

University of Florida

Department of Electrical and Computer Engineering
EEL 5666

Intelligent Machines Deisgn Laboratory

‘RoBeats’
The Warzone Killa

Date: 12/3/01
Student Name: J. Bret Dennison

 TA: Scott Nortman
Aamir Qaiyumi

Instructor: A. A. Arroyo

Table Of Contents

Abstract…………………………………………………………………………..pg.03

Introduction………………………………………………………………………pg.03

Integrated Systems.………………………………………………………………pg.04

Mobile Platform..…………………………………………………………………pg.04

Actuation…………………………………………………………………………pg.05

Sensors…...………………………………………………………………………pg.06

Special Sensor……………………………………………………………………pg.07

Behaviors....………………………………………………………………………pg.11

Conclusion…..……………………………………………………………………pg.12

Appendices....…………………………………………………………………….pg.13

Abstract:

 RoBeats is an autonomous robot based off of the character ‘Sweet Tooth’ from

the Playstation game “Twisted Metal 2.” It roams around the “board” until it finds a line,

representing the street, and follows the line until it comes across a barcode. It then makes

firing noises. Robeats follows the line using 3 CdS cells. It has collision avoidance for

objects in the way. The two back wheels are controlled by hacked servos while the front

two wheels are free spinning. The 4 IR detectors in front are used for collision avoidance

along with the bumpers. The servos, IR detectors, bump switches, CdS cells, and most of

the behaviors are controlled by one processor while the barcode scanning and warzone

sounds are controlled by another.

Introduction:

 The main reasons for any robot are entertainment or making tasks easier for lazy

humans. The purpose of my robot was strictly for entertainment. My favorite

Playstation game at the time was Twisted Metal 2 and Sweet Tooth was the coolest

looking character, so I based RoBeats off of him.

Integrated System:

The brains of RoBeats consist of the MRC11A64 board along with the MRSX01 Sensor

Expansion board. The sensor expansion board has inputs coming in from the IR

detectors, bump switches, and photoresistors (CdS cells). This tells the MRC11A64

board what is going on and then the MRC11 decides what behaviors should be done. For

instance, when a line is found and being followed, the IR detectors do not need to be

checked because one assumption is that RoBeats will not run into anything while

following a line. The MRC11 controls when the servos are activated and when sensors

need to be checked. The manuals for the MRC11A64 and MRSX01 can be found at

http://www.mekatronix.com. The barcode scanning and sound producing are controlled

by the CME11E9-EVBU board used in Microprocessors when the 68HC11 was used.

When a barcode is read the CueCar barcode reader sends data on a data line which is

connected to the pulse accumulator of the 68HC11. While in idle the CueCat sends a

Constant valuethree or four times in a row. Once a barcode is read, this value changes a

couple of times in a row. This is used to realize that a barcode was read. After reading

the barcode, the 68HC11 sends a low signal to the warzone sound chip, ripped out of a

bouncy ball from career fair and given leads.

Mobile Platform:

The platform structure of Robeats was designed in such a way to give maximum volume

for components in a minimal amount of space. The dimensions are 10 x 6 x 6. The

design takes the shape of an ice cream truck. Most of the components are placed in the

back end of the robot for easier motion control, explained in Actuations below. The base

and body were made out of 7-ply model airplane wood, which was cut on the ‘T-Tech’

machine in the lab. Hardware size was takin into consideration before cutting any wood

to produce a clean fit. A problem with creating a body that surrounds all of the insides is

that although it looks cool, you never absolutely know how much space you need until

the very end. I took this into consideration but I still did not provide myself with enough

room for everything I wanted to add. Another important consideration is holes for

LED’s, switches, sensors, and of course design. Many problems occurred because of the

body but as time runs out, you just work around them.

Actuation:

Most of the components of Robeats are placed in the back end of the robot to give the

back wheels more friction. The reason for this is for better steering. Robeats has 4

wheels. Motion control will be obtained using a standard servo on each of the back

wheels. The front wheels are free spinning. Applying more friction (more weight) on the

back wheels will make turning easier. Below is the servo information.

Servo Information:
RoBeats' design uses two standard servos, which drive four wheels. Each servo will
drive both wheels on its corresponding side. This provides a way for steering.

