Alex Slverman
TA: Scott Nortman
TA: Aamir Qayumi

A. A Arroyo
University of Horida
Department of Electrica and Computer Engineering
EEL 5666

Intelligent Machines Design Laboratory
FINAL REPORT

TABLE OF CONTENTS

Opening
AbSract----==eommm oo e Ry3
EXECULIVE SUMIMBIY- - === - - e m o e oo oo e e e e e e e Pg 3
INtrOdUCH O - - == = = = === === oo oo oo e Pg 4
Main Body
Integrated Sy et == =====- e e oo e Pg 5
Mohbile Plaform---------- - Pg 5
F e (1 (o e L Pg6
SENSON S === === == === e Ry 6
BeNaVIOrS === === === oo Ry6
Closing
(0 g e 1 [0 e Pg 8
DOCUMENEEi Ok - - - = = = = == = === === oo oo o o oo o e Pg 9
AppendiX (COAE)---------====== oo Pg 10

OPENING

Abstract:

My robot, Obot-ray, was designed to be an autonomous competitor in a game of
my creation. In thisreport, | will first discuss the actual game the robot was to participate
in; followed by a discusson of Obot-ray.

The game wasto be smilar to atank smulator. In the game, thefidd and
obstacles, if any, were to be unbeknowngt to the robot at the start of the match. Thus,
using only red time information, the robot must navigate through the field, and combat
with other competitors. In order to recognize the opponent, each competitor must have
an IR beacon atop it.

Once the opponent is found, the robot must attack with alaser, aimed to hit a CdS
cdl. Thelaser isto fire over aone second period. Thus, in order to facilitate Robot’s
am, it should dowly sweep the laser across the area were the opponent is.

The gamesto be played for this class will have onefind twist. Obot-ray will not
play againgt another robot, but againgt a human controlled machine. This providesfor a
way to interact with Obot-ray, and to compare his skill at the game to a control device
that receives much more information at the game than it does, namdy ahuman. Findly,
the human controlled opponent was to be aturret with the actions controlled viaa
Nintendo controller.

Executive Summary:

In this section, | am going to talk about what actualy worked throughout the
entire process. To begin with, the project began with assembly of the MRC11 and
MSXO01 boards. These boards were to play host to the intelligence system, and sensory
information for Obot-ray.

Next, | hacked servosto act as dc motors to move Obot-ray around. | attached an
unhacked servo to mount an IR can aop. | changed the Tarik servo code, so that it
would aso contral the bridge servo with the same function.

After the boards, | assembled the platform. The platform was a standard Talrik 11,
platform for the most part. Coming off the front of the body isaplank. At oneend, is
the magnifying glass, and at the other a CDS cdll to detect the laser. The detection
system was tested, and found that it produced numbers that were far apart for bright light
and the laser. So, Obot-ray could detect laser shots that hit it.

The IR rangers made life easy. Firg, they did not need to be hacked. The only
changes that were made, was the power and signa wires needed to switch positions when
put on the header.

Firing the laser proved more difficult than | thought. | decided on aBJT to fire
the laser. It worked about 75% of thetime. Also, whenever Obot-ray was off, or not
running a program, the laser would stay on.

S0, it looked like | only had software l€ft for the most parts. Then, my MRC11
crashed, and some chips on it burnt out over thanksgiving. After that, | had to make
repairs 0 that | findly got it running programs again. However, after his burnt out, many
of Obot-ray’s periferds would not work on aregular basis, and that is where my project
ended.

Introduction:

The subject of roboticsis afascinating area. Many a book iswritten each year on
how to build them, how they affect modern life, and what we should expect in the near
future. 1, however, know what to expect in the near future, the need to build arobot for
IMDL. So, my task began with what kind of “brain”. | choose the ever popular a U.F.
68HC11. Many students are tempted to use it becauseit is chegp and widely available,
that iswhy | chose the 68 11.

However, | dso fed the 68 11 isgood processor with its mgjor downfalls being
and antiquated indruction set and not nearly enough registers. So, my god becameto
have my robot play asmple game, laser tag, and see just how much juice | can squeeze
from our dear Motorola microprocessor.

S0, In the paper | tak about the different systems | am using, i.e. the platform,
actuation, sensors and other hardware. In addition, | discuss the code that gives the robot
its behaviors and dlow it to react to theworld. Ladtly, | tak about what | actudly
accomplished, problems encountered, and future work.

