
EEL5666

Robot Report

Charles Parks

December 7, 2001
Table of Contents

Section

 Page

Abstract

3

Executive summary

3

Introduction

4

Integrated System

5

Mobile Platform

6

Actuation

7

Sensors

8

Behaviors

9

Experimental Layout and Results

10

Documentation

11

Appendices

12

Abstract

This project taught me a lot about the difficulty of designing and constructing a robot. Robot design can seem simple until a person tries to construct one. The main parts of a robot are sensors, batteries, servos, and a micro-controller. Sensors allow a robot to see the world around it. Batteries allow a robot to move around and not stop when it reaches the end of its power cord. The servos or motors propel a robot along. The micro-controller is the brain of the robot. This device along with memory holds and runs the code, which is the personality of the robot. My robot was designed to map out a room. Currently scout, my robot, has the ability to navigate around a room and avoid hitting any thing. The other parts of my robot were not possible since I was not able to interface the mouse or get usable data from my compass.

Executive Summary

Robots are the way of the future they can help people in almost any task. This paper examines an attempt at constructing a robot that can map a room. The goal for this robot was to use a set of sensors that cost less than $100.00 and still be able to map out a room. Another goal was to interface the sensors with minimal amount of additional hardware. The optical mouse was selected as the main tool to measure distances traveled by the robot. The optical mouse seam best suited for this task since it was designed to measure distance moved over a variety of different surfaces. IR range finders along with bump sensor were used to enable the robot see obstacles. The actuation for this robot was two hacked servos. The design for this robot seamed very promising and although the constructed robot does not perform the task of mapping a room yet the creator for this robot is hopeful of still accomplishing this task.
Introduction

Robots are autonomous machines that are designed to perform tasks that are impossible, difficult, or monotonous for a person to accomplish. The individual tasks a robot must perform depend upon the overall purpose of the robot.

Scout, was originally designed to map out a room showing the location of all obstacles in that room. Scout was designed around two main sensors (an optical mouse and an electronic compass). Sensors are only useful if they can provide accurate data in a format that can be understood by the robot. The construction of this project taught me the importance of these two things.

Integrated System

Scout will consist of four basic systems that will enable it to map out an area.

· Navigation

· Obstacle detection

· Propulsion

· Graphical display

Each of these systems will communicate will any system it needs to and will be responsible for certain behaviors.

Navigation System

The Navigation System will be responsible for determining current position and heading. This system will use an optical mouse and an electronic compass to accomplish its tasks.

The optical mouse proved too difficult to interface with the 68HC11 processor in the limited time span of this project. The electronic selected for this robot gave values that did not increase linearly with change in angle. These values may be the result of magnetic fields in the room or a malfunction of the compass. The compass lacked some features (such as the ability to give accurate readings even if slightly tilted) that would have been useful for the robot.

Obstacle Detection

The Obstacle detection system will be responsible for locating all obstacle and sudden drops in the area of operation. This system will use 4 strategically place IR sensor and 2 bump sensors. The Obstacle Detection system worked well for the robot. The value each IR sensor gave for a fixed distance varied slightly. This slight variation was not much of a problem since the robot used ranges to determine if the obstacle was too close.

Propulsion

The Propulsion system will be responsible for propelling the robot in the x and y-axis. The Propulsion system must be able to make accurate 45 and 90 degree turns as well as forward and reverse movement. This system will use two independently controlled servos and two 3-inch wheels to perform its task. The propulsion system was able to turn the robot and drive it forward. The problem of this method of propulsion was that the servos were not perfectly matched and as a result the robot will tend to drift over long distances. A robot with one servo controlling the rear wheels and another servo controlling a steering wheel would be able to travel in a strait line but may lose some of its ability to turn.

Graphical Display

The Graphical Display system will convert the values stored in the grid into a sequence of ASCII characters and transmit them to a PC. This system will use the serial interface system of the micro controller and conversion routine to accomplish this task. The graphical system of the robot was never implemented since the mouse was never successfully interfaced. The robot did have some routines to print text on the screen and convert a binary value into an ASCII text format that could be printed to a screen. These routines were used for testing.

Mobile Platform

The purpose of the platform is to provide a place to mount the electronics for the robot. The goal of the platform I designed was to make simple shape that was symectrical about one axis. The platform should contain a way to mount the servos used to propel the robot as well as all sensors used by the robot. The two most important things that the platform should house are the micro controller, brains, and batteries, food source. An addition feature of the body that would help with debugging is external leds that indicate the mode of operation the robot is in and the status of various systems.

The placement of the optical mouse and electronic compass are critical to the success of this robot. The optical mouse needs to be place so that the y-axis it measures is the forward and reverse movement of the robot and the x-axis is the side to side movement of the robot. The optical mouse needs to be mounted level and should be as far as possible from the servos, which produce magnetic fields.

The below drawing is a preliminary drawing of the shape of the robot as seen from the side. The complete Auto-cad drawings for this robot are included in the appendices.

[image: image1.png]IR sensors

sheers [optical mouse

Actuation

Scout will be propelled and steered using two servos. The servos are basic model airplane servos that are partially hacked. The servos have been modified to allow for full 360 degrees range of motion. The modification involved removing a physically stop in the servo and disconnecting a mechanical linkage to a potentiometer in the servo. The modification converts the servo into a motor and a driver circuit. The servo is controlled by using a pulse-width-modulated signal. The width of the signal corresponds to a desired angle. When the servo is hacked the speed output of the servo is proportional to the difference between the angle given to the servo and the angle the servo thinks it is at.

The servos provide a simple and reasonably priced solution to propel the robot. The turning for Scout will be achieved by turning on one servo and leaving the other servo off. The micro-controller will be responsible for turning on the servos and shutting them off when the proper amount of turning is completed. The servos in conjunction with the sensors would allow the robot to make 45 degree and 90 degree turns if the compass was working.

Sensors

Sensors enable robots to interact with their environment by providing information about that environment. The purposes of sensors on Scout are to provide it with sight, feel, location, and direction. This set of senses should allow scout to generate a map of the area it is placed in. There will be four different kinds of sensors for scout.

· 1 optical mouse

· 1 electronic compass

· 4 IR-range detectors

· 4 bump sensors

The IR – range detectors and bump sensors worked well. These sensors were easy to interface and they allowed scout to detect obstacles. The electronic compass was interfaced using input capture. The readings from the compass appeared to be non-linear these values made it impossible for me to use the compass to make accurate 90 and 45 degree turns regardless of the current heading. The non-linear values could be the result of magnetic fields in the lab or a bad calibration of the compass. The compass I selected was an inexpensive ($35.00) model from acroname.com. I am not sure if I would recommend this model to others. One of the biggest problems with this compass was that it was sensitive to tilting of the platform. There are other electronic compasses that can compensate for small degrees of tilt. The optical mouse was a necessary sensor for scout. The research I performed taught me a lot about how the data is sent to and from the mouse. I attempted to use my newly aquired knowledge to connect the mouse to the MRC11 board. The method I used was to put port D of the 68hc11 into wired-or mode and simulate through software an 11-bit SPI system. This approach appeared unsuccessful in both assembly and C. I still feel that the mouse can be connect to the 68hc11 but for now this part of the robot is unfinished. The appendix of this report shows both the information I discovered about the mouse and a block diagram for how I connected the mouse and compass to the MRC11 board.
Behaviors required by Robot

In order for Scout to perform its function it must capable of performing a series of basic behaviors.

· Detect obstacles and record their position

· Avoid obstacles in a predefined routine

· Determine current position relative to starting position

· Determine current heading

· Be able to generate and control locomotion

· Display data in a usable format

Scout had 4 main systems that it was to use to accomplish these tasks.

· Navigation

· Obstacle detection

· Propulsion

· Graphical display

Each of these systems was to communicate will any system it needs to and was responsible for certain behaviors.

Navigation System

The Navigation System will be responsible for determining current position and heading. This system will use an optical mouse and an electronic compass to accomplish its tasks.

The Navigation system was unfinished in scout mainly due to the inability to communicate with the mouse.
Obstacle Detection

The Obstacle detection system was responsible for locating all obstacles in the area of operation. This system will use 4 strategically place IR sensor and 2 bump sensors. This system worked well in scout except sometimes a wheel would get stuck on an obstacle since they protruded out from the side of the robot.

Propulsion

The Propulsion system was responsible for propelling the robot in the x and y-axis. The Propulsion system must be able to make accurate 45 and 90 degree turns as well as forward and reeves movement. This system used two independently controlled servos and two 3-inch wheels to perform its task. The wheels and servos propelled the robot along as planed. The compass unfortunately was not effective in enabling the robot to make 90 and 45 degree turns.

Conclusion

This robot taught me a lot about the difficulty of interfacing different pieces of hardware. The robot’s inability to communicate with the mouse prevented it from performing its primary function of mapping a room. The failure of the compass to give linear values of the degrees prevented the robot from making accurate 90 and 45 degree turns. This class was very enjoyable although stressful at times. I enjoyed helping other people with their robots and working on my robot. I consider this project in an unfinished state and plan to work on it more in the future.

