

 1

EEL5666
Robot Report
Charles Parks

December 7, 2001

 2

Table of Contents

Section Page

Abstract 3

Executive summary 3

Introduction 4

Integrated System 5

Mobile Platform 6

Actuation 7

Sensors 8

Behaviors 9

Experimental Layout and Results 10

Documentation 11

Appendices 12

 3

Abstract

This project taught me a lot about the difficulty of designing and constructing a robot.
Robot design can seem simple until a person tries to construct one. The main parts of a
robot are sensors, batteries, servos, and a micro-controller. Sensors allow a robot to see
the world around it. Batteries allow a robot to move around and not stop when it reaches
the end of its power cord. The servos or motors propel a robot along. The micro-
controller is the brain of the robot. This device along with memory holds and runs the
code, which is the personality of the robot. My robot was designed to map out a room.
Currently scout, my robot, has the ability to navigate around a room and avoid hitting any
thing. The other parts of my robot were not possible since I was not able to interface the
mouse or get usable data from my compass.

Executive Summary

Robots are the way of the future they can help people in almost any task. This paper
examines an attempt at constructing a robot that can map a room. The goal for this robot
was to use a set of sensors that cost less than $100.00 and still be able to map out a room.
Another goal was to interface the sensors with minimal amount of additional hardware.
The optical mouse was selected as the main tool to measure distances traveled by the
robot. The optical mouse seam best suited for this task since it was designed to measure
distance moved over a variety of different surfaces. IR range finders along with bump
sensor were used to enable the robot see obstacles. The actuation for this robot was two
hacked servos. The design for this robot seamed very promising and although the
constructed robot does not perform the task of mapping a room yet the creator for this
robot is hopeful of still accomplishing this task.

Introduction

Robots are autonomous machines that are designed to perform tasks that are impossible,
difficult, or monotonous for a person to accomplish. The individual tasks a robot must
perform depend upon the overall purpose of the robot.

Scout, was originally designed to map o ut a room showing the location of all obstacles in
that room. Scout was designed around two main sensors (an optical mouse and an
electronic compass). Sensors are only useful if they can provide accurate data in a format
that can be understood by the robot. The construction of this project taught me the
importance of these two things.

 4

Integrated System

Scout will consist of four basic systems that will enable it to map out an area.

§ Navigation
§ Obstacle detection
§ Propulsion
§ Graphical display

Each of these systems will communicate will any system it needs to and will be
responsible for certain behaviors.

Navigation System

The Navigation System will be responsible for determining current position and heading.
This system will use an optical mouse and an electronic compass to accomplish its tasks.
The optical mouse proved too difficult to interface with the 68HC11 processor in the
limited time span of this project. The electronic selected for this robot gave values that
did not increase linearly with change in angle. These values may be the result of
magnetic fields in the room or a malfunction of the compass. The compass lacked some
features (such as the ability to give accurate readings even if slightly tilted) that would
have been useful for the robot.

Obstacle Detection

The Obstacle detection system will be responsible for locating all obstacle and sudden
drops in the area of operation. This system will use 4 strategically place IR sensor and 2
bump sensors. The Obstacle Detection system worked well for the robot. The value each
IR sensor gave for a fixed distance varied slightly. This slight variation was not much of
a problem since the robot used ranges to determine if the obstacle was too close.

Propulsion

The Propulsion system will be responsible for propelling the robot in the x and y-axis.
The Propulsion system must be able to make accurate 45 and 90 degree turns as well as
forward and reverse movement. This system will use two independently controlled
servos and two 3-inch wheels to perform its task. The propulsion system was able to
turn the robot and drive it forward. The problem of this method of propulsion was that
the servos were not perfectly matched and as a result the robot will tend to drift over long
distances. A robot with one servo controlling the rear wheels and another servo
controlling a steering wheel would be able to travel in a strait line but may lose some of
its ability to turn.

 5

Graphical Display

The Graphical Display system will convert the values stored in the grid into a sequence
of ASCII characters and transmit them to a PC. This system will use the serial interface
system of the micro controller and conversion routine to accomplish this task. The
graphical system of the robot was never implemented since the mouse was never
successfully interfaced. The robot did have some routines to print text on the screen and
convert a binary value into an ASCII text format that could be printed to a screen. These
routines were used for testing.

 6

Mobile Platform

The purpose of the platform is to provide a place to mount the electronics for the robot.
The goal of the platform I designed was to make simple shape that was symectrical about
one axis. The platform should contain a way to mount the servos used to propel the robot
as well as all sensors used by the robot. The two most important things that the platform
should house are the micro controller, brains, and batteries, food source. An addition
feature of the body that would help with debugging is external leds that indicate the mode
of operation the robot is in and the status of various systems.

The placement of the optical mouse and electronic compass are critical to the success of
this robot. The optical mouse needs to be place so that the y-axis it measures is the
forward and reverse movement of the robot and the x-axis is the side to side movement of
the robot. The optical mouse needs to be mounted level and should be as far as possible
from the servos, which produce magnetic fields.

The below drawing is a preliminary drawing of the shape of the robot as seen from the
side. The complete Auto-cad drawings for this robot are included in the appendices.

 7

Actuation

Scout will be propelled and steered using two servos. The servos are basic model
airplane servos that are partially hacked. The servos have been modified to allow for full
360 degrees range of motion. The modification involved removing a physically stop in
the servo and disconnecting a mechanical linkage to a potentiometer in the servo. The
modification converts the servo into a motor and a driver circuit. The servo is controlled
by using a pulse-width-modulated signal. The width of the signal corresponds to a
desired angle. When the servo is hacked the speed output of the servo is proportional to
the difference between the angle given to the servo and the angle the servo thinks it is at.
The servos provide a simple and reasonably priced solution to propel the robot. The
turning for Scout will be achieved by turning on one servo and leaving the other servo
off. The micro-controller will be responsible for turning on the servos and shutting them
off when the proper amount of turning is completed. The servos in conjunction with the
sensors would allow the robot to make 45 degree and 90 degree turns if the compass was
working.

 8

Sensors

Sensors enable robots to interact with their environment by providing information about
that environment. The purposes of sensors on Scout are to provide it with sight, feel,
location, and direction. This set of senses should allow scout to generate a map of the
area it is placed in. There will be four different kinds of sensors for scout.

