time of the pulse so branch to low

 LDAA TCTL1 ; If here it must be the high time

 ANDA #%00000011 ; so toggle output high PA3 = 1

 orAA TCTL1 ; Use OR so other routines are not effected

 LDD TOC5 ; Get the current time of TOC5

 ADDD LEGS ; Add the high time for the pulse

 STD TOC5 ; Set the new value as the next TOC5 time

 BRA RounD ; Go to the end of the routine

LoW LDD TOC5 ; Get the current time of TOC5

 ADDD #40000-LEGS ; calculate the low time for the pulse

 STD TOC5 ; Set the new value as the next TOC5 time

 LDAA TCTL1 ; Get the present value of TCTL1

 ANDA #%00000010 ; so toggle the output low PA3 = 0

 orAA TCTL1 ; Use OR so other routines are not effected

RounD LDAA TCTL1 ; Get the current value of TCTL1

 EORA #%00000001 ; Toggle or clear TCTL1

 STAA TCTL1 ; Toggle output of PA3

 LDAA #%00000010 ; Enable IC2 without

 ORAA TMSK1 ; effecting the other interrupts

End_waV LDAA #%00001000 ; Clear the OC5 flag before leaving

 STAA TFLG1 ; the interrupt service routine

 RTI ; Return from interrupt

* This interrupt service routine uses OC1 (PA7), to generate a PWM signal

* to control the electronic speed control.

* The frequency of the PWM signal is 800Hz.

**

ESCISR LDAA TFLG1 ; Check if the OC1 flag is set

 ANDA #%10000000 ; if not get out

 BEQ EndwaV ;

 LDAA OC1D ; Check bit 7 of TCTL1

 ANDA #%10000000 ; if it is not set then it must be the

 BEQ setlo ; low time of the pulse so branch to low

 LDD TOC1 ; If here it must be the high time

 ADDD ESC ; Add the high time for the pulse

 STD TOC1 ; Set the new value as the next TOC1 time

 BRA EndwaV ; Go to the end of the routine

setlo ldd TOC1 ; Get the current time of TOC1

 ADDD #40000-ESC ; calculate the low time for the pulse

 STD TOC1 ; Set the new value as the next TOC1 time

EndwaV LDAA OC1D ; Get the current value of OC1D

 EORA #%10000000 ; Toggle or clear OC1D

 STAA OC1D ; Toggle output of PA7

 LDAA #%10000000 ; Clear the OC1 flag before leaving

 STAA TFLG1 ; the interrupt service routine

 RTI ; Return from interrupt

**

* This subroutine is called to change Belle into car mode.

* It sets the high times of the pulse widths that control

* the left arm, the right arm, and the legs.

**

CARMD PSHA ; Save contents of B accumulator

 PSHB ; Save contents of A accumulator

 PSHX ; Save contents of X register

 LDD #4600 ; Set the value of the pulse high time

 std L_ARM ; to move the left arm down for car mode

 LDD #2100 ; Set the value of the pulse high time

 std R_ARM ; to move the right arm down for car mode

 LDD #4700 ; Set the value of the pulse high time

 std LEGS ; to move the legs down for car mode

 PULX ; Restore the contents of the X register

 PULB ; Restore the contents of the B accumulator

 PULA ; Restore the contents of the A accumulator

 RTS ; Return from subroutine

**

* This subroutine is called to change Belle into standing mode.

* It sets the high times of the pulse widths that control

* the left arm, the right arm, and the legs.

**

TRNFRM PSHA ; Save contents of B accumulator

 PSHB ; Save contents of A accumulator

 PSHX ; Save contents of X register

 LDD #1950 ; Set the value of the pulse high time

 std L_ARM ; to move the left arm up for standing mode

 LDD #5150 ; Set the value of the pulse high time

 std R_ARM ; to move the right arm up for standing mode

 LDD #2350 ; Set the value of the pulse high time

 std LEGS ; to move the legs up for standing mode

 PULX ; Restore the contents of the X register

 PULB ; Restore the contents of the B accumulator

 PULA ; Restore the contents of the A accumulator

 RTS ; Return from subroutine

**

* This subroutine serves as a delay loop to buffer the

* time between taking samples.