Documents
PS/2 Mouse/Keyboard Protocol, Copyright 1999 Adam Chapweske

http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/PS2/ps2.htm
The PS/2 Mouse Interface, Copyright 2001 Adam Chapweske

http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/mouse/mouse.html

Appendix

Block layout of circuit

[image: image2.png]icroSim Schemat

[*Schematicl p.1] =181]

o Edt Draw Navgate View Optons Andlyss Tooks Markers Window Help _15]x]

=[d| 8] 4[nl@| o] slaRaQ]] s|</OlR| Fo EEEN=E e
=
Fndcature
oo
o e -
wso oata
MRCH ot
wosi ouse
K —
R 2k
1 sectoni conpass
v omo || power
oce ocs
R |
a0
Voltage rguitor
a0
Bateiss
a0
T
Left Servo. Righit Serva MicraSim Carporation. Page Size:
Db
e, CA 18
Tt
6,66 69 | [l 00t
histart || Flogin.oxt - Notepad | FEnetscape | Emicrosim Messag... |[Ffmicrosim sche... [EBDesianiab Desian...| birabatics | BIRobotreportcoc...| [P NPAREMBL: 1036 A

Code for Scout

**

* Define the address locations of the various registers and user-defined

* constants used in the program

**

BASE EQU $1000 ; base value for registers

BAUD EQU $102B ; BAUD rate control register to set the BAUD rate

SCCR1 EQU $102C ; Serial Communication Control Register-1

SCCR2 EQU $102D ; Serial Communication Control Register-2

SCSR EQU $102E ; Serial Communication Status Register

SCDR EQU $102F ; Serial Communication Data Register

SPCR EQU $0028 ; Serial Peripheral control Register

DDRD EQU $0009 ; Data direction port D

PORTA EQU $0000

PORTD EQU $0008 ; Port D

TCTL1 EQU $0020 ; timer control

TCTL2 EQU $0021 ; timer control 2

PACTL EQU $0026 ;used to intialize RTI system

TFLG2 EQU $0025

CFORC EQU $000B

OC1M EQU $000C

OC1D EQU $000D

TIC1 EQU $0010

TMSK1 EQU $0022

TMSK2 EQU $0024

TFLG1 EQU $0023

TOC1 EQU $0016

TOC2 EQU $0018

TOC3 EQU $001A

TOC4 EQU $001C

TCNT EQU $000E

OPTION EQU $0039

ADCTL EQU $0030

ADR1 EQU $1031

Bit0 EQU %00000001

Bit1 EQU %00000010

Bit2 EQU %00000100

Bit3 EQU %00001000

Bit4 EQU %00010000

Bit5 EQU %00100000

Bit6 EQU %01000000

Bit7 EQU %10000000

Bits10 EQU %00000011

InvBit6 EQU %01111111

EOS EQU $04 ; User-defined End Of String (EOS) character

CR EQU $0D ; Carriage Return Character

LF EQU $0A ; Line Feed Character

ESC EQU $1B ; Escape Charracter

** portD pin 5 and pin 3 are used to calibrate the compass

calPin EQU $20 ;calibration command output

calPin2 EQU $10 ;calibration done pin input

** mouse uses 2 bidirectional line to talk to host

** mouseIn and mouseOut are tied togather with a pull up

** 1-k resistor

mouseClk EQU $10 ;pin 4

mouseData EQU $04 ;pin 2

* Compass values *

Max_heading EQU 138

C_MAX EQU 18495

C_MIN EQU 500

C_diff EQU 17995

* BOOLEAN VALUES *

TRUE EQU $FF

FALSE EQU $00

Right EQU $AA

Left EQU $55

* servo constants *

period EQU 7500

LeftForward EQU 450

LeftReverse EQU 1050

RightForward EQU 1050

RightReverse EQU 450

STOP EQU 750

* Distance constants *

zone1 EQU 100 ; too close

zone2 EQU 75 ; visible

zone3 EQU 50 ;

***** Mouse Commands *****

Reset EQU $FF

Resend EQU $FE

Set_Defaults EQU $F6

Disable_Data_Reporting EQU $F5

Enable_Data_Reporting EQU $F4

Set_Sample_Rate EQU $F3 /* valid rates 20, 40, 60, 80, 100, 200 samples /sec */

Get_ID EQU $F2

Status_Request EQU $E9

Set_Resolution EQU $E8

** This command (Set_Scaling2) will set the mouse to 2:1 scaling

** Mouse Counter Reported Movement

** 0 0

** 1 1

** 2 1

** 3 3

** 4 6

** 5 9

** N>5 2*N

Set_Scaling2 EQU $E7

*** sets the scaling 1:1 recorded movement = reported movement

Set_Scaling1 EQU $E6

requestData EQU $EB // used to request mouse movement when mouse is in Remote mode

*** Mouse modes sent as a command to mouse to set to certain modes **

Remote_mode EQU $F0

Wrap_mode EQU $EE

Reset_Wrap_Mode EQU $EC // mouse returns to mode it was in prior to wrap mode

Stream_mode EQU $EA

** commands sent from mouse to host **

Acknowledge EQU $FA

selftest EQU $AA // means self test passed

** additionally the mouse may send the Resend Command or Error Command

**

* Initialize Interrupt Jump Vectors

**

 ORG $FFFE

 FDB Main

 ORG $FFE2

 FDB OC4ISR

 FDB OC3ISR

 FDB OC2ISR

 ORG $FFEE

 FDB IC1_ISR

* (If you need to use any interrupts later,

* put your Interrupt Jump Vectors here).

**

* Define Strings for displaying messages

**

 ORG $1040 ;start of external memory

ClrScr FCB ESC,$5B,$32,$4A ; ANSI sequence to clear screen

 FCB ESC,$5B,$3B,$48 ; and move cursor to home

 FCB EOS ; EOS character

Prompt FCC @ Main Menu @ ; Menu prompt

 FCC @for a new BAUD rate: @ ; to explain choices

 FCB CR, LF ; Carriage return and line feed

 FCC @0=> print map @ ;

 FCB CR, LF

 FCC @1=> map area @

 FCB CR, LF

 FCB EOS ; EOS character

Confirm FCB CR, LF ; Carriage return and line feed

 FCC @The robot has been set to Map mode please place robot is starting square and press rear bump sensor @

 FCB CR, LF ; Carriage return and line feed

 FCB EOS ; EOS character

Prompt2 FCC @Please enter text now.@; String to prompt for text input

 FCC @ Or Hit ESC to show @ ;

 FCC @BAUD menu.@ ;

 FCB CR, LF ; Carriage return and line feed

 FCB CR, LF ; Carriage return and line feed

 FCB EOS ; EOS character

Prompt3 FCB CR, LF ; Carriage return and line feed

 FCC @Please change the @ ; String to inform users of

 FCC @BAUD rate on your @ ; change the setting

 FCC @computer, @

 FCC @then hit CR.@ ;