• 1 optical mouse
• 1 electronic compass
• 4 IR-range detectors
• 4 bump sensors

The IR – range detectors and bump sensors worked well. These sensors were easy to
interface and they allowed scout to detect obstacles. The electronic compass was
interfaced using input capture. The readings from the compass appeared to be non-linear
these values made it impossible for me to use the compass to make accurate 90 and 45
degree turns regardless of the current heading. The non-linear values could be the result
of magnetic fields in the lab or a bad calibration of the compass. The compass I selected
was an inexpensive ($35.00) model from acroname.com. I am not sure if I would
recommend this model to others. One of the biggest problems with this compass was that
it was sensitive to tilting of the platform. There are other electronic compasses that can
compensate for small degrees of tilt. The optical mouse was a necessary sensor for scout.
The research I performed taught me a lot about how the data is sent to and from the
mouse. I attempted to use my newly aquired knowledge to connect the mouse to the
MRC11 board. The method I used was to put port D of the 68hc11 into wired-or mode
and simulate through software an 11-bit SPI system. This approach appeared
unsuccessful in both assembly and C. I still feel that the mouse can be connect to the
68hc11 but for now this part of the robot is unfinished. The appendix of this report
shows both the information I discovered about the mouse and a block diagram for how I
connected the mouse and compass to the MRC11 board.

 9

Behaviors required by Robot

In order for Scout to perform its function it must capable of performing a series of basic
behaviors.
§ Detect obstacles and record their position
§ Avoid obstacles in a predefined routine
§ Determine current position relative to starting position
§ Determine current heading
§ Be able to generate and control locomotion
§ Display data in a usable format

Scout had 4 main systems that it was to use to accomplish these tasks.

§ Navigation
§ Obstacle detection
§ Propulsion
§ Graphical display

Each of these systems was to communicate will any system it needs to and was
responsible for certain behaviors.

Navigation System

The Navigation System will be responsible for determining current position and heading.
This system will use an optical mouse and an electronic compass to accomplish its tasks.
The Navigation system was unfinished in scout mainly due to the inability to
communicate with the mouse.

Obstacle Detection

The Obstacle detection system was responsible for locating all obstacles in the area of
operation. This system will use 4 strategically place IR sensor and 2 bump sensors. This
system worked well in scout except sometimes a wheel would get stuck on an o bstacle
since they protruded out from the side of the robot.

Propulsion

The Propulsion system was responsible for propelling the robot in the x and y-axis. The
Propulsion system must be able to make accurate 45 and 90 degree turns as well as
forward and reeves movement. This system used two independently controlled servos
and two 3-inch wheels to perform its task. The wheels and servos propelled the robot
along as planed. The compass unfortunately was not effective in enabling the robot to
make 90 and 45 degree turns.

 10

Conclusion

This robot taught me a lot about the difficulty of interfacing different pieces of hardware.
The robot’s inability to communicate with the mouse prevented it from performing its
primary function of mapping a room. The failure of the compass to give linear values of
the degrees prevented the robot from making accurate 90 and 45 degree turns. This class
was very enjoyable although stressful at times. I enjoyed helping other people with their
robots and working on my robot. I consider this project in an unfinished state and plan to
work on it more in the future.

 11

Documents

PS/2 Mouse/Keyboard Protocol, Copyright 1999 Adam Chapweske
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/PS2/ps2.htm

The PS/2 Mouse Interface, Copyright 2001 Adam Chapweske
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/mouse/mouse.html

 12

Appendix

Block layout of circuit

Code for Scout

**
**
* Define the address locations of the various registers and user-defined
* constants used in the program
**
**

 13

BASE EQU $1000 ; base value for registers
BAUD EQU $102B ; BAUD rate control register to set the BAUD rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register

SPCR EQU $0028 ; Serial Peripheral control Register
DDRD EQU $0009 ; Data direction port D
PORTA EQU $0000
PORTD EQU $0008 ; Port D
TCTL1 EQU $0020 ; timer control
TCTL2 EQU $0021 ; timer control 2

PACTL EQU $0026 ;used to intialize RTI system
TFLG2 EQU $0025
CFORC EQU $000B
OC1M EQU $000C
OC1D EQU $000D
TIC1 EQU $0010
TMSK1 EQU $0022
TMSK2 EQU $0024
TFLG1 EQU $0023
TOC1 EQU $0016
TOC2 EQU $0018
TOC3 EQU $001A
TOC4 EQU $001C
TCNT EQU $000E
OPTION EQU $0039
ADCTL EQU $0030
ADR1 EQU $1031

Bit0 EQU %00000001
Bit1 EQU %00000010
Bit2 EQU %00000100
Bit3 EQU %00001000
Bit4 EQU %00010000
Bit5 EQU %00100000
Bit6 EQU %01000000
Bit7 EQU %10000000
Bits10 EQU %00000011
InvBit6 EQU %01111111

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter

** portD pin 5 and pin 3 are used to calibrate the compass

calPin EQU $20 ;calibration command output
calPin2 EQU $10 ;calibration done pin input

** mouse uses 2 bidirectional line to talk to host

 14

** mouseIn and mouseOut are tied togather with a pull up
** 1-k resistor

mouseClk EQU $10 ;pin 4
mouseData EQU $04 ;pin 2

* Compass values *

Max_heading EQU 138

C_MAX EQU 18495
C_MIN EQU 500
C_diff EQU 17995

* BOOLEAN VALUES *

TRUE EQU $FF
FALSE EQU $00

Right EQU $AA
Left EQU $55

* servo constants *

period EQU 7500
LeftForward EQU 450
LeftReverse EQU 1050
RightForward EQU 1050
RightReverse EQU 450
STOP EQU 750

* Distance constants *

zone1 EQU 100 ; too close
zone2 EQU 75 ; visible
zone3 EQU 50 ;

***** Mouse Commands *****
Reset EQU $FF
Resend EQU $FE
Set_Defaults EQU $F6
Disable_Data_Reporting EQU $F5
Enable_Data_Reporting EQU $F4
Set_Sample_Rate EQU $F3 /* valid rates 20, 40, 60, 80, 100, 200
samples /sec */
Get_ID EQU $F2
Status_Request EQU $E9
Set_Resolution EQU $E8

 15

** This command (Set_Scaling2) will set the mouse to 2:1 scaling
** Mouse Counter Reported Movement
** 0 0
** 1 1
** 2 1
** 3 3
** 4 6
** 5 9
** N>5 2*N

Set_Scaling2 EQU $E7
*** sets the scaling 1:1 recorded movement = reported movement
Set_Scaling1 EQU $E6
requestData EQU $EB // used to request mouse movement when mouse
is in Remote mode

*** Mouse modes sent as a command to mouse to set to certain modes **
Remote_mode EQU $F0
Wrap_mode EQU $EE
Reset_Wrap_Mode EQU $EC // mouse returns to mode it was in prior to
wrap mode
Stream_mode EQU $EA

** commands sent from mouse to host **
Acknowledge EQU $FA
selftest EQU $AA // means self test passed
** additionally the mouse may send the Resend Command or Error Command

