“Tubby” The cleaner

‘Tubby’

The cleaner

University of Florida

EEL 5666

Intelligent Machine Design Lab

Student Name:
Samit Gokhale

Date:

6 December, 2000

Instructor:

Dr. A. Arroyo

1.Abstract……………………………………….3

2.Executive Summary…………………………4

3.Introduction…………………………………..5

4.Mobile Platform……………………………...6

5.Actuation……………………………………..8

6.Electronics

6.1. Sensors……………………………………9

6.2.Special Sensor…………………………….9

7.Experimental Layout and Results………..15

8.Conclusion………………………………….17

9.Documentation…………………………….18

10.Appendix

10.1 Tubby code…………………………….19

10.2 Tubby photos…………………………..35

1. Abstract:

Tubby is an autonomous cleaning robot. It is run by a Motorola 68HC11 microprocessor. It has two 43.2 oz-in torque servo motors driving the cleaning brushes. The driving force is provided by two 110 oz-in servo motors. The main aim of this robot is to cover the entire floor (cleaning) area and clean the surface using its two servo powered polyester brushes. It can travel on carpet as well as ceramic and wooden surfaces.

2. Executive Summary:

The robot I have designed this semester is one that will clean the floor of any room, avoid obstacles and also wall follow, thus cleaning close to all walls. A Motorola 68HC11 microprocessor is used to control the robot. As the robot has to overcome high surface friction, the actuation of the robot is handled exclusively by two 110 oz-in ball bearing servomotors that have been hacked to work as dc motors. The cleaning brushes are driven by two 43.2 oz-in servomotors. A spherical roller supported by roller bearings supports the rear of the platform. All the electronic and mechanical systems are neatly packed in an aesthetically designed platform using CAD modeling software like Pro-Engineering, and manufactured using Fused Deposition Method. Seven IR sensors are mounted on the platform. Three IR sensors are mounted on front and two each are mounted on the side of the platform. Bump switches are also provided on the front of the platform. In addition to these sensors, a special sensor hacked from a color laser printer is used. These sensors provide the robot with data, which is used to perform obstacle avoidance and wall following. As high torque rating servomotors are used, Tubby is able to travel on carpets as well. Tubby initially performs wall following, then travels the surface simultaneously performing obstacle avoidance to cover the entire floor area. During this the two cleaning brushes are continuously rotating using two servomotors. Thus the four servos provide a complete cleaning job of the entire surface area

3. Introduction:

My IMDL project is titled ‘Tubby’. Floor and tub cleaning is often an extremely monotonous job. Hence I decided to design a robot to do this job. It performs random movement and wall following in between. Tubby has 4 actuators, seven IR sensors, three bump switches and a special sensor. All these are integrated to ensure that Tubby covers the entire surface area, while its two polyester brushes scrub the surface on which it travels. The project started with the computer modeling of the entire platform and all the subsystems. These computer models were then assembled to create a virtual model of the robot. After the entire design was ready, the CAD software automatically generated the AutoCAD drawings. The parts made using 5-ply plywood were cut on the T-tek machine using the generated AutoCAD drawings. The remaining parts were manufactured out of ABS plastic directly using the solid models. After the individual parts were manufactured, they were assembled. Simultaneously the code was written. Finally the values of IR sensors and the servo speeds were tweaked to obtain a set of values best suited for the different behaviors.

4. Mobile Platform:
The entire designing of the platform was done using modeling software (Pro-E). The platform is built using 1/8” (.125), 5-ply plywood and ABS plastic. The base of the platform is built using wood. The sides, which hold the Infrared sensors and bump switches, are constructed using wood as well as plastic. The wooden base supports the entire electronics system as well as battery pack. As some of the parts made from ABS plastic have been specifically designed for holding the various systems, they have shapes which are extremely difficult to manufacture using conventional manufacturing methods. Hence for these parts, a solid model (CAD model) was created. This model was now virtually sliced, so that each slice holds the cross section information. Then ABS plastic was deposited in the shape of each cross section, one on top of another using Fused Deposition Method. The two cleaning brushes are supported by the front of the platform. A spherical castor wheel is provided in the front to provide support to the entire platform. A normal castor wheel was initially used. But it was observed that it was extremely difficult to make the robot move in a straight line. Hence a spherical castor was used. The spherical castor has roller bearings, which support the plastic roller, to assist straight-line motion. For proper cleaning it is required that the brushes press down on the floor. For this, a heavy spherical castor was selected. It is also mounted as close to the brushes as possible. Thus it provides that extra weight near the brushes necessary to press them down. In addition to the heavy spherical castor, the brushes are mounted so that they are slightly below the level of the spherical castor as well as the driving wheels. This guarantees that the brushes will be pressed down when the robot travels over the floor surface. The cleaning brushes and the driving wheels are mounted to the servomotors using specially designed holders. These holders provide a positive contact between the motors and the brushes/wheels. The cleaning brushes are riveted to the holders, whereas the drive wheels are screwed to the holders. The servomotors are screwed to the platform using special attachments, which were manufactured from ABS plastic. These attachments make the mounting robust and durable. As tubby might be needed to clean in wet environment, the entire platform is of an enclosed design. The top part of the platform is aesthetically designed to cover all the electronic items and provide a pleasing look to the robot.