 FCB CR, LF ; Carriage return and line feed

 FCB EOS ; EOS character

Prompt4 FCB CR, LF

 FCC @press any key test the mouse@

 FCB CR, LF

 FCB EOS

CompassHeading FCB CR,LF

 FCC @press any key to read compass heading@

 FCB CR,LF

 FCB EOS

IR1 FCB CR,LF

 FCC @Left IR Value@

 FCB CR,LF

 FCB EOS

IR2 FCB CR,LF

 FCC @Right IR Value@

 FCB CR,LF

 FCB EOS

IR3 FCB CR,LF

 FCC @Left Front IR Value@

 FCB CR,LF

 FCB EOS

IR4 FCB CR,LF

 FCC @Right IR Value@

 FCB CR,LF

 FCB EOS

B1 FCB CR,LF

 FCC @Left Bump Value@

 FCB CR,LF

 FCB EOS

B2 FCB CR,LF

 FCC @Right Bump Value@

 FCB CR,LF

 FCB EOS

B3 FCB CR,LF

 FCC @Front Bump Value@

 FCB CR,LF

 FCB EOS

B4 FCB CR,LF

 FCC @Rear Bump Value@

 FCB CR,LF

 FCB EOS

SetSpeed

 FCB CR,LF

 FCC @Left servo @

 FCB CR,LF

 FCC @press 1 to increase speed @

 FCB CR,LF

 FCC @press 2 to decrease speed @

 FCB CR,LF

 FCC @Right servo@

 FCB CR,LF

 FCC @press 3 to increase speed @

 FCB CR,LF

 FCC @press 4 to decrease speed @

 FCB CR,LF

 FCB EOS

testMsg FCB CR,LF

 FCC @test @

 FCB CR, LF

 FCB EOS

Menu FCB CR,LF

 FCC @Main Menu@

 FCB CR,LF

 FCC @1: test servos@

 FCB CR,LF

 FCC @2: test Compass@

 FCB CR,LF

 FCC @3: test IR @

 FCB CR,LF

 FCC @4: test delay@

 FCB CR,LF

 FCC @5: test bump@

 FCB CR,LF

 FCB EOS

*table of shapes

SQUARE FCB 10 ; distace

 FCB 35 ; angle

 FCB Right ; direction to turn

 FCB 10 ; distance

 FCB 35 ; angle

 FCB Right ; direction to turn

 FCB 10 ; distance

 FCB 35 ; angle

 FCB Right ; direction to turn

 FCB 10 ; distance

 FCB 35 ; angle

 FCB Right ; direction to turn

 FCB EOS

TRIANGLE FCB 10 ;distace

 FCB 23 ;angle

 FCB Left ;direction

 FCB 10

 FCB 23

 FCB Left

 FCB 10

 FCB 23

 FCB Left

 FCB EOS

HOURGLASS: FCB 5 ; distance

 FCB 23 ; angle

 FCB Left ; direction

 FCB 10 ; distance

 FCB 23 ; angle

 FCB Right ; direction

 FCB 5 ; distance

 FCB 23 ; angle

 FCB Right ; direction

 FCB 10 ; distance

 FCB 23 ; angle

 FCB Left ; direction

 FCB EOS

* Global Variables

delayTime RMB

delayTime2 RMB

delayTime3 RMB

**Data RMB 33

temp01 RMB 2

temp02 RMB 2

temp03 RMB 2

temp1 RMB 1

temp2 RMB 1

temp3 RMB 1

CNT RMB 1

distance RMB 1

direction RMB 1

T_flag RMB 1

error_flag RMB 1

** servo duty sizes ****

** controls robot speed and direction **

Lduty RMB 2

Rduty RMB 2

** Compass heading ****

** current direction the robot is pointed as read from electronic compass **

heading RMB 1

degrees RMB 1 ;used when the robot is turning

new_heading RMB 1 ;used when the robot is turning

rising_edge RMB 2 ;used to record rising edge heading

** heading from compass = falling edge - rising edge (pulse width)

** see documentation on electronic compass for more information

** IR / Bump sensors *************

L_IR RMB 1

R_IR RMB 1

LF_IR RMB 1

RF_IR RMB 1

F_Bump RMB 1

B_Bump RMB 1

R_Bump RMB 1

L_Bump RMB 1

toggle RMB 1

**

* MAIN PROGRAM

**

Main LDS #$0041 ; Define a stack

 LDX #BASE

 BSET TMSK2,X Bit0 ;set the timer prescale factor

 BCLR TMSK2,X Bit1 ;must be done in the first 64

** JSR InitPortD

 JSR InitSCI ; Initialize SCI

 JSR Init_servos

 JSR Init_TIC1

** JSR Drive2

**main2

** LDX #SQUARE

** JSR Shapes

** BRA main2

** LDAA #70

** STAA degrees

** JSR turn_left

main2

 LDX #TRIANGLE

 JSR Shapes

 BRA main2

 LDAA #70

 STAA degrees

 JSR turn_left

 LDX #HOURGLASS

 JSR Shapes

 LDAA #70

 STAA degrees

 JSR turn_left

 BRA main2

C1 LDX #Menu

 JSR OutStr

 JSR InChar

 CMPA #$31

 BNE C2

 JSR test2

C2 CMPA #$32

 BNE C3

 JSR test3

C3 CMPA #$33

 BNE C4

 JSR test5

C4 CMPA #$34

 BNE C5

 JSR test4

C5 CMPA #$35

 BNE C1

 JSR test6

 BRA C1

**

* SUBROUTINE - InitSCI

* Description: This subroutine initializes the BAUD rate to 9600 and

* sets up the SCI port for 1 start bit, 8 data bits and

* 1 stop bit. It also enables the transmitter and receiver.

* Effected registers are BAUD, SCCR1, and SCCR2.

* Input : None.

* Output : Initializes SCI.

* Destroys : None.

* Calls : None.

**

InitSCI PSHA ; Save contents of A register

 PSHY ; Save contents of Y register

 PSHX

 LDX #BASE

 LDAA #$30 ;sets Baud Rate to 9600

 STAA BAUD ; Set BAUD rate to 9600

 LDY #SCCR1 ; Load Y with address of Serial Communication Control Register-1

 BCLR 0,Y #%11101111 ; Set SCI Mode to 1 start bit,

 BSET 1,Y #%00001100 ; 8 data bits, and 1 stop bit.

* ; Enable SCI Transmitter

* ; and Receiver

 PULX

 PULY ; Restore Y register

 PULA ; Restore A register

 RTS ; Return from subtoutine

**

* SUBROUTINE - OutByte

* Description : Outputs a hexadecimal number to the computer screen

* Input : Data to be transmitted in register A.

* Output : Transmit the data.

* Destroys : None.

* Calls : OutChar

**

OutByte PSHA ; Save contents of A register

 LSRA ; shift regA to the right 4 times

 LSRA

 LSRA

 LSRA

 CMPA #10

 BPL letter ; BRANCH IF PLUS

 ORAA #$30

 BRA out1

letter ADDA #$37

out1 JSR OutChar

 PULA

 PSHA

 ANDA #$0F

 CMPA #10

 BPL letter2

 ORAA #$30

 BRA out2

letter2 ADDA #$37

out2 JSR OutChar

 PULA ; Restore A register

 RTS ; Return from subtoutine

* SUBROUTINE - OutChar

* Description: Outputs the character in register A to the screen after

* checking if the Transmitter Data Register is Empty

* Input : Data to be transmitted in register A.

* Output : Transmit the data.

* Destroys : None.

* Calls : None.

**

*

OutChar PSHB ; Save contents of B register

Loop1 LDAB SCSR ; Check status reg (load it into B reg)

 ANDB #%10000000 ; Check if transmit buffer is empty

 BEQ Loop1 ; Wait until empty

 STAA SCDR ; A register ==> SCI data

 PULB ; Restore B register

 RTS ; Return from subtoutine

*

* SUBROUTINE - OutStr

* Description: Outputs the string terminated by EOS. The starting location

* of the string is pointed by X register. Calls the OutChar

* subroutine to display a character on the screen and

* exit once EOS has been reached.

* Input : Starting location of the string to be transmitted

* : (passed in X register)

* Output : Prints the string.

* Destroys : regester X

* Calls : OutChar.

*

OutStr: PSHA

OutStr1:

 LDAA 0,X ; Get a character (put in A register)

 CMPA #EOS ; Check if it's EOS

 BEQ Done ; Branch to Done if it's EOS

 BSR OutChar ; Print the character by calling OutChar

 INX

 BRA OutStr1

Done: PULA

 RTS ; Return from subtoutine

*

**

* SUBROUTINE - InChar

* Description: Receives the typed character into register A.

* Input : None

* Output : Register A = input from SCI

* Destroys : Contents of Register A

* Calls : None.

**

*

InChar

Empty LDAA SCSR ; Check status reg.

 ANDA #%00100000 ; (load it into A reg)

 BEQ Empty ; Check if receive buffer full

* ; Wait until data present

 LDAA SCDR ; SCI data ==> A register

 RTS ; Return from subroutine

*

**

* SUBROUTINE - SetBAUD

* Description: This subroutine changes the Baud-rate. The only effected

* register is BAUD. If the input value is invalid, a menu/prompt is

* displayed and a new input is read. The subroutine waits for the

* user to type a carriage return after changing the baud-rate manually

* on the PC. It then prints out a confirmation message.

* Input : None.

* Output : Changes BAUD register. Repeats prompt if invalid input.

* Destroys : None

* Calls : OutStr, OutChar, InChar.

**

*

SetBAUD PSHA ; Save contents of A register

 PSHB ; Save reg B

 PSHX ; Save reg X

Loop3 LDX #ClrScr ; Clear Screen

 JSR OutStr ;

 LDX #Prompt

 JSR OutStr ; Print Baud-rate Menu

 JSR InChar ; Take menu choice from keyboard

 CMPA #$30 ; check for unreasonable menu choice

 BLT Loop3 ; ascii value to small to be a number

 CMPA #$35 ; Check for unreasonable menu choice

 BGT Loop3 ; ascii value to large to be a valid choice

 JSR OutChar ; If valid input, Echo the input to Screen

 LDX #Prompt3 ; Inform users of change the terminal

 JSR OutStr ; setting with the new BAUD rate

Wait LDAB SCSR ; Check status reg (load it to B reg)

 ANDB #%01000000 ; Check if transmit is complete

 BEQ Wait ; wait until TC = 1

 STAA BAUD ; SET the new BAUD rate

Loop4

 JSR InChar ; Get next input from keyboard

 CMPA #CR

 BNE Loop4 ; wait until carriage return

 LDX #Confirm ; Print confirmation message

 JSR OutStr

 PULX ; Restore X register

 PULB ; Restore B register

 PULA ; Restore A register

 RTS

**

* SUBROUTINE - delay

* Description: This subroutine will create a delay time equal to the value

* stored in delayTime

* delay = 4.5 * delayTime + 2.5 (micro-seconds)

* Input : delayTime

* Output : None

* Destroys : delayTime

* Calls : None

**

*

delay DEC delayTime ;6 cycles

 BNE delay ;3 cycles

 RTS ;5 cycles

**

* SUBROUTINE - delay2

* Description: This subroutine will itialize OC2 to create a delay time

* delay = delayTime2*(mili-seconds)