**
* Initialize Interrupt Jump Vectors
**
 ORG $FFFE
 FDB Main

 ORG $FFE2
 FDB OC4ISR
 FDB OC3ISR
 FDB OC2ISR

 ORG $FFEE
 FDB IC1_ISR

* (If you need to use any interrupts later,
* put your Interrupt Jump Vectors here).
**
* Define Strings for displaying messages
**
 ORG $1040 ;start of external memory

ClrScr FCB ESC,$5B,$32,$4A ; ANSI sequence to clear screen
 FCB ESC,$5B,$3B,$48 ; and move cursor to home
 FCB EOS ; EOS character

Prompt FCC @ Main Menu @ ; Menu prompt

 16

 FCC @for a new BAUD rate: @ ; to explain choices
 FCB CR, LF ; Carriage return and line feed
 FCC @0=> print map @ ;
 FCB CR, LF
 FCC @1=> map area @
 FCB CR, LF
 FCB EOS ; EOS character

Confirm FCB CR, LF ; Carriage return and line feed
 FCC @The robot has been set to Map mode please place robot
is starting square and press rear bump sensor @

 FCB CR, LF ; Carriage return and line feed
 FCB EOS ; EOS character

Prompt2 FCC @Please enter text now.@; String to prompt for text
input
 FCC @ Or Hit ESC to show @ ;
 FCC @BAUD menu.@ ;
 FCB CR, LF ; Carriage return and line feed
 FCB CR, LF ; Carriage return and line feed
 FCB EOS ; EOS character

Prompt3 FCB CR, LF ; Carriage return and line feed
 FCC @Please change the @ ; String to inform users of

 FCC @BAUD rate on your @ ; change the setting

 FCC @computer, @
 FCC @then hit CR.@ ;

 FCB CR, LF ; Carriage return and line feed
 FCB EOS ; EOS character

Prompt4 FCB CR, LF
 FCC @press any key test the mouse@
 FCB CR, LF
 FCB EOS

CompassHeading FCB CR,LF
 FCC @press any key to read compass heading@
 FCB CR,LF
 FCB EOS

IR1 FCB CR,LF
 FCC @Left IR Value@
 FCB CR,LF
 FCB EOS

IR2 FCB CR,LF
 FCC @Right IR Value@
 FCB CR,LF
 FCB EOS

 17

IR3 FCB CR,LF
 FCC @Left Front IR Value@
 FCB CR,LF
 FCB EOS

IR4 FCB CR,LF
 FCC @Right IR Value@
 FCB CR,LF
 FCB EOS

B1 FCB CR,LF
 FCC @Left Bump Value@
 FCB CR,LF
 FCB EOS

B2 FCB CR,LF
 FCC @Right Bump Value@
 FCB CR,LF
 FCB EOS

B3 FCB CR,LF
 FCC @Front Bump Value@
 FCB CR,LF
 FCB EOS

B4 FCB CR,LF
 FCC @Rear Bump Value@
 FCB CR,LF
 FCB EOS

SetSpeed
 FCB CR,LF
 FCC @Left servo @
 FCB CR,LF
 FCC @press 1 to increase speed @
 FCB CR,LF
 FCC @press 2 to decrease speed @
 FCB CR,LF
 FCC @Right servo@
 FCB CR,LF
 FCC @press 3 to increase speed @

 FCB CR,LF
 FCC @press 4 to decrease speed @
 FCB CR,LF
 FCB EOS

testMsg FCB CR,LF
 FCC @test @
 FCB CR, LF
 FCB EOS

Menu FCB CR,LF
 FCC @Main Menu@

 18

 FCB CR,LF
 FCC @1: test servos@
 FCB CR,LF
 FCC @2: test Compass@
 FCB CR,LF
 FCC @3: test IR @
 FCB CR,LF
 FCC @4: test delay@
 FCB CR,LF
 FCC @5: test bump@
 FCB CR,LF

 FCB EOS

*table of shapes
SQUARE FCB 10 ; distace
 FCB 35 ; angle
 FCB Right ; direction to turn
 FCB 10 ; distance
 FCB 35 ; angle
 FCB Right ; direction to turn
 FCB 10 ; distance
 FCB 35 ; angle
 FCB Right ; direction to turn
 FCB 10 ; distance
 FCB 35 ; angle
 FCB Right ; direction to turn
 FCB EOS

TRIANGLE FCB 10 ;distace
 FCB 23 ;angle
 FCB Left ;direction
 FCB 10
 FCB 23
 FCB Left
 FCB 10
 FCB 23
 FCB Left
 FCB EOS

HOURGLASS: FCB 5 ; distance
 FCB 23 ; angle
 FCB Left ; direction
 FCB 10 ; distance
 FCB 23 ; angle
 FCB Right ; direction
 FCB 5 ; distance
 FCB 23 ; angle
 FCB Right ; direction
 FCB 10 ; distance
 FCB 23 ; angle
 FCB Left ; direction
 FCB EOS

 19

* Global Variables

delayTime RMB
delayTime2 RMB
delayTime3 RMB

**Data RMB 33

temp01 RMB 2
temp02 RMB 2
temp03 RMB 2
temp1 RMB 1
temp2 RMB 1
temp3 RMB 1
CNT RMB 1
distance RMB 1
direction RMB 1

T_flag RMB 1
error_flag RMB 1

** servo duty sizes ****
** controls robot speed and direction **
Lduty RMB 2
Rduty RMB 2

** Compass heading ****
** current direction the robot is pointed as read from electronic
compass **
heading RMB 1
degrees RMB 1 ;used when the robot is turning
new_heading RMB 1 ;used when the robot is turning
rising_edge RMB 2 ;used to record rising edge heading

** heading from compass = falling edge - rising edge (pulse width)
** see documentation on electronic compass for more information

** IR / Bump sensors *************
L_IR RMB 1
R_IR RMB 1
LF_IR RMB 1
RF_IR RMB 1
F_Bump RMB 1
B_Bump RMB 1
R_Bump RMB 1
L_Bump RMB 1
toggle RMB 1

 20

**
* MAIN PROGRAM
**

Main LDS #$0041 ; Define a stack
 LDX #BASE

 BSET TMSK2,X Bit0 ;set the timer prescale factor
 BCLR TMSK2,X Bit1 ;must be done in the first 64

** JSR InitPortD
 JSR InitSCI ; Initialize SCI
 JSR Init_servos
 JSR Init_TIC1

** JSR Drive2
**main2
** LDX #SQUARE
** JSR Shapes
** BRA main2
** LDAA #70
** STAA degrees
** JSR turn_left
main2
 LDX #TRIANGLE
 JSR Shapes
 BRA main2
 LDAA #70
 STAA degrees
 JSR turn_left
 LDX #HOURGLASS
 JSR Shapes
 LDAA #70
 STAA degrees
 JSR turn_left