5. Actuation:
Tubby is powered by four servomotors. Out of them two are driving motors and two are cleaning motors. The cleaning motors are 43.2 oz-in servomotors, which drive the two polyester brushes. These servomotors are not hacked. Hence they do not provide continuous rotation to the brushes. Instead they keep rotating back and forth continuously. This motion is similar to that of the rotor in a washing machine. The two servos also make the brushes rotate in opposite direction. This is necessary as the opposite rotation of the brushes provides an opposing torque, which balances the robot, which would otherwise topple. For effective cleaning, the brushes are mounted slightly below the level of the spherical castor as well as the driving wheels. However because of this mounting, the brushes create a huge opposing force due to friction. Hence the driving motors have to provide enough torque to overcome this large amount of friction created by the brushes. This is especially true when the robot is cleaning a carpet. Hence two 110 oz-in motors are provided which take care of the friction and provide enough driving force to actuate the platform and the heavy castor.

6. Electronics:

The microprocessor used for the control of the robot is Motorola 68HC11 microprocessor. This drives all the four servo motors, as well as the Infrared emitters and detectors. The microprocessor is placed at the center of the platform. The power source for the electronics is provided by a 6 Ni-cad battery pack.

6.1. Sensors:

Tubby is provided with IR sensors to detect obstacles. The IR sensors are also used for wall following. Three IR sensors are located on the front of the robot. These sensors map the area in front of the robot. They are used in obstacle avoidance and to navigate the robot. Two IR sensors each are also mounted on the sides of the platform. The data collected by these sensors is used to guide the robot for wall following. As the robot is going to have random motion it is also equipped with bump sensor. There are three bump switches located on the front of the robot and connected in parallel that make up the bump sensor. The sensor is triggered if any of the switches are pressed. These switches are provided to make sure that he robot detects any bumps up front. In addition to these sensors a special sensor was also designed. It is discussed in detail below.
6.2. Special sensor:

The special sensor used for the robot was obtained from a color laser printer. As shown in the figure 6.2.1, the color laser printer has a carousel unit, which houses all the four-toner cartridges.

[image: image1.png]
Fig 6.2.1

For it to recognize the four colors, the toner cartridges are provided with flags of different width. A position sensor is provided, which monitors the carousel for the stop position flags. As the four flags are of different widths, each toner cartridge takes different time to pass the sensor. Thus the position sensor detects which toner cartridge is present. For the purpose of this robot, a Hewlett Packard 4500 DN color laser printer was hacked, and the above mentioned position sensor was removed from the printer. The same position sensor was converted and used as a special sensor. Figure 6.2.2 shows a rough schematic of the sensor.

Fig 6.2.2

The sensor has a light emitting source and a light-detecting source. It is supplied with a 5V-power supply. The sensor has a signal lead, which gives a 5V signal as an output, as long as the light emitted from the emitter falls on to the receiver. As soon as the light is cut off, the sensor bleeds to 0V-output voltage. Fig 6.2.3 shows the wiring diagram for HP4500DN printer.

[image: image2.png]
Fig 6.2.3

[image: image3.png]
Fig 6.2.4

 As shown by the highlighted area (fig 6.2.4), the special sensor has three wires LED 5V, signal GND and the third is the actual signal output wire. For the present robot, a sensor mounting was designed to house this sensor. This sensor is mounted on the back of the robot. A trigger lever and a leaf spring type pushback spring was designed to allow the trigger lever to return back to its original position after triggering the position sensor. This special sensor is used as a bump switch. When the robot reaches rams against an obstacle while backing, the trigger lever is pushed, which causes the sensor to send a 0V output instead of a 5V output.