* Input : delayTime2

* warning : delayTime2 should be a positive integer less than 127

* Output : set T_flag to TRUE

* Destroys : None

* Calls : None

**

delay2

 PSHA

 PSHB

 PSHX

 LDX #BASE

* clear OC2 Flag

 BSET TFLG1,X Bit6

 CLR T_flag

* disable OC2 output function

 BCLR TCTL1,X Bit7

 BCLR TCTL1,X Bit6

 LDAA delayTime2

 LDAB #125 ;used to convert delayTime2 into the value

* ;stored for the interrupt

 MUL

 LSRD

 LSRD

 ADDD TCNT,X

 STD TOC2,X

* enable OC2 interrupt

 BSET TMSK1,X Bit6

 CLI

 PULX

 PULB

 PULA

 RTS

**

* Interrupt Service Routine: OC2ISR *

* Function: set T_flag to true *

* Input: none *

* Output: set T_flag *

* Calls: none *

* Destroys: none *

**

OC2ISR

 LDX #BASE

 BRCLR TFLG1,X Bit6 end_OC2ISR ;Igonore Illegal Interrupt

 LDAA #Bit6

 STAA TFLG1,X ;clear Flag

 LDAA #TRUE

 STAA T_flag

* disable OC2 interrupt

 BCLR TMSK1,X Bit6

end_OC2ISR

 RTI

**

* Subroutine: Init_servos *

* Function: initializes left and right servo output *

* compares (OC3 and OC4) *

* Input: none *

* Output: none *

* Calls: none *

* Destroys: none *

**

Init_servos:

 PSHX

 PSHA

 PSHB

 LDX #BASE

 LDD #750

 STD Lduty

 STD Rduty

* clear OC4 Flag

 BSET TFLG1,X Bit4

 BSET TFLG1,X Bit5

 CLI

* enable OC4 interrupt

 BSET TMSK1,X Bit4

 BSET CFORC,X Bit4

* enable OC3 interrupt

 BSET TMSK1,X Bit5

 BSET CFORC,X Bit5

 PULB

 PULA

 PULX

 RTS

**

* Interrupt Service Routine: OC4ISR *

* Function: Controls the left servo *

* Input: Duty cycle *

* Output: a specified waveform on PortA pin 4 (OC4) *

* Calls: none *

* Destroys: none *

**

OC4ISR

 LDX #BASE

 BRCLR TFLG1,X Bit4 end_OC4ISR ;Igonore Illegal Interrupt

 LDAA #Bit4

 STAA TFLG1,X ;clear Flag

 BRSET PORTA,X Bit4 high

 BSET TCTL1,X Bit3 ;currently low make high next cycle

 BSET TCTL1,X Bit2

 LDD #period

 SUBD Lduty

 ADDD TOC4,X

 STD TOC4,X

 BRA end_OC4ISR

high:

 BCLR TCTL1,X Bit2 ;currently high make low next time

 BSET TCTL1,X Bit3

 LDD Lduty

 ADDD TOC4,X

 STD TOC4,X

end_OC4ISR

 RTI

**

* Interrupt Service Routine: OC3ISR *

* Function: Controls the right servo *

* Input: Duty cycle *

* Output: a specified waveform on PortA pin 4 (OC4) *

* Calls: none *

* Destroys: none *

**

OC3ISR

 LDX #BASE

 BRCLR TFLG1,X Bit5 end_OC3ISR ;Igonore Illegal Interrupt

 LDAA #Bit5

 STAA TFLG1,X ;clear Flag

 BRSET PORTA,X Bit5 high2

 BSET TCTL1,X Bit5 ;currently low make high next cycle

 BSET TCTL1,X Bit4

 LDD #period

 SUBD Rduty

 ADDD TOC3,X

 STD TOC3,X

 BRA end_OC3ISR

high2:

 BCLR TCTL1,X Bit4 ;currently high make low next time

 BSET TCTL1,X Bit5

 LDD Rduty

 ADDD TOC3,X

 STD TOC3,X

end_OC3ISR

 RTI

**

* Subroutine: Init_TIC1 *

* Function: initializes Timer Input Capture1 (TIC1) *

* Input: none *

* Output: none *

* Calls: none *

* Destroys: none *

**

Init_TIC1:

 PSHX

 LDX #BASE

* Set INC1 to capture on the rising edge

 BCLR TCTL2,X Bit5

 BSET TCTL2,X Bit4

* clear INC1 Flag

 BSET TFLG1,X Bit2

* enable INC1 innterupt

 BSET TMSK1,X Bit2

 CLI

 PULX

 RTS

**

* Interrupt Service Routine: IC1_ISR *

* Function: sample input pulses *

* (used to read heading from the compass) *

* Input: none *

* Output: heading *

* Calls: none *

* Destroys: none *

**

IC1_ISR:

 LDX #BASE ;3 cycles

 BRCLR TFLG1,X Bit2 end_IC1 ;ignore invalid interrupt

 BSET TFLG1,X Bit2 ;clear the flag

 LDD TIC1,X ; read the time of interrupt

 BRSET TCTL2,X Bit5 fall ;branch if reading falling edge

 STD rising_edge

** set to capure falling edge

 BCLR TCTL2,X Bit4

 BSET TCTL2,X Bit5

 BRA end_IC1

fall SUBD rising_edge

 LSLD

 SUBA #04

 STAA heading

** set to capture rising edge

 BCLR TCTL2,X Bit5

 BSET TCTL2,X Bit4

end_IC1 RTI

**

* Subroutine: Read_IR *

* Function: reads the values of the A/D port and stores *

* then to L_IR, R_IR, LF_IR, RF_IR *

* Input: none *

* Output: none *

* Calls: none *

* Destroys: none *

Read_IR:

 PSHX

 PSHY

 PSHA

 PSHB

 LDX #BASE

 LDY #ADR1

 BSET OPTION,X Bit7 ;enable A/D system

 BSET ADCTL,X Bit4 ; set for multiple scan

 BCLR ADCTL,X Bit2 ; read Analog 0 - 3

 BCLR ADCTL,X Bit3 ;

 BCLR ADCTL,X Bit5 ;single scan

RA1 BRCLR ADCTL,X Bit7 RA1 ; wait util conversion is complete

 LDAA 0,Y

 STAA LF_IR

 LDAA 1,Y

 STAA RF_IR

 LDAA 2,Y

 STAA R_IR

 LDAA 3,Y

 STAA L_IR

 PULB

 PULA

 PULY

 PULX

 RTS

**

* Subroutine: Read_Bump *

* Function: reads the values of the A/D port and stores *

* then to R_Bump, L_Bump, B_Bump, F_Bump *

* Input: none *

* Output: none *

* Calls: none *

* Destroys: none *

Read_Bump:

 PSHX

 PSHY

 PSHA

 PSHB

 LDX #BASE

 LDY #ADR1

 BSET OPTION,X Bit7 ;enable A/D system

 BSET ADCTL,X Bit4 ; set for multiple scan

 BSET ADCTL,X Bit2 ; read Analog 0 - 3

 BCLR ADCTL,X Bit3 ;

 BCLR ADCTL,X Bit5 ;single scan

RB1 BRCLR ADCTL,X Bit7 RB1 ; wait util conversion is complete

 LDAA 0,Y

 STAA R_Bump

 LDAA 1,Y

 STAA L_Bump

 LDAA 2,Y

 STAA F_Bump

 LDAA 3,Y

 STAA B_Bump

 PULB

 PULA

 PULY

 PULX

 RTS

**

* Subroutine: turn_left *

* Function: turns left the number of degreess stored in *

* amount (unsigned value) *

* Input: degrees, curent heading *

* Output: turns robot left *

* Calls: Read_Bump *

* Destroys: none *

turn_left

 PSHA

 PSHB

 LDAA #FALSE

 STAA error_flag

 LDAA heading

 CMPA degrees

 BLO TL1 ; if the number of degrees is smaler than the

* ; heading

 SUBA degrees

 STAA temp1

TL2

 STAA temp2

 LDD #STOP

 STD Lduty

 LDD #RightForward

 STD Rduty

 JSR Read_Bump

 LDAA #10

 STAA temp2

TL5 LDAA #10 ;100 ms delay

 STAA delayTime2

 JSR delay2

TL4 JSR Read_Bump

 LDAA #150

 CMPA L_Bump

 BHI TL3 ;the robot hit something

 LDAA #TRUE

 CMPA T_flag

 BNE TL4

 DEC temp2

 BNE TL5

 LDD #STOP

 STD Rduty

 LDAA #$FF

 STAA temp2

TL6 DEC temp2

 BNE TL6

 LDAA heading

** ANDA #$F0

 STAA temp2

** JSR OutByte

 LDAA temp1

** ANDA #$F0

 CMPA temp2

 BNE TL2

 BRA end_turn_left

TL1 LDAA #Max_heading ; max compass heading

 SUBA degrees

 ADDA heading

 STAA temp1

 BRA TL2

TL3 LDAA #TRUE ;set the error flag if the robot hit something

 STAA error_flag

end_turn_left:

 LDD #STOP

 STD Lduty

 STD Rduty

 PULB

 PULA

 RTS

**

* Subroutine: turn_right *

* Function: turns right the number of degreess stored in *

* amount (unsigned value) *

* Input: degrees, curent heading *

* Output: turns robot right *

* Calls: Read_Bump *

* Destroys: none *

turn_right

 PSHA

 PSHB

 LDAA #FALSE

 STAA error_flag

 LDAA heading

 ADDA degrees

 CMPA #Max_heading

 BHI TR1 ; if the new heading is larger than the

* ; max heading

 STAA temp1

TR2 LDD #STOP

 STD Rduty

 LDD #LeftForward

 STD Lduty

 LDAA #$FF

 STAA temp2

 LDAA #10

 STAA temp2

TR5 LDAA #10 ;10 ms delay

 STAA delayTime2

 JSR delay2

TR4

 JSR Read_Bump

 LDAA #150

 CMPA R_Bump

 BHI TR3 ;the robot hit something

 LDAA #TRUE

 CMPA T_flag

 BNE TR4

 DEC temp2

 BNE TR5

 LDAA #100 ;10 ms delay

 STAA delayTime2

 JSR delay2

 LDD #STOP

 STD Lduty

 LDAA #TRUE

TR6 CMPA T_flag

 BNE TR6

 LDAA heading

** ANDA #$F0

 STAA temp2

 LDAA temp1

** ANDA #$F0

 CMPA temp2

 BNE TR2

 BRA end_turn_right

TR1 SUBA #Max_heading

 STAA temp1

 BRA TR2

TR3 LDAA #TRUE ;set the error flag if the robot hit something

 STAA error_flag

end_turn_right:

 LDD #STOP

 STD Lduty

 STD Rduty

 PULB

 PULA

 RTS

* SUBROUTINE - Drive

* Description this subroutine will case the robot to drive around

* if the robot sees an obstacle in front of it it will look left and

* turn left if if can if not it will look right and then turn right

* if it cannot turn left of right it will back up

Drive:

 LDD #LeftForward

 STD Lduty

 LDD #RightForward

 STD Rduty

look JSR Read_IR

 JSR Read_Bump

** check front sensors

 LDAA #100

 CMPA LF_IR

 BLO backup

 CMPA RF_IR

 BLO backup

 LDAA #32

 CMPA LF_IR

 BLO turn

 CMPA RF_IR

 BLO turn

 CMPA F_Bump

 BHI backup

 BRA Drive

turn LDAA #100

 CMPA L_IR

 BHI left

 CMPA R_IR

 BHI right

backup LDD #LeftReverse

 STD Lduty

 LDD #RightReverse

 STD Rduty

 BRA look

left LDD #STOP

 STD Lduty

 LDD #RightForward

 STD Rduty

 LDAA #64

 CMPA L_Bump

 BHI right

 BRA look

right LDD #STOP

 STD Rduty

 LDD #LeftForward

 STD Lduty

 LDAA #64

 CMPA R_Bump

 BHI left

 BRA look

* SUBROUTINE - Drive2

* Description this subroutine will case the robot to drive around

* if the robot sees an obstacle in front of it it will look left and

* turn left if if can if not it will look right and then turn right

* if it cannot turn left of right it will back up

* This subroutine will use the compass to make 90 degree turns

Drive2:

 LDAA #$AA

 JSR OutByte

 LDD #LeftForward

 STD Lduty

 LDD #RightForward

 STD Rduty

look2 JSR Read_IR

 JSR Read_Bump

** check front sensors

 LDAA #100

 CMPA LF_IR

 BLO backup2

 CMPA RF_IR

 BLO backup2

 LDAA #75

 CMPA LF_IR

 BLO turnR

 CMPA RF_IR

 BLO turnL

 CMPA F_Bump

 BHI backup2

 BRA Drive2

turnL

 LDAA #100

 CMPA L_IR

 BHI backup2

 BRA left2

turnR LDAA #100

 CMPA R_IR

 BHI backup2

 BRA right2

backup2

 LDD #LeftReverse

 STD Lduty

 LDD #RightReverse

 STD Rduty

 BRA look2

left2 LDAA #35

 STAA degrees

 JSR turn_left

** LDAA error_flag

** BEQ right2

 BRA look2

right2 LDAA #35

 STAA degrees

 JSR turn_right

** LDAA error_flag

** BEQ left2

 BRA look2

**

* SUBROUTINE - Drive3 *

* Description this subroutine will case the robot to drive strait for *

* a set time and then turn either left or right the specifiecd amount *

* Input : distance

* degrees

* direction

**

Drive3:

** LDAA #$AA

** JSR OutByte

d3a LDAA #10

 STAA CNT

 LDD #LeftForward

 STD Lduty

 LDD #RightForward

 STD Rduty

d3b LDAA #100

 STAA delayTime2

 JSR delay2

look3 JSR Read_IR

 JSR Read_Bump

** check front sensors

 LDAA #100

 CMPA LF_IR

 BLO stop

 CMPA RF_IR

 BLO stop

 LDAA #TRUE

 CMPA T_flag

 BNE look3

 DEC CNT

 BNE d3b

 DEC distance

 BNE d3a

 LDAA direction

 CMPA #Right

 BEQ d3c

 JSR turn_left

 BRA end_drive3

d3c JSR turn_right

 BRA end_drive3

stop LDD #STOP

 STD Lduty

 STD Rduty

 LDAA TRUE

 STAA error_flag

 BRA end_drive3

end_drive3

 RTS

**

* Subroutine: Shapes *

* Description: makes a series of shapes that are stored in the *

* shapes table *

* Input: starting value of shape

**

Shapes:

 LDAA 0,X

 STAA distance

 JSR OutByte

 INX

 LDAA 0,X

 STAA degrees

 JSR OutByte

 INX

 LDAA 0,X

 STAA direction

 JSR OutByte

 JSR Drive3

 LDAA #TRUE

 CMPA #error_flag

 BEQ end_shapes

 INX

 LDAA 0,X

 CMPA #EOS

 BNE Shapes

end_shapes:

 RTS

**

* SUBROUTINE - test2

* Description : this routine will test the servos of the robot left turns intersparced by periods of srait lin

* Input : none

**

test2:

 PSHA

t2a LDX #SetSpeed

 JSR OutStr

 LDX #Lduty

 LDAA 0,X

 JSR OutByte

 LDAA 1,X

 JSR OutByte

 LDAA #CR

 JSR OutChar

 LDAA #LF

 JSR OutChar

 LDX #Rduty

 LDAA 0,X

 JSR OutByte

 LDAA 1,X

 JSR OutByte

 JSR InChar

 CMPA #$31

 BEQ incSpeed

 CMPA #$32

 BEQ decSpeed

 CMPA #$33

 BEQ incSpeed2

 CMPA #$34

 BEQ decSpeed2

 BRA end_test2

incSpeed

 LDD Lduty

 ADDD #150

 STD Lduty

 BRA t2a

decSpeed

 LDD Lduty

 SUBD #150

 STD Lduty

 BRA t2a

incSpeed2

 LDD Rduty

 ADDD #300

 STD Rduty

 BRA t2a

decSpeed2

 LDD Rduty

 SUBD #300

 STD Rduty

 BRA t2a

end_test2

 PULA

 RTS

**

* SUBROUTINE - test3

* Description : this routine will test the compass of the robot left turns intersparced by periods of srait li

* Input : none

**

test3

 PSHA

 LDX #CompassHeading

 JSR OutStr

 JSR InChar

 LDAA heading

 JSR OutByte

 PULA

 RTS

**

* SUBROUTINE - test4

* Description : this routine will test delay routine of the robot

* Input : none

**

test4

 PSHA

 LDAA #$2A

 JSR OutChar

t4b LDAA #100

 STA delayTime2

 JSR delay2

 LDAA #TRUE

t4a CMPA T_flag

 BNE t4a

 LDAA #$2A

 JSR OutChar

 BRA t4b

end_test4

 PULA

 RTS

**

* SUBROUTINE - test5

* Description : this routine will test the IR

* Input : none

**

test5

 PSHA

 PSHX

 JSR Read_IR

 LDX #IR1

 JSR OutStr

 LDAA L_IR

 JSR OutByte

 LDX #IR2

 JSR OutStr

 LDAA R_IR

 JSR OutByte

 LDX #IR3

 JSR OutStr

 LDAA LF_IR

 JSR OutByte

 LDX #IR4

 JSR OutStr

 LDAA RF_IR

 JSR OutByte

 PULX

 PULA

 RTS

**

* SUBROUTINE - test6

* Description : this routine will test the Bump sensors on the robot

* Input : none

**

test6

 PSHA

 PSHX

 JSR Read_Bump

 LDX #B1

 JSR OutStr

 LDAA L_Bump

 JSR OutByte

 LDX #B2

 JSR OutStr

 LDAA R_Bump

 JSR OutByte

 LDX #B3

 JSR OutStr

 LDAA F_Bump

 JSR OutByte

 LDX #B4

 JSR OutStr

 LDAA B_Bump

 JSR OutByte

 PULX

 PULA

 RTS

**

* END OF PROGRAM

**

Research about mouse data

PS/2 Mouse/Keyboard Protocol

 Copyright 1999 Adam Chapweske

 NOTE: THIS SERVER IS A LITTLE FLAKY... IF ANY IMAGES DO NOT LOAD, CLICK "RELOAD" ON

 YOUR BROWSER A FEW TIMES AND THE PICTURES WILL EVENTUALLY APPEAR.

Intruduction:

The PS/2 device interface, used by many modern mice and keyboards, was developed by IBM and originally appeared in

the IBM Technical Reference Manual. However, this manual has not been printed for many years and as far as I know,

there is currently no official publication of this information. I have not had access to the IBM Technical Reference

Manual, so all information on this page comes from my own experiences with the mouse and keyboard, as well as help

from the references listed at the bottom of this page.

This document descibes the interface used by the PS/2 mouse and AT (PS/2) keyboard. I'll cover the physical and

electrical interface, as well as the protocol. If you need higher-level information, such as commands, data packet formats,

or other information specific to the keyboard or mouse, I have written separate documents for the two devices:

 The AT Keyboard Interface (same as PS/2 keyboard)

 The PS/2 Mouse Interface

I also encourage you to check out my homepage for more information related to this topic, including projects, code, and

links related to the mouse and keyboard.