**

Delay PSHB ; Save contents of B accumulator

 PSHA ; Save contents of A accumulator

 PSHX ; Save contents of X register

 PSHY ; Save contents of Y register

 LDaa #$1 ; Put the value $1 in the A-accum

MAS LDX #16000 ; Put the value 16000 in the x-reg

loop DEX ; Decrement X

 BNE loop ; Repeat until X is zero

 DEca ; Decrement A

 BNE MAS ; Repeat until A is zero

 PULY ; Restore the Y register

 PULX ; Restore the X register

 PULA ; Restore the contents of the A accumulator

 PULB ; Restore the contents of the B accumulator

 RTS ; Return from subroutine

**

* This subroutine is called to take samples from the first four channels

* of the A/D port. Then the sampled values are stored into the corresponding

* varibles. The variables modified include, BUMP, LIR, RIR, and PHOTO.

**

samps pshx ; Save contents of X register

 pshb ; Save contents of B accumulator

 psha ; Save contents of A accumulator

 LDAA #%00010000 ; Set up the A/D for single

 STAA ADCTL ; channel single scan

CHILL ldaa ADCTL ; Check ADCTL register to see if the

 ANDA #%10000000 ; conversion complete flag has been set

 BNE CHILL ; If CCF has not been set loop until it has

 ldaa ADR1 ; Get the sampled value of channel 1

 staa BUMP ; and store it into the variable BUMP

 ldaa ADR2 ; Get the sampled value of channel 2

 staa LIR ; and store it into the variable RIR

 ldaa ADR3 ; Get the sampled value of channel 3

 staa RIR ; and store it into the variable LIR

 ldaa ADR4 ; Get the sampled value of channel 4

 staa PHOTO ; and store it into the variable PHOTO

 PULA ; Restore the contents of the A accumulator

 PULB ; Restore the contents of the B accumulator

 PULX ; Restore the contents of the X register

 RTS ; Return from subroutine

**

* This subroutine is called to help Belle avoid obstacles and move.

* It call the subroutines that set the pulsewidths for steering control,

* forward movement, and backward movement.

* Calls: REV and FWD

AVOID pshx ; Save contents of X register

 pshb ; Save contents of B accumulator

 psha ; Save contents of A accumulator

 ldaa LIR ; Get the value of the left IR detector

 LDAB RIR ; Get the value of the right IR detector

 ADDB #35 ; Add an offset to see if the difference

 SBA ; between left and right is significant

 BLT NXCK ; If the left detector sees nothing move on

 LDD #4850 ; Otherwise set the pulse width to

 STD STEER ; move the steering to the right

 JSR REV ; Call the subroutine to move Belle backward

 BRA AUDI ; Go to the end of the subroutine

NXCK LDAA RIR ; Get the value of the right IR detector

 LDAB LIR ; Get the value of the left IR detector

 ADDB #35 ; Add an offset to see if the difference

 SBA ; between left and right is significant

 BLT nxck ; If the left detector sees nothing move on

 LDD #2000 ; Otherwise set the pulse width to

 STD STEER ; move the steering to the left

 JSR REV ; Call the subroutine to move Belle backward

 BRA AUDI ; Go to the end of the subroutine

nxck LDD #3250 ; Otherwise set the pulse width to

 STD STEER ; move the steering to the center

 JSR FWD ; Call the subroutine to move Belle forward

AUDI PULA ; Restore the contents of the A accumulator

 PULB ; Restore the contents of the B accumulator

 PULX ; Restore the contents of the X register

 RTS ; Return from subroutine

**

* This subroutine is called to make Belle move backward. This is done by

* varying the PWM signal controlling the electronic speed control. First the

* PWM is set to keep the speed control moving backward for 30000 counts

* or 15ms. Then the PWM is set so that the ESC returns to nuetral. This was

* done because the speed control I used would speed up if it was on too long.