$14.00 each from Mekatronix
Diamond Precision Servo (4.8-6V)
Torque: 43 oz / in
Speed: 0.20 sek

Sensors:

The four bump switches are basically buttons that complete a circuit when pushed,

sending a signal to the processor. The four IR detectors used are the SHARP GP2D12,

which contains both the emitter and the detector. The detecting distance is 10 to 80cm.

They have three pins(power, ground, and signal). The IR’s are used for collision

avoidance. The three photoresistors used for line following read reflecting light at a short

distance. Three white LED’s were used to make reading easier. The ranges of the

photoresistors were between 0 and about 40, 0 representing black and 40 representing

white light. The following information tells where each sensor was bought and their

price.

CDS Cells (3)
- free from IMDL Lab
- Line following for alignment with the barcodes.

Bumper Switches (4)
- free from IMDL Lab
- Collision Avoidance

IR Sensors (4)
- 0.00 each from Mekatronix

Special Sensor:

Cue Cat Barcode Reader:

The Cue Cat Barcode Reader is a device that connects to your PC between its keyboard

and keyboard port. The device allows the user to swipe in the barcodes on books,

product packaging, magazines, catalogs, coupons and ads to be taken to a Web site

related to the product. I is a free item for a reason. Each of these devices contains with it

a potential privacy hazard, a Globally Unique Identifier (GUID), a "secret code" that is

assigned to each scanner. Every time an item is scanned, the serial number of your

scanner along with whatever you scanned is sent to the parent company to track your

personal scanning, buying, reading and even TV-viewing habits, and tie this information

to a profile on you based on your scanner's GUID.

The information sent from the Cue Cat to the PC is as follows:

1.) Serial Number
2.) Barcode Type
3.) Tracking Code

An example of a Cue Cat scan is shown below. Each piece of data is seperated by a
period.

.C3nZC3nZC3nWCxjWE3D1C3nX.cGf2.ENr7C3v7D3T3ENj3C3zYDNnZ.

Cue Cat Signals:

Figure 1 shows a Logic State Analyzer printout of the Cue Cat’s signals during idle. The

reason for not obtaining a printout during scanning a barcode is because the signals that

change at the time a scan occurs (data lines and clock) change at random times also.

Therefore you cannot trigger at the time of a barcode scan. However, information can be

collected from the following. From the waveform you can see that there are two identical

signals, Yellow and Black. These signals come from the clock output of the PC. An

explanation of this is explained later. The Orange signal represents an 11 bit serial data

line, which includes a start bit, stop bit, 8 data bits, and a parity bit. The waveform is

showing two blocks of data being sent. There are 11 clock pulses for each block. The

Red and Brown lines seem to be +5V.

Figure 1. LSA printout of the cue cat at idle.

Figure 2 shows the inside of the Cue Cat. This one is currently being used as a door stop
because it no longer works.

Figure 2 The inside of the Cue Cat.
Cue Cat Clock Signal:

Figure 3 shows the period of the clock signal of the Cue Cat. The Yellow line was cut
before entering the Cue Cat (while the keyboard was unplugged) and it was connected to

the oscilloscope. The other signals were connected to the oscilloscope and produced data
like in Figure 1. The data line produced noise when scanning a barcode, showing the
serial data transmitting.

Figure 3: Period of the clock signal entering the cuecat from the PC.

Cue Cat Decoding Technique

After trying every possible solution I could think of to read the data from the Cue Cat,

my roomate suggested, “Try using the pulse accumulator.” With some of his time and

brains, I finally am able to see some output from the Cat. I connected the data line to

Pulse Accumulator pin, and can see a difference when scanning a barcode. A problem

with this is that the output is random when scanning the same barcode. Figure 4 shows

when the Cue Cat is in idle and when it scans a barcode. The Assembly code that

produces this output follows in the Appendix.

Figure 4 Output of the Cue Cat during idle and when scanning a barcode.

Behaviors:

RoBeats’ main behavior is to avoid obstacles. While avoiding obstacles it continuously

searches for a line to follow. Once a line is detected RoBeats will follow it until the end

and then continue avoiding obstacles. While line following, RoBeats will scan barcodes

which are aligned with the line, and produce warzone sounds.