 BRA main2

C1 LDX #Menu
 JSR OutStr
 JSR InChar
 CMPA #$31
 BNE C2
 JSR test2
C2 CMPA #$32
 BNE C3
 JSR test3
C3 CMPA #$33
 BNE C4
 JSR test5
C4 CMPA #$34
 BNE C5
 JSR test4

 21

C5 CMPA #$35
 BNE C1
 JSR test6
 BRA C1

**
* SUBROUTINE - InitSCI
* Description: This subroutine initializes the BAUD rate to 9600 and
* sets up the SCI port for 1 start bit, 8 data bits and
* 1 stop bit. It also enables the transmitter and
receiver.
* Effected registers are BAUD, SCCR1, and SCCR2.
* Input : None.
* Output : Initializes SCI.
* Destroys : None.
* Calls : None.
**

InitSCI PSHA ; Save contents of A register
 PSHY ; Save contents of Y register
 PSHX
 LDX #BASE
 LDAA #$30 ;sets Baud Rate to 9600
 STAA BAUD ; Set BAUD rate to 9600
 LDY #SCCR1 ; Load Y with address of Serial
Communication Control Register-1
 BCLR 0,Y #%11101111 ; Set SCI Mode to 1 start bit,
 BSET 1,Y #%00001100 ; 8 data bits, and 1 stop bit.
* ; Enable SCI Transmitter
* ; and Receiver
 PULX
 PULY ; Restore Y register
 PULA ; Restore A register
 RTS ; Return from subtoutine

**
* SUBROUTINE - OutByte
* Description : Outputs a hexadecimal number to the computer
screen
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : OutChar
**
OutByte PSHA ; Save contents of A register
 LSRA ; shift regA to the right 4 times
 LSRA
 LSRA
 LSRA
 CMPA #10
 BPL letter ; BRANCH IF PLUS
 ORAA #$30
 BRA out1

 22

letter ADDA #$37

out1 JSR OutChar
 PULA
 PSHA
 ANDA #$0F
 CMPA #10
 BPL letter2
 ORAA #$30
 BRA out2

letter2 ADDA #$37

out2 JSR OutChar

 PULA ; Restore A register
 RTS ; Return from subtoutine

* SUBROUTINE - OutChar
* Description: Outputs the character in register A to the screen after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
OutChar PSHB ; Save contents of B register
Loop1 LDAB SCSR ; Check status reg (load it into B
reg)
 ANDB #%10000000 ; Check if transmit buffer is empty
 BEQ Loop1 ; Wait until empty

 STAA SCDR ; A register ==> SCI data

 PULB ; Restore B register
 RTS ; Return from subtoutine

*

* SUBROUTINE - OutStr
* Description: Outputs the string terminated by EOS. The starting
location
* of the string is pointed by X register. Calls the OutChar
* subroutine to display a character on the screen and
* exit once EOS has been reached.
* Input : Starting location of the string to be transmitted
* : (passed in X register)
* Output : Prints the string.
* Destroys : regester X
* Calls : OutChar.

*
OutStr: PSHA
OutStr1:

 23

 LDAA 0,X ; Get a character (put in A
register)
 CMPA #EOS ; Check if it's EOS
 BEQ Done ; Branch to Done if it's EOS
 BSR OutChar ; Print the character by calling
OutChar
 INX
 BRA OutStr1
Done: PULA
 RTS ; Return from subtoutine

*
**
* SUBROUTINE - InChar
* Description: Receives the typed character into register A.
* Input : None
* Output : Register A = input from SCI
* Destroys : Contents of Register A
* Calls : None.
**
*
InChar
Empty LDAA SCSR ; Check status reg.
 ANDA #%00100000 ; (load it into A reg)
 BEQ Empty ; Check if receive buffer full
* ; Wait until data present
 LDAA SCDR ; SCI data ==> A register
 RTS ; Return from subroutine
*
**
* SUBROUTINE - SetBAUD
* Description: This subroutine changes the Baud-rate. The only effected
* register is BAUD. If the input value is invalid, a menu/prompt is
* displayed and a new input is read. The subroutine waits for the
* user to type a carriage return after changing the baud-rate manually
* on the PC. It then prints out a confirmation message.
* Input : None.
* Output : Changes BAUD register. Repeats prompt if invalid
input.
* Destroys : None
* Calls : OutStr, OutChar, InChar.
**
*

SetBAUD PSHA ; Save contents of A register
 PSHB ; Save reg B
 PSHX ; Save reg X
Loop3 LDX #ClrScr ; Clear Screen
 JSR OutStr ;
 LDX #Prompt
 JSR OutStr ; Print Baud-rate Menu
 JSR InChar ; Take menu choice from keyboard
 CMPA #$30 ; check for unreasonable menu choice
 BLT Loop3 ; ascii value to small to be a number
 CMPA #$35 ; Check for unreasonable menu choice
 BGT Loop3 ; ascii value to large to be a valid
choice

 24

 JSR OutChar ; If valid input, Echo the input to
Screen

 LDX #Prompt3 ; Inform users of change the terminal
 JSR OutStr ; setting with the new BAUD rate
Wait LDAB SCSR ; Check status reg (load it to B reg)

 ANDB #%01000000 ; Check if transmit is complete

 BEQ Wait ; wait until TC = 1
 STAA BAUD ; SET the new BAUD rate
Loop4

 JSR InChar ; Get next input from keyboard
 CMPA #CR
 BNE Loop4 ; wait until carriage return

 LDX #Confirm ; Print confirmation message
 JSR OutStr

 PULX ; Restore X register
 PULB ; Restore B register
 PULA ; Restore A register
 RTS

**
* SUBROUTINE - delay
* Description: This subroutine will create a delay time equal to the
value
* stored in delayTime
* delay = 4.5 * delayTime + 2.5 (micro-seconds)
* Input : delayTime
* Output : None
* Destroys : delayTime
* Calls : None
**
*

delay DEC delayTime ;6 cycles
 BNE delay ;3 cycles
 RTS ;5 cycles

**
* SUBROUTINE - delay2
* Description: This subroutine will itialize OC2 to create a delay time
* delay = delayTime2*(mili-seconds)
* Input : delayTime2
* warning : delayTime2 should be a positive integer less than 127
* Output : set T_flag to TRUE
* Destroys : None
* Calls : None
**

delay2
 PSHA
 PSHB
 PSHX

 25

 LDX #BASE

* clear OC2 Flag
 BSET TFLG1,X Bit6
 CLR T_flag
* disable OC2 output function
 BCLR TCTL1,X Bit7
 BCLR TCTL1,X Bit6
 LDAA delayTime2
 LDAB #125 ;used to convert delayTime2 into the
value
* ;stored for the interrupt
 MUL
 LSRD
 LSRD
 ADDD TCNT,X
 STD TOC2,X