REV PSHA ; Save contents of B accumulator

 PSHB ; Save contents of B accumulator

 PSHX ; Save contents of X register

 LDD #3875 ; Set the pulse width high time so that the

 std ESC ; speed control will make Belle move backward

 ldX #30000 ; Use X as a counter that starts at 30000 and

run deX ; counts down. This is done because the speed

 bne run ; control is unreliable when running.

 LDD #3700 ; Set the pulse width high time so that the

 std ESC ; speed control is toggled to nuetral

 PULX ; Restore the contents of the X register

 PULB ; Restore the contents of the B accumulator

 PULA ; Restore the contents of the A accumulator

 RTS ; Return from subroutine

**

* This subroutine is called to make Belle move forward. This is done by

* varying the PWM signal controlling the electronic speed control. First the

* PWM is set to keep the speed control moving backward for 30000 counts

* or 15ms. Then the PWM is set so that the ESC returns to nuetral. This was

* done because the speed control I used would speed up if it was on too long.

FWD PSHA ; Save contents of A accumulator

 PSHB ; Save contents of B accumulator

 PSHX ; Save contents of X register

 LDD #3515 ; Set the pulse width high time so that the

 std ESC ; speed control will make Belle move forward

 ldX #30000 ; Use X as a counter that starts at 30000 and

RUN deX ; counts down. This is done because the speed

 bne RUN ; control is unreliable when running.

 LDD #3700 ; Set the pulse width high time so that the

 std ESC ; speed control is toggled to nuetral

 PULX ; Restore the contents of the X register

 PULB ; Restore the contents of the B accumulator

 PULA ; Restore the contents of the A accumulator

 RTS ; Return from subroutine

**

* This interrupt service routine uses IC2 (PA1), to detect if motion has

* occurred. This routine captures on the rising edges sent from the

* motion detector.

**

IC2_ISR LDAA TFLG1 ; Check if the IC1 flag is set

 ANDA #%00000010 ; if not get out

 BEQ OUT_PB

 ldd #1 ; Set the 16 bit accumulator to 1

 std KOUNT ; and set the 16 bit counter KOUNT = 1

 ldaa #18 ; Set the 8 bit accumulator to 18 or less and

 STAA COUNT ; set COUNT=18. Above 18--program will hang

 LDAA #%00000010 ; Clear the OC1 flag before leaving

 STAA TFLG1 ; the interrupt service routine

 LDAA #%11111000 ; Disable IC2 without

 ANDA TMSK1 ; effecting the other interrupts

OUT_PB RTI ; Return from interrupt

**

* This subroutine is called to decide if motion or a light change has been

* detected. If motion has been detected then Belle will remain in the

* mode until COUNT (the counter set in IC2) becomes zero. Then if the

* photo-resistor has detected a light change the Belle will change to the

* corresponding shape. Near total darkness is chosen for Belle to change

* into standing mode. This was done to eliminate the impact of differences

* in lighting for different rooms.

Detect PSHA ; Save contents of A accumulator

 PSHB ; Save contents of B accumulator

 PSHX ; Save contents of X register

 LDAA COUNT ; Get the current value of 8 bit counter

 BEQ LEAF ; when the counter is clear move on

 DECA ; otherwise decrement the value in the A-acc

 STAA COUNT ; and store it as the new value of the counter

 JSR TRNFRM ; Call the routine to make Belle stand

 BRA LEAVE ; After shape change leave the subroutine

LEAF JSR CARMD ; Call the routine to make Belle a car

 LDAA PHOTO ; Get the current value of the PHOTO detector

 SUBA #253 ; Subtract 253 so that complete dark will

 BLT CNG ; make Belle think its dark. Otherwise move on

 JSR TRNFRM ; Call the routine to make Belle stand

 BRA LEAVE ; After shape change leave the subroutine

CNG JSR CARMD ; Call the routine to make Belle a car

LEAVE PULX ; Restore the contents of the X register

 PULB ; Restore the contents of the B accumulator

 PULA ; Restore the contents of the A accumulator

 RTS ; Return from subroutine

**

***************************** END OF PROGRAM *********************************

**

19