Conclusion:

At the beginning of the semester, the idea for RoBeats was totally different then what it is

now. The reason for this is due to problems occurring throughout the semester. The

main goal was to be able to distinguish between different barcodes and produce their

corresponding sounds, however getting any result was a big enough problem. If I started

the project over I wouldn’t have used the CueCat barcode reader because that took up

most of my time. Everything about it is a problem. Now that I know how to do

everything, I would have done it faster, giving me more time for the harder parts. I’d like

ot thank Aamir and Scott for all of their help and ideas for getting feedback from the

CueCat and any other help they gave me. I’d like to thank Jonathon Gamoneda for

coming up with the idea and helping me with the Pulse Accumulator. I thank my sister

for helping me with the design of the clown head.

Appendices:
* lilcat5.asm

*
* Barcode Scanning sound producing code
*
* Outputs 11011111 to port d when a scan happens on the cuecat.
* Else outputs 11101111
* Bit5 connects to noise maker and must be high for no noise
* So when a scan occurs output a low to the noise maker and
* a high to the LED (Bit4)
* Uses Pulse Accumulator
*

BASE EQU $1000 ;BEGINNING OF REGISTERS
PACTL EQU $26 ;PULSE ACCUMULATOR CONTROL REG
PACNT EQU $27 ;PULSE ACCUMULATOR COUNTER REG
DDRD EQU $09 ; Data diraction for Port D
PORTD EQU $08 ; Port D

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
BIT6 EQU %01000000

 ORG $00
DIFF RMB 1
LAST RMB 1

CNTR RMB 1

* Main program

 ORG $0100
MAIN LDS #$41
 LDX #BASE

* INITIALIZATIONS
 LDAA #$0
 STAA LAST
 STAA DIFF
 LDAA #$2
 STAA CNTR
 LDAA #$FF
 STAA DDRD,X ; set to output
 LDAA #%11101111 ; BIT5=1 no noise
 STAA PORTD,X ; BIT4=0 LED off

* Initalize the Pulse Accumulator
 LDAA #$00
 STAA PACNT,X

 LDAA #BIT6 ; Turn on the pulse Accumlator
 STAA PACTL,X

HERE LDX #BASE
 LDAB PACNT,X ; MAKE sure the SA value is in B
 JSR Check
 JSR DELAY

 BRA HERE
*
**
* SUBROUTINE - Check
* Assumes current scan value is in reg B
**
*
Check CMPB LAST ; check new val with last val
 BNE DIFFR
 BRA SAME

DIFFR DEC CNTR
 LDAA CNTR
 BNE Done

* OUTPUT A HIGH TO SOME OUTPUT
SCAN LDAA #%11011111 ; BIT5=0 BIT4=1 SCAN OCCURRED
 STAA PORTD,X
 JSR DELAY
 JSR DELAY
 LDAA ##%11101111 ; set back to no scan on outputs
 STAA PORTD,X

SAME LDAA #$2
 STAA CNTR

Done STAB LAST ; save current value
 RTS ; return

* SUBROUTINE - DELAY
* Makes a .5 second delay
**

DELAY PSHB
 PSHA
 LDAA #$4A
OUTER LDAB #$FF
INNER DECB
 DECB
 PSHY
 PULY
 PSHY
 PULY
 INCB
 BNE INNER
 DECA
 BNE OUTER
 PULA
 PULB
 RTS

/* RoAvoid5.c
 RoBeats code for obstacle avoidance and line following.
 4 IR Detectors
 4 Bump Switches - 2 front, 2 back
 3 Photoresistors