* enable OC2 interrupt
 BSET TMSK1,X Bit6

 CLI
 PULX
 PULB
 PULA
 RTS

**
* Interrupt Service Routine: OC2ISR *
* Function: set T_flag to true *
* Input: none *
* Output: set T_flag *
* Calls: none *
* Destroys: none *
**

OC2ISR
 LDX #BASE
 BRCLR TFLG1,X Bit6 end_OC2ISR ;Igonore Illegal Interrupt

 LDAA #Bit6
 STAA TFLG1,X ;clear Flag
 LDAA #TRUE
 STAA T_flag

* disable OC2 interrupt
 BCLR TMSK1,X Bit6

end_OC2ISR
 RTI

**
* Subroutine: Init_servos *
* Function: initializes left and right servo output *
* compares (OC3 and OC4) *

 26

* Input: none *
* Output: none *
* Calls: none *
* Destroys: none *
**

Init_servos:

 PSHX
 PSHA
 PSHB

 LDX #BASE

 LDD #750
 STD Lduty
 STD Rduty

* clear OC4 Flag
 BSET TFLG1,X Bit4
 BSET TFLG1,X Bit5

 CLI

* enable OC4 interrupt

 BSET TMSK1,X Bit4
 BSET CFORC,X Bit4
* enable OC3 interrupt
 BSET TMSK1,X Bit5
 BSET CFORC,X Bit5

 PULB
 PULA
 PULX
 RTS

**
* Interrupt Service Routine: OC4ISR *
* Function: Controls the left servo *
* Input: Duty cycle *
* Output: a specified waveform on PortA pin 4 (OC4) *
* Calls: none *
* Destroys: none *
**

OC4ISR
 LDX #BASE
 BRCLR TFLG1,X Bit4 end_OC4ISR ;Igonore Illegal Interrupt

 LDAA #Bit4

 27

 STAA TFLG1,X ;clear Flag

 BRSET PORTA,X Bit4 high
 BSET TCTL1,X Bit3 ;currently low make high next cycle
 BSET TCTL1,X Bit2

 LDD #period
 SUBD Lduty
 ADDD TOC4,X
 STD TOC4,X

 BRA end_OC4ISR
high:
 BCLR TCTL1,X Bit2 ;currently high make low next time
 BSET TCTL1,X Bit3
 LDD Lduty
 ADDD TOC4,X
 STD TOC4,X

end_OC4ISR
 RTI

**
* Interrupt Service Routine: OC3ISR *
* Function: Controls the right servo *
* Input: Duty cycle *
* Output: a specified waveform on PortA pin 4 (OC4) *
* Calls: none *
* Destroys: none *
**

OC3ISR
 LDX #BASE
 BRCLR TFLG1,X Bit5 end_OC3ISR ;Igonore Illegal Interrupt
 LDAA #Bit5
 STAA TFLG1,X ;clear Flag

 BRSET PORTA,X Bit5 high2
 BSET TCTL1,X Bit5 ;currently low make high next cycle
 BSET TCTL1,X Bit4

 LDD #period
 SUBD Rduty
 ADDD TOC3,X
 STD TOC3,X

 BRA end_OC3ISR

high2:
 BCLR TCTL1,X Bit4 ;currently high make low next time
 BSET TCTL1,X Bit5
 LDD Rduty
 ADDD TOC3,X
 STD TOC3,X

 28

end_OC3ISR
 RTI

**
* Subroutine: Init_TIC1 *
* Function: initializes Timer Input Capture1 (TIC1) *
* Input: none *
* Output: none *
* Calls: none *
* Destroys: none *
**

Init_TIC1:
 PSHX
 LDX #BASE

* Set INC1 to capture on the rising edge
 BCLR TCTL2,X Bit5
 BSET TCTL2,X Bit4

* clear INC1 Flag
 BSET TFLG1,X Bit2
* enable INC1 innterupt
 BSET TMSK1,X Bit2

 CLI
 PULX
 RTS

**
* Interrupt Service Routine: IC1_ISR *
* Function: sample input pulses *
* (used to read heading from the compass) *
* Input: none *
* Output: heading *
* Calls: none *
* Destroys: none *
**

IC1_ISR:
 LDX #BASE ;3 cycles

 BRCLR TFLG1,X Bit2 end_IC1 ;ignore invalid interrupt
 BSET TFLG1,X Bit2 ;clear the flag
 LDD TIC1,X ; read the time of interrupt

 BRSET TCTL2,X Bit5 fall ;branch if reading falling edge
 STD rising_edge

** set to capure falling edge
 BCLR TCTL2,X Bit4
 BSET TCTL2,X Bit5
 BRA end_IC1

 29

fall SUBD rising_edge
 LSLD
 SUBA #04
 STAA heading

** set to capture rising edge
 BCLR TCTL2,X Bit5
 BSET TCTL2,X Bit4

end_IC1 RTI
**
* Subroutine: Read_IR *
* Function: reads the values of the A/D port and stores *
* then to L_IR, R_IR, LF_IR, RF_IR *
* Input: none *
* Output: none *
* Calls: none *
* Destroys: none *

Read_IR:
 PSHX
 PSHY
 PSHA
 PSHB
 LDX #BASE
 LDY #ADR1

 BSET OPTION,X Bit7 ;enable A/D system
 BSET ADCTL,X Bit4 ; set for multiple scan
 BCLR ADCTL,X Bit2 ; read Analog 0 - 3
 BCLR ADCTL,X Bit3 ;
 BCLR ADCTL,X Bit5 ;single scan

RA1 BRCLR ADCTL,X Bit7 RA1 ; wait util conversion is complete
 LDAA 0,Y
 STAA LF_IR
 LDAA 1,Y
 STAA RF_IR
 LDAA 2,Y
 STAA R_IR
 LDAA 3,Y
 STAA L_IR

 PULB
 PULA
 PULY
 PULX
 RTS

**
* Subroutine: Read_Bump *
* Function: reads the values of the A/D port and stores *

 30

* then to R_Bump, L_Bump, B_Bump, F_Bump *
* Input: none *
* Output: none *
* Calls: none *
* Destroys: none *

Read_Bump:
 PSHX
 PSHY
 PSHA
 PSHB
 LDX #BASE
 LDY #ADR1

 BSET OPTION,X Bit7 ;enable A/D system
 BSET ADCTL,X Bit4 ; set for multiple scan
 BSET ADCTL,X Bit2 ; read Analog 0 - 3
 BCLR ADCTL,X Bit3 ;
 BCLR ADCTL,X Bit5 ;single scan