7. Experimental Layout and Results:

After the code was written, a whole set of IR sensor readings were taken and then the best-suited values were selected for the different behaviors. The IR sensor readings are tabulated below in table 7.1

	Distance
	Front left
	Middle
	Front right
	Left front
	Left back
	Right front
	Right back

	(inch)
	
	
	
	
	
	
	

	0
	121
	128
	128
	128
	128
	126
	128

	5
	117
	126
	128
	108
	119
	118
	118

	7
	112
	124
	127
	100
	110
	113
	114

	10
	100
	114
	118
	91
	100
	105
	107

	15
	93
	102
	108
	88
	94
	97
	100

	20
	90
	96
	102
	88
	91
	94
	96

	25
	88
	92
	97
	88
	90
	92
	95

	Infinity
	87
	88
	91
	88
	90
	88
	91

Table 7.1

From the above readings it is observed that the values returned by two sensors is different even when both are at same distance from an obstacle. Hence the limiting values for IR sensors in the code were tweaked to rectify the difference in readings.

As Tubby has to ensure that it cleans close to the wall, wall following subroutine was incorporated in the code. The wall follow routine runs for 10% of obstacle avoid routine. To realize this, two counts (count1 and count 2) were defined. Table 7.2 shows the values of the two counts obtained from the code.

	Count1
	Count2
	Remarks

	0
	1
	

	25
	5
	wall follow

	50
	10
	

	75
	15
	

	100
	20
	

	125
	25
	

	150
	30
	

	175
	35
	obstacle avoid

	200
	40
	

	225
	45
	

	250
	50
	

	275
	55
	wall follow

	300
	60
	

	325
	65
	

	350
	70
	

	375
	75
	

	400
	80
	obstacle avoid

	425
	85
	

	450
	90
	

	475
	95
	

	500
	100
	

	525
	105
	wall follow

	550
	110
	

	575
	115
	

Table 7.2

As seen from the above table, Tubby initially performs wall following, and then obstacle avoidance. After some time it repeats the process again. This continues till the entire floor area has been covered.

8. Conclusions:
I was able to satisfy almost all the goals that I was aiming for at the start of this class. The robot performs wall following very well. I would like to expand the battery pack for the robot to enable Tubby to clean larger rooms. Also, I would like to implement a self-charging circuit and create a recharging station so the robot will be completely autonomous. The other major problem I had was the wheels slipping on the ground due to the cleaning brushes pressing hard on the floor. For this I would like to use spring mounted cleaning brushes, which would ensure that the wheels do not slip. The biggest time factor I had was in calibrating the servos and the sensors. The servos were significantly different in their sensitivity to pulse width changes and it took a long time to find values that made them do what I wanted. The IRs were also very different and it took a great deal of trial and error to find the values I needed especially in the wall following routine.

9. Documentation:

Books:

 Fred Martin.
The 6.270 Robot Builder’s Guide; 2nd edition, 1992.

Manuals:

Keith L. Doty.
TJ Pro Assembly Manual; Mekatronix 1999.

Keith L. Doty.
TJ Pro Users Manual; Mekatronix 1999.

The ICC11 Primer

IMDL Web Page
http://mil.ufl.edu/imdl/handouts.

Catalogs:

Allied Electronics

Grainger Industrial supplies

Small Parts Catalog

Mc-Master catalog

10. Appendix:

10.1 Code for Tubby:

/**

 *

 * Title

Tubby

 * Programmer
Samit Gokhale

 * Date

16 November 2000

 * Description

Tubby is an autonomous robot that cleans floor/carpet

and tubs.

 **/

/*************************** Includes ********************************/

#include <tjpbase.h>

#include <hc11.h>

#include <math.h>

/************************ End of Includes ****************************/

/*************************** Constants ********************************/

#define LMOTOR

0

#define RMOTOR

1

#define LBRUSH

0

#define RBRUSH

2

#define BRUSH_F

2050

#define BRUSH_R

1050

#define LSTOP

0

#define RSTOP

0

#define RFWD

100

#define LFWD

60

#define RREV

-60

#define LREV

-100

#define RSLOW

75

#define LSLOW

28

#define LWALL_FIR
analog(1)

#define R_IR

analog(2)

#define RWALL_FIR
analog(3)

#define L_IR

analog(4)

#define LWALL_BIR
analog(5)

#define MID_IR

analog(6)