/**************************** Includes **********************************/

#include <tkbase.h>
#include <stdio.h>

/************************ End of includes *******************************/
#define IR_THRESHOLD 70

void main(void)
/****************************** Main ***********************************/
{
 int rspeed, lspeed,i;
 unsigned int IR_BOT_LEFT, IR_BOT_RIGHT;
 unsigned int FRONT_BUMP, BACK_BUMP;
 int j, cd3, cd4, cd5, cdflag, cdcntr;

 char clear[]= "\x1b\x5B\x32\x4A\x04"; /* clear screen */
 char place[]= "\x1b[1;1H"; /* Home cursor */

 init_analog();
 init_motortk();
 init_clocktk();
 init_serial();
 init_servos();

 printf("%s", clear); /*clear screen*/
 printf("%s", place); /*home cursor*/

 cdcntr = 0;
 cdflag = 0;

 while(rear_bumper() != 23);

 while(1)
 {
 read_CDS();
 cd3 = CDS[3];
 cd4 = CDS[4];
 cd5 = CDS[5];

 read_IR();
 IR_BOT_LEFT = IRDT[3];
 IR_BOT_RIGHT = IRDT[5];

 FRONT_BUMP = front_bumper(); /*Returns front bumper value*/
 BACK_BUMP = rear_bumper(); /*Returns rear bumper value*/

 /* Check front and back bumpers for contact. If front bumper is pushed,
 move back then turn. If back bumper is pushed, move foward and turn. */
 if(FRONT_BUMP == 15)
 {
 rspeed = 4000;
 lspeed = 2000;

 for (i=0; i<3; i++){
 servo(0,lspeed);
 servo(1,rspeed);
 wait(200);
 }

 rspeed = 4500;
 lspeed = 4500;

 for (i=0; i<8; i++){
 servo(0,lspeed);
 servo(1,rspeed);
 wait(200);
 }
 }

 else if(BACK_BUMP == 23)
 {
 rspeed = 2000;
 lspeed = 4000;

 for (i=0; i<3; i++){
 servo(0,lspeed);
 servo(1,rspeed);
 wait(200);
 }

 rspeed = 1500;
 lspeed = 1500;

 for (i=0; i<8; i++){
 servo(0,lspeed);
 servo(1,rspeed);
 wait(200);

 }
 }

 /* If no bumpers were hit, check CdS cells to find a line. If left CdS detects,
 must catch up on right side. Likewise for right CdS. If only the middle CdS
 detects, then continue straight. */

 else if(cd3 < 5 || cd4 < 5 || cd5 < 5){

 if(cdcntr==5){
 cdflag=1;
 }

 if(cd3 < 5){
 lspeed = 4300; /* TURN LEFT A LITTLE */
 rspeed = 3000;

 servo(0,lspeed);
 servo(1,rspeed);

 if(cdflag==0){
 wait(10);
 cdcntr = cdcntr+1;
 }
 else {
 wait(40);
 }

 }
 else if(cd4 < 5){ /* go foward */
 lspeed = 4500;
 rspeed = 1500;
 servo(0,lspeed);
 servo(1,rspeed);

 if(cdflag==0){
 wait(10);
 cdcntr = cdcntr+1;
 }
 else {
 wait(80);
 }
 }
 else if(cd5 < 5){ /* TURN RIGHT A LITTLE */
 lspeed = 3000;
 rspeed = 2000;

 servo(0,lspeed);
 servo(1,rspeed);

 if(cdflag==0){
 wait(10);
 cdcntr = cdcntr+1;
 }
 else {
 wait(80);
 }
 }

 }
 else if((IR_BOT_LEFT > IR_THRESHOLD) || (IR_BOT_RIGHT >
IR_THRESHOLD)) {

 if(cdcntr>=5){
 cdcntr=0;
 }

 if(IR_BOT_LEFT > IR_BOT_RIGHT) {
 rspeed = 1800;
 lspeed = 1800;
 }
 else {
 rspeed = 4300;
 lspeed = 4300;
 }

 for (i=0; i<3; i++){
 servo(0,lspeed);
 servo(1,rspeed);
 wait(200);
 }

 }
 else {
 lspeed = 3500;
 rspeed = 2500;
 }

 servo(0,lspeed);
 servo(1,rspeed);

 wait(35);
 }
}

/**************************** End of Main ******************************/

	University of Florida
	‘RoBeats’

	The Warzone Killa
	
	Date: 12/3/01
	Table Of Contents
	Abstract…………………………………………………………………………..pg.03
	Introduction………………………………………………………………………pg.03
	Integrated Systems.………………………………………………………………pg.04

	Cue Cat Decoding Technique
	
	PACTLEQU$26 ;PULSE ACCUMULATOR CONTROL REG