MAIN BODY

Integrated System:

The brains of Robot, as previoudy stated, isaMotorola 68HC11 based board with
64k expanded ram. In addition, | am using this board in conjunction with the sensory
expangon board; this provides the interface for the mgority of interactions my robot has
with the real world. The board provides connections for many IR detectors, motor
drivers, and servo driversto say the least.

Mobile Platform:

The body of my robot isto be Smilar, if not an unmodified Tdrik |1 body. This
body provides good rdligbility in its Smplistic design, is easy to assemble and make
addition to, and looks to be light, which will increase speed. This platform is aready st
to use the MRC11 microcontroller and MRSX01 sensory board from Mekatronix(both
designed by Scott Jantz). Furthermore, Obot-ray will have a much more complex sensor
aray than the CdS, IR, and Bump sensorsfound on T 1. A picture of Tarik 1I’'sfront is
seen in Fg. 1(from www.mekatronix.com).

Actuation:

Hacked servos propel Obot-ray about the playing fidld. While Servos do not
provide the power(torque * speed) of some DC motors, they offer ease in that the
controller circuitry for them is dready built into them and the sensory board. To usethe
servos, | performed the Talrik hack described by Mekatronix in the Tdrik assembly
manud.

In addition, so that Obot-ray can look around for opponents with out actualy
moving, a servo has adso been mounted on the bridge. OC1 dso contrals this servo, like
the two hacked servos.

Sensors.

Obot-ray, has 40 kHz and 32kHz IR detectors to use for obstacle avoidance and
location of other competitor, bump sensorsin case of collision, and CdS cdlls to detect
hits. For the IR detectors, | used two Sharp rangers, since we were not able to locate
replacement cans for the sharps that can be hacked. However, the rangers provide much
more consstent data for range finding.

| have used an unhacked IR can for opponent detection. Using the unhacked can,
alows for opponent detection to be performed with different frequency IR than the
rangers use. With this setup, opponent detection does not interfere with the rangers.

In order to regigter hits, the robot must have more than asimple CdS cdll to
register hits. With just aCdS cdll, or even afew, the area the competitors need to hit
would make it very hard to aim, unlessthey are in very close proximity. In order to get
around this problem each hit zone will have aconvex lensto hit. The purpose of the lens
isto create alarger hit zone that will direct shots onto the CdS sensor.

Thelaser usedisa5mW class ll1alaser pointer. The switch was made to be
aways closed, via super glue, and the laser was hooked up across the emitter- collector
junction of aBJT. Then asingle form the the HC11 through aninverter, to the base of
the BJT turns on and off the laser.

Behaviors:

At the beginning being able to play competitively againg a human controlled
opponent was to be the mogt difficult part of the task at hand. To begin with, asal robots
must, Obot-ray can demonstrate obstacle avoidance. Thisisfor obvious reasons.
Creative use of obstacles by the robot was to be an important behavior, but after the
board crashed time did not dlow for it.

S0, the behavior scheme that was findly implemented on Obot-ray isthus. Fird,
drive, reacting to collisons and avoiding obstacles. Then, information from the sensor
mounted on the bridge servo is used to determineif an enemy is present. If the enemy is
present the robot goes into shoot mode. In addition, hits are detected in the main loop.
At firgt | thought detection of hits would need to be inerupt driven, but as time was
running out, and the shots were long enough, | had Obot-ray smply poll the CDS cdll to
detect hits. If ahit is detected, Obot-ray spins around.

When an opponent is detected we go into shoot mode. For the shooting
behaiveor, is decided to go with along shot over a couple short pulses. This makes for

much easer detection. So, to shoot, the robot firesits laser while rotating at adirection
oppisite to the bridge servoes position from center. If the bredge servo is centered, then
Obot-ray rotates one direction then the other while shooting.

Origindly, | was to use sensor information to determine the best method to try to
defeat the opponent with. Al for Obot-ray wasto be an integrd part of asuccessful
design in my opinion. Thiswas the reason for my choice of the smple platform, and
keeping the hardware side as easy as possible. However, after the MRC11 board crashed,
and | basicaly had to build arobot in aweek fancy Al and behaviors were not an option.

CLOSING

Conclusion:

Findly, I successtully built ran, destroyed, and rebuilt an autonomous agent
capable of playing laser tag. After having to repair my MRC11 and rewrite my code,
Obot-ray’sinterna running was kept very smple. However, | was satisfied, after taking
into account everything that went wrong, with what | was able to get Obot-ray to do.

My work was had some very severe limitationsto it. By design, my robot was to
be ampligtic from a hardware standpoint. This should have been accomplished, but with
trying to repair Obot-ray after catastrophic failure, I would describe the hardware as
anything but smpligtic. Due, to the many setbacks | faced, my coding time was limited,
and thusin my smple software is gpparent another limitation of my work.