#define RWALL_BIR
analog(7)

/*MISCELLANEOUS*/

#define AVOID

98

#define CLOSE

120

#define WALL_CLOSE
105

/************************ End of Constants ****************************/

/*************************** Prototypes *********************************/

void forward_avoid(void);

void wall_follow(void);

void floor_clean(void);

void turn(void);

void smooth(void);

/************************ End of Prototypes *****************************/

/**************************Declarations***********************************/

int
lwall_f,lwall_b,rwall_f,rwall_b ,rir, lir, mir;

int lspeed,rspeed;

int onleft = 0 ,onright = 0 ;

int count1 = 0 ,count2 = 1 ;

int mode = 0 ;

int random = 1 ;

int LASTL = 0 ,LASTR = 0 ;

int i,j = 0 ;

/**************************End of Declerations****************************/

/****************************** Main ***********************************/

void main(void)

{

init_analog();

init_clocktjp();

init_motortjp();

init_servotjp();

/*Turn on IR emitters */

(unsigned char) 0x7000 = 0xFF ;

while(1)

{

if (mode == 0)

{

wall_follow();

floor_clean();

}

else if (mode == 1)

{

forward_avoid();

floor_clean();

}

else

{

while(1){};

}

}

}

/***********************End main Function ********************************/

/******************Subroutine for forward_avoid***************************

*****************Avoids obstacles when moving forward*********************/

void forward_avoid(void)

{

rir = R_IR;

lir = L_IR;

mir = MID_IR;

if (mir > AVOID)

{

if (rir >= (lir + 12))

{

lspeed = LSTOP;

rspeed = RFWD;

}

else if ((lir + 12) > rir)

{

lspeed = LFWD;

rspeed = RSTOP;

}

}

else

{

if ((rir - 4) > AVOID)

{

if ((lir + 7) > AVOID)

{

lspeed = LFWD;

rspeed = RFWD;

}

else

{

lspeed = LSLOW;

rspeed = RFWD;

}

}

else if ((lir + 7) > AVOID)

{

if ((rir - 4) > AVOID)

{

lspeed = LFWD;

rspeed = RFWD;

}

else

{

lspeed = LFWD;

rspeed = RSLOW;

}

}

 /*random turns only occur when not avoiding any objects*/

else

{

++random;

if (random == 1500)

turn();

lspeed = LFWD;

rspeed = RFWD;

}

}

/*routine for front bumper or stuck in tight situation*/

if ((FRONT_BUMP)
|| (((lir + 9) > CLOSE) && ((rir - 4) > CLOSE) && (mir > CLOSE)))

{

lspeed = LSTOP;

rspeed = RSTOP;

smooth();

wait(50);

lspeed = LREV;

rspeed = RREV;

smooth();

wait(600);

turn();

lspeed = LFWD;

rspeed = RFWD;

}

smooth();

 /*wall follows 10% of time*/

if ((count2 % 50) < 5)

mode = 0;

else

mode = 1;

}

/********************End of forward_avoid function*****************************/

/*********************Subroutine for wall_follow***********************

*****************Performs wall following when called*******************/

void wall_follow(void)

{

rir = R_IR;

lir = L_IR;

mir = MID_IR;

lwall_f = LWALL_FIR;

lwall_b = LWALL_BIR;

rwall_f = RWALL_FIR;

rwall_b = RWALL_BIR;

if (((lwall_f + 10) > WALL_CLOSE) && ((lwall_b + 5) > WALL_CLOSE))

{

onleft = 1 ;

onright = 0 ;

if (lwall_f > (lwall_b - 2))

{

if (lir > 96)

{

lspeed = LFWD;

rspeed = RSTOP;

 }

else if (lir > 92)

{

lspeed = LFWD;

rspeed = RSLOW;

}

else if (mir > 108)

{

lspeed = LFWD;

rspeed = RSTOP;

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

}

else if ((lwall_b - 2) > lwall_f)

{

lspeed = LSLOW;

rspeed = RFWD;

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

}

else if ((rwall_f > WALL_CLOSE) && ((rwall_b - 2) > WALL_CLOSE))

{

onright = 1 ;

onleft = 0 ;

if ((rwall_f + 2) > rwall_b)

{

if (rir > 110)

{

rspeed = RFWD;

lspeed = LSTOP;

}

else if (rir > 100)

{

rspeed = RFWD;

lspeed = LSLOW;

}

else if (mir > 120)