RB1 BRCLR ADCTL,X Bit7 RB1 ; wait util conversion is complete
 LDAA 0,Y
 STAA R_Bump
 LDAA 1,Y
 STAA L_Bump
 LDAA 2,Y
 STAA F_Bump
 LDAA 3,Y
 STAA B_Bump

 PULB
 PULA
 PULY
 PULX
 RTS

**
* Subroutine: turn_left *
* Function: turns left the number of degreess stored in *
* amount (unsigned value) *
* Input: degrees, curent heading *
* Output: turns robot left *
* Calls: Read_Bump *
* Destroys: none *

turn_left
 PSHA
 PSHB

 LDAA #FALSE
 STAA error_flag

 31

 LDAA heading
 CMPA degrees
 BLO TL1 ; if the number of degrees is smaler than the
* ; heading
 SUBA degrees
 STAA temp1

TL2
 STAA temp2
 LDD #STOP
 STD Lduty
 LDD #RightForward
 STD Rduty
 JSR Read_Bump

 LDAA #10
 STAA temp2
TL5 LDAA #10 ;100 ms delay
 STAA delayTime2
 JSR delay2

TL4 JSR Read_Bump
 LDAA #150
 CMPA L_Bump
 BHI TL3 ;the robot hit something

 LDAA #TRUE
 CMPA T_flag
 BNE TL4
 DEC temp2
 BNE TL5

 LDD #STOP
 STD Rduty

 LDAA #$FF
 STAA temp2
TL6 DEC temp2
 BNE TL6

 LDAA heading
** ANDA #$F0
 STAA temp2
** JSR OutByte
 LDAA temp1
** ANDA #$F0
 CMPA temp2
 BNE TL2

 BRA end_turn_left

 32

TL1 LDAA #Max_heading ; max compass heading
 SUBA degrees
 ADDA heading
 STAA temp1
 BRA TL2

TL3 LDAA #TRUE ;set the error flag if the robot hit something
 STAA error_flag

end_turn_left:
 LDD #STOP
 STD Lduty
 STD Rduty
 PULB
 PULA
 RTS

**
* Subroutine: turn_right *
* Function: turns right the number of degreess stored in *
* amount (unsigned value) *
* Input: degrees, curent heading *
* Output: turns robot right *
* Calls: Read_Bump *
* Destroys: none *

turn_right
 PSHA
 PSHB

 LDAA #FALSE
 STAA error_flag
 LDAA heading
 ADDA degrees
 CMPA #Max_heading
 BHI TR1 ; if the new heading is larger than the
* ; max heading

 STAA temp1

TR2 LDD #STOP
 STD Rduty
 LDD #LeftForward
 STD Lduty

 LDAA #$FF
 STAA temp2
 LDAA #10
 STAA temp2

TR5 LDAA #10 ;10 ms delay
 STAA delayTime2
 JSR delay2

TR4

 33

 JSR Read_Bump
 LDAA #150
 CMPA R_Bump
 BHI TR3 ;the robot hit something
 LDAA #TRUE
 CMPA T_flag
 BNE TR4
 DEC temp2
 BNE TR5

 LDAA #100 ;10 ms delay
 STAA delayTime2
 JSR delay2

 LDD #STOP
 STD Lduty

 LDAA #TRUE
TR6 CMPA T_flag
 BNE TR6

 LDAA heading
** ANDA #$F0
 STAA temp2
 LDAA temp1
** ANDA #$F0
 CMPA temp2
 BNE TR2
 BRA end_turn_right

TR1 SUBA #Max_heading
 STAA temp1
 BRA TR2

TR3 LDAA #TRUE ;set the error flag if the robot hit something
 STAA error_flag

end_turn_right:
 LDD #STOP
 STD Lduty
 STD Rduty
 PULB
 PULA
 RTS

* SUBROUTINE - Drive
* Description this subroutine will case the robot to drive around
* if the robot sees an obstacle in front of it it will look left and
* turn left if if can if not it will look right and then turn right
* if it cannot turn left of right it will back up

Drive:
 LDD #LeftForward
 STD Lduty
 LDD #RightForward

 34

 STD Rduty
look JSR Read_IR
 JSR Read_Bump
** check front sensors
 LDAA #100
 CMPA LF_IR
 BLO backup
 CMPA RF_IR
 BLO backup

 LDAA #32
 CMPA LF_IR
 BLO turn
 CMPA RF_IR
 BLO turn
 CMPA F_Bump
 BHI backup
 BRA Drive

turn LDAA #100
 CMPA L_IR
 BHI left
 CMPA R_IR
 BHI right

backup LDD #LeftReverse
 STD Lduty
 LDD #RightReverse
 STD Rduty
 BRA look

left LDD #STOP
 STD Lduty
 LDD #RightForward
 STD Rduty
 LDAA #64
 CMPA L_Bump
 BHI right
 BRA look

right LDD #STOP
 STD Rduty
 LDD #LeftForward
 STD Lduty
 LDAA #64
 CMPA R_Bump
 BHI left
 BRA look

* SUBROUTINE - Drive2
* Description this subroutine will case the robot to drive around
* if the robot sees an obstacle in front of it it will look left and
* turn left if if can if not it will look right and then turn right
* if it cannot turn left of right it will back up
* This subroutine will use the compass to make 90 degree turns

 35

Drive2:
 LDAA #$AA
 JSR OutByte

 LDD #LeftForward
 STD Lduty
 LDD #RightForward
 STD Rduty
look2 JSR Read_IR
 JSR Read_Bump
** check front sensors
 LDAA #100
 CMPA LF_IR
 BLO backup2
 CMPA RF_IR
 BLO backup2

 LDAA #75
 CMPA LF_IR
 BLO turnR

 CMPA RF_IR
 BLO turnL

 CMPA F_Bump
 BHI backup2
 BRA Drive2

turnL
 LDAA #100
 CMPA L_IR
 BHI backup2
 BRA left2

turnR LDAA #100
 CMPA R_IR
 BHI backup2
 BRA right2

backup2
 LDD #LeftReverse
 STD Lduty
 LDD #RightReverse
 STD Rduty
 BRA look2

left2 LDAA #35
 STAA degrees
 JSR turn_left
** LDAA error_flag
** BEQ right2
 BRA look2

right2 LDAA #35

 36

 STAA degrees
 JSR turn_right
** LDAA error_flag
** BEQ left2
 BRA look2

**
* SUBROUTINE - Drive3 *
* Description this subroutine will case the robot to drive strait for *
* a set time and then turn either left or right the specifiecd amount *
* Input : distance
* degrees
* direction
**