The Connector:

The physical keyboard/mouse port is one of two styles of connectors: The 5-pin DIN or the 6-pin mini-DIN. Both

connectors are completely (electrically) similar; the only practical difference between the two is the arrangement of pins.

This means that the two types of connectors can easily be changed with simple hard-wired adaptors. These cost about

$6 each or you can make your own by matching the pins on any two connectors. The DIN standard was created by the

German Standardization Organization (Deutsches Institut fuer Norm) . Their website is at http://www.din.de (this site is in

German, but most of their pages are also available in English.)

PC keyboards can have either a 6-pin mini-DIN or a 5-pin DIN connector. If your keyboard has a 6-pin mini-DIN and

your computer has a 5-pin DIN (or visa versa), the two can be made compatible with the adaptors described above.

Keyboards with the 6-pin mini-DIN are often referred to as "PS/2" keyboards, while those with the 5-pin DIN are called

"AT" or "XT" devices. XT keyboards are quite old and haven't been made for about ten years. All modern keyboards

built for the PC are either PS/2, AT, or USB. This document does not apply to USB devices, which use a completely

different interface.

Mice come in a number of shapes and sizes (and interfaces.) The most popular type is probably the PS/2 mouse, with

USB mice slowly gaining popularity. Serial mice are also quite popular, but the computer industry is abandoning them in

support of USB and PS/2 devices. This document applies only to PS/2 mice. If you want to interface a serial mouse,

check out Microchip's appnote #519, "Implementing a Simple Serial Mouse Controller."

As a side note, there is one other type of connector you may run into on keyboards. While most keyboard cables are

hard-wired to the keyboard, there are some whose cable is not permanently attached and come as a separate

component. These cables have a DIN connector on one end (the end that connects to the computer) and a SDL

(Sheilded Data Link) connector on the keyboard end. SDL was created by a company called "AMP." This connector is

somewhat similar to a telephone connector in that it has wires and springs rather than pins, and a clip holds it in place. If

you need more information on this connector, you might be able to find it on AMP's website at

http://www.connect.amp.com. I have only seen this type of connector on (old) XT keyboards, although there may be AT

keyboards that also use the SDL. Don't confuse the SDL connector with the USB connector--they probably both look

similar in my diagram below, but they are actually very different. Keep in mind that the SDL connector has springs and

moving parts, while the USB connector does not.

The pinouts for each connector are shown below:

(If any of these images do not load, hit "reload" on your browser a few times.)

 Male

 (Plug)

 Female

 (Socket)

 5-pin DIN (AT/XT):

 1 - Clock

 2 - Data

 3 - Not Implemented

 4 - Ground

 5 - +5v

 Male

 (Plug)

 Female

 (Socket)

 6-pin Mini-DIN (PS/2):

 1 - Data

 2 - Not Implemented

 3 - Ground

 4 - +5v

 5 - Clock

 6 - Not Implemented

 6-pin SDL:

 A - Not Implemented

 B - Data

 C - Ground

 D - Clock

 E - +5v

 F - Not Implemented

General Description:

(Note: Throughout this document, I may use the more general term "host" to refer to the computer--or whatever the

keyboard/mouse is connected to-- and the term "device" will refer to the keyboard/mouse.)

There are four interesting pins on the connectors just described: Ground, +5v, Data, and Clock. The +5V is supplied

by the host (computer) and the keyboard/mouse's ground is connected to the host's electrical ground. Data and Clock

are both open collector, which means they are normally held at a high logic level but can easily be pulled down to ground

(logic 0.) Any device you connect to a PS/2 mouse, keyboard, or host should have large pull-up resistors on the Clock

and Data lines. You apply a "0" by pulling the line low and you apply a "1" by letting the line float high. Refer to Figure 1

for a general interface to Data and Clock. (Note: if you are going to use a microcontroller such as the PIC, where I/O is

bidirectional, you may skip the transistors and buffers and use the same pin for both input and output. With this

configuration, a "1" is asserted by setting the pin to input and let the resistor pull the line high. A "0" is then asserted by

changing the pin to output and write a "0" to that pin, which will pull the line to ground.)

Figure 1: Open-collector interface to Data and Clock. Data and Clock are read on the microcontroller's port A and

B, respectively. Both lines are normally held at +5V, but can be pulled to ground by asserting logic 1 on C and D. As a

result, Data equals D, inverted, and Clock equals C, inverted.

The PS/2 mouse and keyboard implement a bidirectional synchronous serial protocol. In other words, Data is sent one

bit at a time on the Data line and is read on each time Clock is pulsed. The keyboard/mouse can send data to the host

and the host can send data to the device, but the host always has priority over the bus and can inhibit communication from

the keyboard/mouse at any time by holding Clock low.

Data sent from the keyboard/mouse to the host is read on the falling edge of the clock signal (when Clock goes from

high to low); data sent from the host to the keyboard/mouse is read on the rising edge (when Clock goes from low to

high.) Regardless of the direction of communication, the keyboard/mouse always generates the clock signal. If the host

wants to send data, it must first tell the device to start generating a clock signal (that process is described in the next

section.) The maximum clock frequency is 33 kHz and most devices operate within 10-20kHz. If you want to build a

PS/2 device, I would recommend keeping this frequency around 15 kHz. This means Clock should be high for about 40

microseconds and low for 40 microseconds.

All data is arranged in bytes with each byte sent in a frame consisting of 11-12 bits. These bits are:

 1 start bit. This is always 0.

 8 data bits, least significant bit first.

 1 parity bit (odd parity).

 1 stop bit. This is always 1.

 1 acknowledge bit (Host-to-device communication only)

The parity bit is set if there is an even number of 1's in the data bits and reset (0) if there is an odd number of 1's in the

data bits. The number of 1's in the data bits plus the parity bit always add up to an odd number (odd parity.) This is used

for error detection.

When the host is sending data to the keyboard/mouse, a handshaking bit is sent from the device to acknowledge the

packet was received. This bit is not present when the device sends data to the host.

Device-to-Host Communication:

The Data and Clock lines are both open collector (normally held at a high logic level.) When the keyboard or mouse

wants to send information, it first checks Clock to make sure it's at a high logic level. If it's not, the host is inhibiting

communication and the device must buffer any to-be-sent data until it regains control of the bus (the keyboard has a

16-byte buffer and the mouse's buffer stores only the last packet sent.) If the Clock line is high, the device can begin to

transmit its data.

As I mentioned in the previous section, the keyboard and mouse use a serial protocol consisting of 11-bit frames. These

bits are:

 1 start bit. This is always 0.

 8 data bits, least significant bit first.

 1 parity bit (odd parity).

 1 stop bit. This is always 1.

Each bit is read by the host on the falling edge of the clock, as is illustrated in Figures 2 & 3.

Figure 2: Device-to-host communication. The Data line changes state when Clock is high and that data is latched on the

falling edge of the clock signal.

Figure 3: Scan code for the "Q" key (15h) being sent from a keyboard to the computer. Channel A is the Clock signal;

channel B is the Data signal.

The clock frequency is 10-16.7kHz. The time from the rising edge of a clock pulse to a Data transition should be at least

5 microseconds. The time from a data transition to the falling edge of a clock pulse should be at least 5 microseconds and

no greater than 25 microseconds. This timing is very important--you should follow it exactly. The host may pull the line

low before the 11th clock pulse (stop bit), causing the device to abort sending the current byte (this is very rare.) After

the stop bit is transmitted, the device should wait at least 50 microseconds before sending the next packet. This gives the

host time to inhibit transmission while it processes the received byte (the host will usually automatically do this after each

packet is received.) The device should wait at least 50 microseconds after the host releases an inhibit before sending any

data.

I would recommend the following process for sending a single byte from an emulated keyboard/mouse to the host:

 1) Wait for Clock = high.

 2) Delay 50 microseconds.

 3) Clock still = high?

 No--goto step 1

 4) Data = high?

 No--Abort (and read byte from host)

 5) Delay 20 microseconds (=40 microseconds to the time Clock is pulled low in sending the start bit.)

 6) Output Start bit (0) \ After sending each of these bits, test

 7) Output 8 data bits > Clock to make sure host hasn't pulled it

 8) Output Parity bit / low (which would abort this transmission.)

 9) Output Stop bit (1)

 10) Delay 30 microseconds (=50 microseconds from the time Clock is released in sending the stop bit)

The process for sending a single bit should then be as follows:

 1) Set/Reset Data

 2) Delay 20 microseconds

 3) Bring Clock low

 4) Delay 40 microseconds

 5) Release Clock

 6) Delay 20 microseconds

Here is some sample code written for the PIC16F84 that follows the above algorithms to send a byte to the host.

"Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the bits connected to the Clock and Data lines; "TEMP0",

"PARITY", and "COUNTER" are all general purpose registers. Note that in the "PS2outBit" routine, the Data and Clock

lines are brought low by setting the appropriate I/O pin to output (it's assumed their output was set to "0" at the beginning

of the program.) And they are allowed to float (high) by setting the I/O pin to input (and allow a pull-up resistor to pull

the line high.) This was written for a PIC running at 4.61 MHz +/- 25% (RC oscillator: 5k/20pF). This is very important

for timing considerations.