New advice for sudentsto follow in IMDL, is nothing new. Start early, and don’t
expect anything to work right away. Always have replacement chips for your boards,
you never know what is going to burn out or when. Findly, take alight course load with
this class, and expect alot of deepless nights.

If I had the project to start over, | would do afew things differently. To begin
with, | would back up my files very, very often; disk failures are bad. 1 would aways
have had every spare part imaginable for repairs. Lastly, | would have made the hit
detection, interrupt driven with the IC functions of the HC11. Although, it worked fine
polling the analog port, with the way the laser max out the CDS cdll, | could have had the
hits generate an interrupt (like it should be done, hits take effect right away).

Documentation
Mekatronix. “Tdrik Assembly Manud.” Gainesville, H 1999.

APPENDIX

l)Modified servotk.c so that OC1 aso controlls third servo from peizo pin.

10

/**

11

*Title servotk.c (Servo Drivers for Talrik) *
* Programrer Drew Bagnell, Talrik drivers *
* Date July, 1998 *
* Version 1 *
* *
*

Description: Servo drivers based on the TJ/ TJP standard drivers

*
*

**/

/**************************** Includes

**********************************/

#i ncl ude <hcll. h>
#i ncl ude <m | . h>

/**

**/

/**************************** Constants
*********************************/

#def i ne HALFPERI OD 20000 /* 50Hz refresh for each servo */
/**

**/

/*************************** Prototypes

*********************************/

#pragma i nterrupt_handl er servo_hand
void init_servos(void);

void servo(int, int);

voi d servo_hand();

/**

**/

/***************************** Gobals

**********************************/

unsi gned int w dth[3]; [* width[] is the on-tinme for each servo*/
unsi gned int current_w dt h;
char signal _state, servomask[3];

/**

**/

voi d
i nit_servos(void)
/**

* %

* Function: Initializes all necessary variables for the servos.

*

* Returns: None

13

* I nputs

* Par amet ers: None

* G obal s: None

* Regi sters: None

* Qut puts

* Par amet ers: None

* d obal s: wi dth[], signal _state, servomask[], current_w dth
* Regi sters: TOC1, PORTB, TMSK1, TCTL1

* Functions called: None

* Not es: None

EE R R R I R I R I R R R O I I R R O I R R I R R

*/
{

| NTR_OFF() ;

/[linstall interrupt handler on OCl
*((void (**)())Oxffe8) = servo_hand;

CLEAR BI T(OC1M Oxff); /* Interrupt will not affect OC pins
*/

width[0] = width[1] = wdth[2] = 0; [/* Mtors start turned off */

TOC1 = 0;

signal _state 0;
current_width = 0;

servomask[0] = 0x10; /1 nodified servo masks oc4
servomask[1] = 0x80; /1 ocl
servomask[2] = 0x08;

/* PA gates on */

SET_BI T(PACTL, 0x88) ; /* SET PORTA, BIT7 (OCl) to
out put */

SET_BI T(TMSK1, 0x80) ; /* Enable OCl interrupt */

I NTR_ON();
}
voi d

servo(int index, int neww dth)

/**

* *

* Function: Sets one of the servos to the speed defined by neww dth
*

* Returns: None

*

14

* Inputs

* Par amet ers: i ndex, newwi dth
* d obal s: None

* Regi sters: None

* Qutputs

* Par aneters: None

* G obal s: wi dt h[i ndex]

* Regi sters: None

* Functions called: None

* Notes: None

EE R I S I b S I R S R R I R I O
*/

asm("ldd % ndex \n"

"aslb \n"
"ldy # width \n"
"aby \n"
"l dd %mewwi dth \n"
"std 0,y");

}

voi d

servo_hand()

/**

* %

* Function: Interrupt handler for servo signals.