Drive3:
** LDAA #$AA
** JSR OutByte

d3a LDAA #10
 STAA CNT

 LDD #LeftForward
 STD Lduty
 LDD #RightForward
 STD Rduty

d3b LDAA #100
 STAA delayTime2
 JSR delay2

look3 JSR Read_IR
 JSR Read_Bump
** check front sensors
 LDAA #100
 CMPA LF_IR
 BLO stop
 CMPA RF_IR
 BLO stop

 LDAA #TRUE
 CMPA T_flag
 BNE look3
 DEC CNT
 BNE d3b
 DEC distance
 BNE d3a

 LDAA direction
 CMPA #Right

 BEQ d3c
 JSR turn_left
 BRA end_drive3

 37

d3c JSR turn_right
 BRA end_drive3

stop LDD #STOP
 STD Lduty
 STD Rduty
 LDAA TRUE
 STAA error_flag
 BRA end_drive3

end_drive3
 RTS

**
**
* Subroutine: Shapes
*
* Description: makes a series of shapes that are stored in the
*
* shapes table
*
* Input: starting value of shape
**
**

Shapes:
 LDAA 0,X
 STAA distance
 JSR OutByte
 INX
 LDAA 0,X
 STAA degrees
 JSR OutByte
 INX
 LDAA 0,X
 STAA direction
 JSR OutByte

 JSR Drive3
 LDAA #TRUE

 CMPA #error_flag
 BEQ end_shapes

 INX
 LDAA 0,X
 CMPA #EOS
 BNE Shapes

end_shapes:

 RTS

**

 38

* SUBROUTINE - test2
* Description : this routine will test the servos of the robot
left turns intersparced by periods of srait lin
* Input : none
**

test2:
 PSHA
t2a LDX #SetSpeed
 JSR OutStr
 LDX #Lduty
 LDAA 0,X
 JSR OutByte
 LDAA 1,X
 JSR OutByte
 LDAA #CR
 JSR OutChar
 LDAA #LF
 JSR OutChar

 LDX #Rduty
 LDAA 0,X
 JSR OutByte
 LDAA 1,X
 JSR OutByte

 JSR InChar
 CMPA #$31
 BEQ incSpeed
 CMPA #$32
 BEQ decSpeed
 CMPA #$33
 BEQ incSpeed2
 CMPA #$34
 BEQ decSpeed2

 BRA end_test2

incSpeed
 LDD Lduty
 ADDD #150
 STD Lduty
 BRA t2a

decSpeed
 LDD Lduty
 SUBD #150
 STD Lduty
 BRA t2a

incSpeed2
 LDD Rduty
 ADDD #300
 STD Rduty
 BRA t2a

decSpeed2

 39

 LDD Rduty
 SUBD #300
 STD Rduty
 BRA t2a

end_test2
 PULA
 RTS

**
* SUBROUTINE - test3
* Description : this routine will test the compass of the robot
left turns intersparced by periods of srait li
* Input : none
**
test3
 PSHA
 LDX #CompassHeading
 JSR OutStr
 JSR InChar
 LDAA heading
 JSR OutByte
 PULA
 RTS

**
* SUBROUTINE - test4
* Description : this routine will test delay routine of the robot

* Input : none
**
test4
 PSHA
 LDAA #$2A
 JSR OutChar
t4b LDAA #100
 STA delayTime2
 JSR delay2
 LDAA #TRUE
t4a CMPA T_flag
 BNE t4a
 LDAA #$2A
 JSR OutChar
 BRA t4b
end_test4
 PULA
 RTS

**
* SUBROUTINE - test5
* Description : this routine will test the IR
* Input : none
**
test5
 PSHA
 PSHX

 40

 JSR Read_IR
 LDX #IR1
 JSR OutStr
 LDAA L_IR
 JSR OutByte

 LDX #IR2
 JSR OutStr
 LDAA R_IR
 JSR OutByte

 LDX #IR3
 JSR OutStr
 LDAA LF_IR
 JSR OutByte

 LDX #IR4
 JSR OutStr
 LDAA RF_IR
 JSR OutByte

 PULX
 PULA
 RTS

**
* SUBROUTINE - test6
* Description : this routine will test the Bump sensors on the robot
* Input : none
**
test6
 PSHA
 PSHX

 JSR Read_Bump
 LDX #B1
 JSR OutStr
 LDAA L_Bump
 JSR OutByte

 LDX #B2
 JSR OutStr
 LDAA R_Bump
 JSR OutByte

 LDX #B3
 JSR OutStr
 LDAA F_Bump
 JSR OutByte

 LDX #B4
 JSR OutStr
 LDAA B_Bump
 JSR OutByte

 PULX
 PULA

 41

 RTS

**
* END OF PROGRAM
**

 42

Research about mouse data

PS/2 Mouse/Keyboard Protocol
 Copyright 1999 Adam Chapweske

 NOTE: THIS SERVER IS A LITTLE FLAKY... IF ANY IMAGES DO NOT LOAD,
CLICK "RELOAD" ON
 YOUR BROWSER A FEW TIMES AND THE PICTURES WILL EVENTUALLY
APPEAR.

Intruduction:

The PS/2 device interface, used by many modern mice and keyboards, was developed by
IBM and originally appeared in
the IBM Technical Reference Manual. However, this manual has not been printed for
many years and as far as I know,
there is currently no official publication of this information. I have not had access to the
IBM Technical Reference
Manual, so all information on this page comes from my own experiences with the mouse
and keyboard, as well as help
from the references listed at the bottom of this page.

This document descibes the interface used by the PS/2 mouse and AT (PS/2) keyboard.
I'll cover the physical and
electrical interface, as well as the protocol. If you need higher-level information, such as
commands, data packet formats,
or other information specific to the keyboard or mouse, I have written separate
documents for the two devices:

 The AT Keyboard Interface (same as PS/2 keyboard)
 The PS/2 Mouse Interface

I also encourage you to check out my homepage for more information related to this
topic, including projects, code, and
links related to the mouse and keyboard.

The Connector:

The physical keyboard/mouse port is one of two styles of connectors: The 5 -pin DIN or
the 6-pin mini-DIN. Both
connectors are completely (electrically) similar; the only practical difference between the
two is the arrangement of pins.

 43

This means that the two types of connectors can easily be changed with simple hard-
wired adaptors. These cost about
$6 each or you can make your own by matching the pins on any two connectors. The
DIN standard was created by the
German Standardization Organization (Deutsches Institut fuer Norm) . Their website is
at http://www.din.de (this site is in
German, but most of their pages are also available in English.)