 ByteOut movwf TEMP0 ;Save to-be-sent byte

 InhibitLoop btfss CLOCK ;Check for inhibit

 goto InhibitLoop

 Delay 50 ;Delay 50 microseconds

 btfss CLOCK ;Check again for inhibit

 goto InhibitLoop

 btfss DATA ;Check for request-to-send

 retlw 0xFF

 clrf PARITY ;Init reg for parity calc

 movlw 0x08

 movwf COUNTER

 movlw 0x00

 call BitOut ;Output Start bit (0)

 btfss CLOCK ;Test for inhibit

 goto ByteOutEnd

 Delay 4

 ByteOutLoop movf TEMP0, w

 xorwf PARITY, f ;Calculate parity

 call BitOut ;Output Data bits

 btfss CLOCK ;Test for inhibit

 goto ByteOutEnd

 rrf TEMP0, f

 decfsz COUNTER, f

 goto ByteOutLoop

 Delay 2

 comf PARITY, w

 call BitOut ;Output Parity bit

 btfss CLOCK ;Test for inhibit

 goto ByteOutEnd

 Delay 5

 movlw 0xFF

 call BitOut ;Output Stop bit (1)

 Delay 48

 retlw 0x00

 ByteOutEnd bsf STATUS, RP0 ;Host has aborted

 bsf DATA ;DATA=1

 bsf CLOCK ;CLOCK=1

 bcf STATUS, RP0

 retlw 0xFE

 BitOut bsf STATUS, RP0

 andlw 0x01

 btfss STATUS, Z

 bsf DATA

 btfsc STATUS, Z

 bcf DATA

 Delay 21

 bcf CLOCK

 Delay 45

 bsf CLOCK

 bcf STATUS, RP0

 Delay 5

 return

Host to Device Communication:

The packet is sent a little differently in host-to-device communication...

First of all, the PS/2 device always generates the clock signal. If the host wants to send data, it must first put the Clock

and Data lines in a "Request-to-send" state as follows:

 Inhibit communication by pulling Clock low for at least 100 microseconds.

 Apply "Request-to-send" by pulling Data low, then release Clock.

The device should check for this state at intervals not to exceed 10 milliseconds. When the device detects this state, it will

begin generating Clock signals and clock in eight data bits and one stop bit. The host changes the Data line only when

the Clock line is low, and data is latched on the rising edge of the clock pulse. This is opposite of what occours in

device-to-host communication.

After the stop bit is sent, the device will acknowledge the received byte by bringing the Data line low and generating one

last clock pulse. If the host does not release the Data line after the 11th clock pulse, the device will continue to generate

clock pulses until the the Data line is released (the device will then generate an error.)

The Host may abort transmission at time before the 11th clock pulse (acknowledge bit) by holding Clock low for at least

100 microseconds.

To make this process a little easier to understand, here's the steps the host must follow to send data to a PS/2 device:

 1) Bring the Clock line low for at least 100 microseconds.

 2) Bring the Data line low.

 3) Release the Clock line.

 4) Wait for the device to bring the Clock line low.

 5) Set/reset the Data line to send the first data bit

 6) Wait for the device to bring Clock high.

 7) Wait for the device to bring Clock low.

 8) Repeat steps 5-7 for the other seven data bits and the parity bit

 9) Release the Data line.

 10) Wait for the device to bring Data low.

 11) Wait for the device to bring Clock low.

 12) Wait for the device to release Data and Clock

Figure 3 shows this graphically and Figure 4 separates the timing to show which signals are generated by the host, and

which are generated by the PS/2 device. Notice the change in timing for the Ack bit--the data transition occours when

the Clock line is high (rather than when it is low as is the case for the other 11 bits.)

Figure 3: Host-to-Device Communication.

Figure 4: Detailed host-to-device communication.

Figure 4 shows two important timing considerations: (a), and (b). (a), the time it takes the device to begin generating

clock pulses after the host initially takes the Clock line low, must be no greater than 15ms; (b), the time it takes for the

packet to be sent, must be no greater than 2ms. If either of these time limits is not met, the host will generate an error.

Immediately after the packet is received, the host may bring the Clock line low to inhibit communication while it processes

data. If the command sent by the host requires a response, that response must be received no later than 20ms after the

host releases the Clock line. If this does not happen, the host generates an error. As was the case with Device-to-host

communication, no Data transition may occur with 5 microseconds of a Clock transition.

If you want to emulate a mouse or keyboard, I would recommend reading data from the host as follows:

 In your main program, check for Data=low at least every 10 milliseconds.

 If Data has been brought low by the host, read one byte from the host

 1) Wait for Clock=high

 2) Is Data still low?

 No--An error occurred; Abort.

 3) Read 8 data bits \ After reading each of these bits, test

 4) Read parity bit > Clock to make sure host hasn't pulled it

 5) Read stop bit / low (which would abort this transmission.)

 6) Data still equals 0?

 Yes--Keep clocking until Data=1 then generate an error

 7) Output Acknowledge bit

 8) Check Parity bit.

 Generate an error if parity bit is incorrect

 9) Delay 45 microseconds (to give host time to inhibit next transmission.)

 Read each bit (8 data bits, parity bit, and stop bit) as follows:

 1) Delay 20 microseconds

 2) Bring Clock low

 3) Delay 40 microseconds

 4) Release Clock

 5) Delay 20 microsecond

 6) Read Data line

 Send the acknowledge bit as follows:

 1) Delay 15 microseconds

 2) Bring Data low

 3) Delay 5 microseconds

 4) Bring Clock low

 5) Delay 40 microseconds

 6) Release Clock

 7) Delay 5 microseconds

 8) Release Data

Here is some sample code written for the PIC16F84 that implements the above algorithms to read data from a PS/2

host. "Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the port bits connected to the Clock and Data lines;

"TEMP0", "PARITY", and "COUNTER" are all general purpose registers. Note that in the "PS2inBit" routine, Clock is

brought low by setting the appropriate I/O pin to output (it's assumed they were set to "0" at the beginning of the

program.) And it is allowed to float (high) by setting the I/O pin to input (and allow a pull-up resistor to pull the line

high.) Timing was worked out for a PIC running at 4.61 MHz +/- 25% (RC oscillator with values 5k/20 pF). Will work

for any oscillator between 3.50 MHz - 5.76 MHz.

 ByteIn btfss CLOCK ;Wait for start bit

 goto ByteIn

 btfsc DATA

 goto ByteIn

 movlw 0x08

 movwf COUNTER

 clrf PARITY ;Init reg for parity calc

 Delay 28

 ByteInLoop call BitIn ;Clock in Data bits

 btfss CLOCK ;Test for inhibit

 retlw 0xFE

 bcf STATUS, C

 rrf RECEIVE, f

 iorwf RECEIVE, f

 xorwf PARITY,f

 decfsz COUNTER, f

 goto ByteInLoop

 Delay 1

 call BitIn ;Clock in Parity bit

 btfss CLOCK ;Test for inhibit

 retlw 0xFE

 xorwf PARITY, f

 Delay 5

 ByteInLoop1 Delay 1

 call BitIn ;Clock in Stop bit

 btfss CLOCK ;Test for inhibit

 retlw 0xFE

 xorlw 0x00

 btfsc STATUS, Z ;Stop bit = 1?

 clrf PARITY No--cause an error condition.

 btfsc STATUS, Z ;Stop bit = 1?

 goto ByteInLoop1 ; No--keep clocking.

 bsf STATUS, RP0 ;Acknowledge

 bcf DATA

 Delay 11

 bcf CLOCK

 Delay 45

 bsf CLOCK

 Delay 7

 bsf DATA

 bcf STATUS, RP0

 btfss PARITY, 7 ;Parity correct?

 retlw 0xFF ; No--return error

 Delay 45

 retlw 0x00

 BitIn Delay 8

 bsf STATUS, RP0

 bcf CLOCK

 Delay 45

 bsf CLOCK

 bcf STATUS, RP0

 Delay 21

 btfsc DATA

 retlw 0x80

 retlw 0x00

Other Sources / References:

 Adam's micro-Resources Home - Many pages/links to related information.

 The AT Keyboard - My page on AT keyboards

 The PS/2 Mouse - My page on the PS/2 mouse

 Synaptics Touchpad Interfacing Guide -Very informative!

 PS/2 Keyboard and Mouse Protocols - Timing diagrams.

 Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).

 Interfacing the AT Keyboard

 Copyright 2001 Adam Chapweske

 This document is under construction... I'll post more information as I have time... Click here for the old

 version of this guide.

 Note: This document refers to AT and PS/2 keyboards. The two keyboards are exactly the same except for their

 connectors. The AT keyboard uses a 5-pin DIN connector, while the PS/2 keyboard uses the 6-pin mini-DIN. That is

 the only difference.

 General Description:

 Keyboards consist of a large matrix of keys, all of which are monitored by an on-board processor. The specific

 processor(1) varies from keyboard-to-keyboard but they all basically do the same thing: Monitor which key(s) are

 being pressed/released and send the appropriate data to the host. This processor takes care of all the debouncing and

 buffers any data in its 16-byte buffer, if needed. Your motherboard contains a keyboard controller that is in charge of

 decoding all of the data received from the keyboard and informing your software of what's going on. All communication

 between the host and the keyboard uses an IBM protocol.

 Electrical Interface / Protocol:

 The keyboard uses the same protocol as the PS/2 mouse. Click here for detailed information about that protocol.