*

Interrupt is OClL. Servo_1 is on PA4 and Servo_2 on PA7. *

* Returns: None
*

* Inputs

* Par anet ers: None

*

* d obal s: wi dth[], signal _state, servomask[], current_wi dth
*

* Regi sters: None

*

* Qutputs

*

15

* Par anet ers: None

* d obal s: current _wi dth

*

* Regi sters: TOCl, PORTA, TFLGL

*

* Functions call ed: None

*

* Notes: None

*

LR R R R SRR SRS EREEEREEEEREREEREEEERESEEREEEEEEREREEEREEEEREEEEE SRR EREEE SRR EREE SRR EREEES

*/

char odd, index;
unsi gned int pw dth;

/*
signal _state = 0 -> Turn on servo0
signal _state =1 -> Turn off servoO
signal _state = 2 -> Turn on servol
signal _state = 3 -> Turn off servol
*/
signal _state &= 0x07; /[* Only use last 2 bits */
if ((signal_state & 0x04))
i ndex = 2;
el se
{
i ndex &= 2;
index = (signal _state >> 1); [/* index references current servo
*/
}

odd = (signal _state & 0x01);
pwi dt h = *(w dt h+i ndex) ;
if ((pwidth == 0)&&(!(o0dd)))

TOC1 += HALFPERI OD
si gnal _state++

}
el se
i f (odd)
TOC1 += (HALFPERI OD - current_w dth);
el se
TOCLl += pwi dt h;
PORTA ~= *(servonmask+i ndex) ;
}

current _wi dth = pwi dth;
si gnal _st at e++;
if (signal_state == 6)

16

signal _state = 0;

CLEAR FLAG(TFLGL, 0x80);

/*

Cl ear

OCl1l1

flag */

17

INMAIN CODE

18

/**************************** Includes

**********************************/

19

21

#i ncl ude <nytk. h>

23

24

#i ncl ude <stdi o. h>

25

26

/************************ End Of InC|UdES
*******************************/

/***PRO‘I’(B****/

voi d obstacl e(void);
i nt opl ook(void);
voi d shoot (voi d);
int hit(void);

voi d die(void);

int i,lR delay,servo3p;
unsi gned int tenp,tenp2,exits;

voi d mai n(voi d)
/****************************** NH'n

***********************************/

{

i nit_anal og();
init_clocktk();
init_serial();
/[linit_motortk();
init_servos();

nux_sensor (0x0b); //cds2

t enp=0;
exi ts=0;
servo3p=1000;
whil e(1)
{
wai t (100);
obstacl e();
i f (oplook())
shoot () ;
if (hit())
die();
}
}

/**************************** End Of Ivaln

******************************/

voi d obstacl e(voi d)

/************************Obst acl e*******************************/
{

t enp=anal og(2);

t enp2=anal og(3);

wai t (100);

if (tenmp>100) /lleft eye sees sonthing

eye

if (temp2>100) //both eyes see sonthing

{

servo(0, 4000);

servo(1, 4000);

wai t (400);

servo(0, 2000);

servo(1, 4000);

}

el se

servo(1, 3000); //swerve if only see with one

wai t (100);
servo(1, 4000);
}

if (tenmp2>100) /1left see nothing check right

el se

{

servo(0, 3000);
wai t (100);
servo(0, 2000);
}

el se //see nothing drive starit

{

servo(0, 2000);
servo(1, 4000);
wai t (100);

}

/***************END Of (BSTACLE*************************/

i nt opl ook (void)

/****************Opl Ook*********************************/

{

if (servo3p==1000)
{

exi t s=0;
whi | e(exits!=1)

{
i f (anal og(4)>120)
{

if (servo3p<3000)

servo3p=1000;
el se servo3p=5000;
return 1,

}

servo3p+=500;
if (servo3p>=5000)

el se

{
servo3p=5000;
return O;

}

28

el se

{
exit s=0;
whi |l e(exits!=1)

{
i f (anal og(4)>120)
{

if (servo3p<3000)

servo3p=1000;
el se servo3p=5000;
return 1,

}

servo3p- =500;
if (servo3p<=1000)

el se

{
servo3p=1000;
return O,

}
}
}

return O;

/*******************END Of Opl Ook***********************/

voi d shoot (voi d)

/*******************Shoot*******************************/

{
if (servo3p==1000)
{
PORTA &=0xBF; //turn on | aser

servo(0, 4000);

servo(1, 4000);

wai t (1000) ; /11l second shot
servo(0, 2000);

servo(2, 4000);

PORTA | = 0x40;

}

el se

{

PORTA &=0xBF; [/turn on | aser
servo(0, 2000);

servo(1, 2000);

wai t (1000) ; /11l second shot
servo(0, 2000);

servo(2, 4000);

PORTA | = 0x40;

}

/*********END Of SHOOt***********************/

int hit(void)

/*****************hi t*************************/

{
i f (anal og(0)<40)
return 1;
el se
return O;

}

/********END Of HIt*****************************/

voi d di e(voi d)

/************di e********************/

{
servo(0, 4000);

servo(1, 4000);
while (1);
}

/***********END Of DI E**********************/