{

lspeed = LSTOP;

rspeed = RFWD;

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

}

else if ((rwall_b - 2) > rwall_f)

{

lspeed = LFWD;

rspeed = RSLOW;

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

}

/*if no close wall detected*/

else if (((lwall_f + 10) < WALL_CLOSE) && ((lwall_b + 5) < WALL_CLOSE) && (rwall_f < WALL_CLOSE) && ((rwall_b - 2) < WALL_CLOSE))

{

/*goes back to wall if side IR sensors do not detect a wall*/

if (onright == 1)

{

rspeed = RSLOW;

lspeed = LFWD;

}

else if (onleft == 1)

{

rspeed = RFWD;

lspeed = LSLOW;

}

 /*finds wall initially*/

else

{

if ((mir > CLOSE) && (rir >= (lir + 10)))/*check this +7????*/

{

lspeed = LSLOW;

rspeed = RFWD;

}

else if ((mir > CLOSE) && ((lir + 10) >= (rir)))

{

lspeed = LFWD;

rspeed = RSLOW;

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

}

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

if ((FRONT_BUMP)
|| (((lir + 9) > CLOSE) && ((rir - 4) > CLOSE) && (mir > CLOSE)))

{

lspeed = LSTOP;

rspeed = RSTOP;

smooth();

wait(50);

lspeed = LREV;

rspeed = RREV;

smooth();

wait(1000);

onright = 0;

onleft = 0;

turn();

lspeed = LFWD;

rspeed = RFWD;

}

smooth();

/*wall follows 10% of time*/

if ((count2 % 50) < 5)

mode = 0;

else

mode = 1;

}

/**********************End of wall_follow function***********************/

/*********************Subroutine for floor_clean*************************

***********************Performs floor cleaning***************************/

void floor_clean (void)

{

/*counter for time slicing main routines*/

++count1;

if ((count1 % 5) == 0)

{

++count2;

}

for (i = 0 ; i < 10000 ; i++)

{

if (j == 0)

{

servo(0 , 1050);

servo(2 , 2050);

}

else

{

servo(0 , 2050);

servo(2 , 1050);

}

}

if(j == 0)

j = 1 ;

else

j = 0 ;

}

/**********************End of floor_clean function***********************/

void turn(void)

/**

 * Function: Will turn in a random direction for a "random" amount of *

 * time, dictated by the fast changine lower bits in

*

 *
 mseconds().

 *

 * Returns: None *

 * *

 * Inputs *

 * Parameters: None *

 * Globals: None *

 * Registers: TCNT *

 * Outputs *

 * Parameters: None *

 * Globals: None *

 * Registers: None *

 * Functions called: motorp(), wait()

*

 * Notes: *

 **/

{

int i;

unsigned rand;

rand = TCNT;

if (rand & 0x0001)

/*turn left*/

{

rspeed = RFWD;

lspeed = LREV;

smooth();

 }

else

/*turn right*/

{

rspeed = RREV;

lspeed = LFWD;

smooth();

}

i=(rand % 1024);

if(i>250)

wait(i);

else

wait(250);

random = 1;

}

/***********************End Function turn *******************************/

/*********************Subroutine for smooth******************************

*****Smooths out motion by stepping down by 10 to the desired speed******/

void smooth(void)

{

int L = 0, R = 0, LX = 0, RX = 0;

LX = fabs((lspeed - LASTL) / 10);

RX = fabs((rspeed - LASTR) / 10);

if (lspeed > LASTL)

{

while (L < LX)

{

lspeed = (LASTL + 10);

motorp(LMOTOR, lspeed);

 ++L;

}

}

else if (lspeed < LASTL)

{

while (L < LX)

{

lspeed = (LASTL - 10);

motorp(LMOTOR, lspeed);

 ++L;

}

}

if (rspeed > LASTR)

{

while (R < RX)

{

rspeed = (LASTR + 10);

motorp(RMOTOR, rspeed);

++R;

}

}

else if (rspeed < LASTR)

{

while (R < RX)

{

rspeed = (LASTR - 10);

motorp(RMOTOR, rspeed);

++R;

}

}

LASTL = lspeed;

LASTR = rspeed;

}

/***********************End of smooth function******************************/

10.2 Tubby Photos:

[image: image4.jpg]
Rear View

[image: image5.jpg]
Front View

Signal Gnd Led 5V

Position sensor PS10 from HP 4500 DN color laser printer.

Schematic of special sensor

35