 Scan Codes:

 Your keyboard's processor spends most of its time scanning, or monitoring, the matrix of keys. If it finds that any key

 is being pressed, released, or held down, the keyboard will send a packet of information known as a scan code to your

 computer. There are two different types of scan codes: make codes and break codes. A make code is sent when a

 key is pressed or held down. A break code is sent when a key is released. Every key is assigned its own unique make

 code and break code so the host can determine exactly what happened to which key simply by looking at a single scan

 code sent from the keyboard. The set of make and break codes for every key comprises a scan code set. There are

 three standard scan code sets, named 1, 2, and 3. Scan code set 2 is the default, and is the only set used by all modern

 PCs. Sets 1 and 3 exist for compatibility with older systems. You may switch scan code sets using the "Set Scan Code

 Set" (0xF0) command.

 So how do you figure out what the scan codes are for each key? Unfortunately, there's no simple formula for calculating

 this. If you want to know what the make code or break code is for a specific key, you'll have to look it up in a table.

 I've composed tables for all make codes and break codes in all three scan code sets:

 Scan Code Set 1

 Scan Code Set 2

 Scan Code Set 3

 Make Codes, Break Codes, and Typematic Repeat:

 Whenever any key on a keyboard is pressed, that key's make code is sent to the computer. Keep in mind that a make

 code only represents a key on a keyboard--it does not represent the character printed on that key. This means that

 there is no defined relationship between a make code and a character. It's up to your software to translate the scan

 codes to characters or commands. If you want to associate a make code with a character, you'll have to implement a

 look-up table in your program.

 Although most set 2 make codes are only one-byte wide, there are a handfull of extended keys whose make codes are

 two or four bytes wide. These make codes can be identified by the fact that the first byte is E0h.

 Just as a make code is sent to the computer whenever a key is pressed, a break code is sent to the computer whenever

 a key is released. In addition to every key having its own unique make code, they all have their own unique break

 code. Fortunately, however, you won't always have to use tables to figure out a key's break code--certain relationships

 do exist between make codes and break codes. Most set 2 break codes are two bytes long where the first byte is F0h

 and the second byte is the make code for that key. Break codes for extended keys are usually three bytes long and the

 first two bytes are E0h, F0h, and the last byte is the last byte of that key's make code. As an example, I have listed

 below a few set 2 make codes and break codes for some keys:

 Key

 (Set 2)

 Make Code

 (Set 2)

 Break Code

 "A"

 1C

 F0,1C

 "5"

 2E

 F0,2E

 "F10"

 09

 F0,09

 Right Arrow

 E0, 74

 E0, F0, 74

 Right "Ctrl"

 E0, 14

 E0, F0, 14

 Example: What sequence of make codes and break codes should be sent to your computer for the

 character "G" to appear in a word processor? Since this is an upper-case letter, the sequence of events

 that need to take place are: press the "Shift" key, press the "G" key, release the "G" key, release the "Shift"

 key. The scan codes associated with these events are the following: make code for the "Shift" key (12h),

 make code for the "G" key (34h), break code for the "G" key(F0h,34h), break code for the "Shift" key

 (F0h,12h). Therefore, the data sent to your computer would be: 12h, 34h, F0h, 34h, F0h, 12h.

 If you press a key, its make code is sent to the computer. When you press and hold down a key, that key becomes typematic,

 which means the keyboard will keep sending that key's make code until the key is released or another key is pressed. To verify this,

 open a text editor and hold down the "A" key. When you first press the key, the character "a" immediately appears on your screen.

 After a short delay, another "a" will appear followed by a whole stream of "a"s until you release the "A" key. There are two important

 parameters here: the typematic delay, which is the short delay between the first and second "a", and the typematic rate, which is

 how many characters per second will appear on your screen after the typematic delay. The typematic delay can range from 0.25

 seconds to 1.00 second and the typematic rate can range from 2.0 cps (characters per second) to 30.0 cps. You may change the

 typematic rate and delay using the "Set Typematic Rate/Delay" (0xF3) command.

 Command Set:

 The following are the only commands that may be sent to the keyboard:

 0xFF (Reset) - Keyboard responds with acknowledge (0xFA) then enters Reset mode.

 0xFE (Resend) - Keyboard responds by resending the last scan code or command sent to the host.

 0xFD (Set Key Type Make) -

 0xFC (Set Key Type Make/Break) -

 0xFB (Set Key Type Typematic) -

 0xFA (Set All Keys Typematic/Make/Break) -

 0xF9 (Set All Keys Make) -

 0xF8 (Set All Keys Make/Break) -

 0xF7 (Set All Keys Typematic) -

 0xF6 (Set Default) -

 0xF5 (Disable) - Keyboard responds with acknowledge (0xFA), then stops scanning and waits further instructions.

 0xF4 (Enable) -

 0xF3 (Set Typematic Rate/Delay) - Keyboard responds with acknowledge (0xFA), then waits for the host to send one more

 byte, which it also responds to with acknowledge (0xFA). The second byte defines the typematic rate and delay as follows:

 Repeat Rate

 Bits 0-4

 Rate(cps)

 Bits 0-4

 Rate(cps)

 Bits 0-4

 Rate(cps)

 Bits 0-4

 Rate(cps)

 00h

 2.0

 08h

 4.0

 10h

 8.0

 18h

 16.0

 01h

 2.1

 09h

 4.3

 11h

 8.6

 19h

 17.1

 02h

 2.3

 0Ah

 4.6

 12h

 9.2

 1Ah

 18.5

 03h

 2.5

 0Bh

 5.0

 13h

 10.0

 1Bh

 20.0

 04h

 2.7

 0Ch

 5.5

 14h

 10.9

 1Ch

 21.8

 05h

 3.0

 0Dh

 6.0

 15h

 12.0

 1Dh

 24.0

 06h

 3.3

 0Eh

 6.7

 16h

 13.3

 1Eh

 26.7

 07h

 3.7

 0Fh

 7.5

 17h

 15.0

 1Fh

 30.0

 Delay

 Bits 5-6

 Delay (seconds)

 00b

 0.25

 01b

 0.50

 10b

 0.75

 11b

 1.00

 0xF2 (Read ID) - The keyboard responds with "Acknowledge" (0xFA) follwed by a two-byte device ID of 0x83, 0xAB.

 0xF0 (Set Scan Code Set)

 0xEE (Echo) - The keyboard responds with "Echo" (0xEE).

 0xED (Set/Reset LEDs) -

 Initialization:

 The following is the communication between my computer and keyboard when it boots-up:

 Keyboard: AA Self-test passed

 Host: ED Set/Reset Status Indicators

 Keyboard: FA Acknowledge

 Host: 00 Turn off all LEDs

 Keyboard: FA Acknowledge

 Host: F2 Read ID

 Keyboard: FA Acknowledge

 Keyboard: AB First byte of ID

 Host: ED Set/Reset Status Indicators

 Keyboard: FA Acknowledge

 Host: 02 Turn on Num Lock LED

 Keyboard: FA Acknowledge

 Host: F3 Set Typematic Rate/Delay

 Keyboard: FA Acknowledge

 Host: 20 500 ms / 30.0 reports/sec

 Keyboard: FA Acknowledge

 Host: F4 Enable

 Keyboard: FA Acknowledge

 Host: F3 Set Typematic Rate/delay

 Keyboard: FA Acknowledge

 Host: 00 250 ms / 30.0 reports/sec

 Keyboard: FA Acknowledge

 Emulation:

 Click here for routines that emulate a PS/2 mouse or keyboard

 Footnotes:

 1) Some of these processors include:

 Holtek: HT82K28A, HT82K628A, HT82K68A, HT82K68E

 EMC: EM83050, EM83050H, EM83052H, EM83053H,

 Intel: 8048, 8049

 Motorola: 6868, 68HC11, 6805

 Zilog: Z8602, Z8614, Z8615, Z86C15, Z86E23

 Other Sources / References:

 Holtek - Informative datasheets on many different AT keyboards (and other peripherals).

 PS/2 Mouse/Keyboard Protocol - My page on the protocol used for communication between a keyboard and host.

 KB2LCD Keyboard Reader - My keyboard reader with schematics and code.

 Scan Codes - My tables of scan codes for various keyboards. Print them out -- they're very handy to have.

 Command Sets - My list of commands that can be sent between the host and the keyboard.

 Zilog Keyboard Encoder Appnote - Lots of great information on making a keyboard encoder.

 Help with keyboard interfacing - Article describing how to interface with AT keyboards.

 IBM Keyboard Interfact Project - Good breif article on interfacing to AT and XT keyboards.

 PC Keyboard FAQ - Extensive FAQ; large collection of keyboard-related information.

 Steve's PC Keyboard info - Links, short FAQ, pinouts, Keyboard viewer software and circuit.

 PIC Keyboard Routines - Serial host engine; Keyboard host (8042) emulator; AT Keyboard emulator.

 John Voth's Home Page - 8042 Keyboard Controller Schematic.

 Philips AN434 - Connecting a PC keyboard to the I2C bus. Examples for the 8XC751 MCU.

 AVR AN313 - AT Keyboard-RS232 converter using an AVR MCU. Includes short description/timing diagrams of AT

 keyboard.

 - Adam's micro-Resources -

PAGE
1

_1063611615