PC keyboards can have either a 6-pin mini-DIN or a 5-pin DIN connector. If your
keyboard has a 6-pin mini-DIN and
your computer has a 5 -pin DIN (or visa versa), the two can be made compatible with the
adaptors described above.
Keyboards with the 6-pin mini-DIN are often referred to as "PS/2" keyboards, while
those with the 5-pin DIN are called
"AT" or "XT" devices. XT keyboards are quite old and haven't been made for about ten
years. All modern keyboards
built for the PC are either PS/2, AT, or USB. This document does not apply to USB
devices, which use a completely
different interface.

Mice come in a number of shapes and sizes (and interfaces.) The most popular type is
probably the PS/2 mouse, with
USB mice slowly gaining popularity. Serial mice are also quite popular, but the
computer industry is abandoning them in
support of USB and PS/2 devices. This document applies only to PS/2 mice. If you want
to interface a serial mouse,
check out Microchip's appnote #519, "Implementing a Simple Serial Mouse Controller."

As a side note, there is one other type of connector you may run into on keyboards. While
most keyboard cables are
hard-wired to the keyboard, there are some whose cable is not permanently attached and
come as a separate
component. These cables have a DIN connector on one end (the end that connects to the
computer) and a SDL
(Sheilded Data Link) connector on the keyboard end. SDL was created by a company
called "AMP." This connector is
somewhat similar to a telephone connector in that it has wires and springs rather than
pins, and a clip holds it in place. If
you need more information on this connector, you might be able to find it on AMP's
website at
http://www.connect.amp.com. I have only seen this type of connector on (old) XT
keyboards, although there may be AT
keyboards that also use the SDL. Don't confuse the SDL connector with the USB
connector--they probably both look
similar in my diagram below, but they are actually very different. Keep in mind that the
SDL connector has springs and

 44

moving parts, while the USB connector does not.

The pinouts for each connector are shown below:
(If any of these images do not load, hit "reload" on your browser a few times.)

 Male

 (Plug)
 Female

 (Socket)
 5-pin DIN (AT/XT):
 1 - Clock
 2 - Data
 3 - Not Implemented
 4 - Ground
 5 - +5v

 Male

 (Plug)
 Female

 (Socket)
 6-pin Mini-DIN (PS/2):
 1 - Data
 2 - Not Implemented
 3 - Ground
 4 - +5v
 5 - Clock
 6 - Not Implemented

 6-pin SDL:
 A - Not Implemented
 B - Data
 C - Ground
 D - Clock
 E - +5v
 F - Not Implemented

 45

General Description:

(Note: Throughout this document, I may use the more general term "host" to refer to the
computer--or whatever the
keyboard/mouse is connected to-- and the term "device" will refer to the
keyboard/mouse.)

There are four interesting pins on the connectors just described: Ground, +5v, Data, and
Clock. The +5V is supplied
by the host (computer) and the keyboard/mouse's ground is connected to the host's
electrical ground. Data and Clock
are both open collector, which means they are normally held at a high logic level but can
easily be pulled down to ground
(logic 0.) Any device you connect to a PS/2 mouse, keyboard, or host should have large
pull-up resistors on the Clock
and Data lines. You apply a "0" by pulling the line low and you apply a "1" by letting the
line float high. Refer to Figure 1
for a general interface to Data and Clock. (Note: if you are going to use a microcontroller
such as the PIC, where I/O is
bidirectional, you may skip the transistors and buffers and use the same pin for both input
and output. With this
configuration, a "1" is asserted by setting the pin to input and let the resistor pull the line
high. A "0" is then asserted by
changing the pin to output and write a "0" to that pin, which will pull the line to ground.)

Figure 1: Open-collector interface to Data and Clock. Data and Clock are read on the
microcontroller's port A and
B, respectively. Both lines are normally held at +5V, but can be pulled to ground by
asserting logic 1 on C and D. As a
result, Data equals D, inverted, and Clock equals C, inverted.

The PS/2 mouse and keyboard implement a bidirectional synchronous serial protocol. In
other words, Data is sent one
bit at a time on the Data line and is read on each time Clock is pulsed. The
keyboard/mouse can send data to the host
and the host can send data to the device, but the host always has priority over the bus and
can inhibit communication from
the keyboard/mouse at any time by holding Clock low.

 46

Data sent from the keyboard/mouse to the host is read on the falling edge of the clock
signal (when Clock goes from
high to low); data sent from the host to the keyboard/mouse is read on the rising edge
(when Clock goes from low to
high.) Regardless of the direction of communication, the keyboard/mouse always
generates the clock signal. If the host
wants to send data, it must first tell the device to start generating a clock signal (that
process is described in the next
section.) The maximum clock frequency is 33 kHz and most devices operate within 10-
20kHz. If you want to build a
PS/2 device, I would recommend keeping this frequency around 15 kHz. This means
Clock should be high for about 40
microseconds and low for 40 microseconds.

All data is arranged in bytes with each byte sent in a frame consisting of 11-12 bits.
These bits are:

 1 start bit. This is always 0.
 8 data bits, least significant bit first.
 1 parity bit (odd parity).
 1 stop bit. This is always 1.
 1 acknowledge bit (Host-to-device communication only)

The parity bit is set if there is an even number of 1's in the data bits and reset (0) if there
is an odd number of 1's in the
data bits. The number of 1's in the data bits plus the parity bit always add up to an odd
number (odd parity.) This is used
for error detection.

When the host is sending data to the keyboard/mouse, a handshaking bit is sent from the
device to acknowledge the
packet was received. This bit is not present when the device sends data to the host.

Device-to-Host Communication:

The Data and Clock lines are both open collector (normally held at a high logic level.)
When the keyboard or mouse
wants to send information, it first checks Clock to make sure it's at a high logic level. If
it's not, the host is inhibiting
communication and the device must buffer any to-be-sent data until it regains control of
the bus (the keyboard has a
16-byte buffer and the mouse's buffer stores only the last packet sent.) If the Clock line
is high, the device can begin to

 47

transmit its data.

As I mentioned in the previous section, the keyboard and mouse use a serial protocol
consisting of 11-bit frames. These
bits are:

 1 start bit. This is always 0.
 8 data bits, least significant bit first.
 1 parity bit (odd parity).
 1 stop bit. This is always 1.

Each bit is read by the host on the falling edge of the clock, as is illustrated in Figures 2
& 3.

Figure 2: Device-to-host communication. The Data line changes state when Clock is
high and that data is latched on the
falling edge of the clock signal.

Figure 3: Scan code for the "Q" key (15h) being sent from a keyboard to the computer.
Channel A is the Clock signal;
channel B is the Data signal.

The clock frequency is 10-16.7kHz. The time from the rising edge of a clock pulse to a
Data transition should be at least
5 microseconds. The time from a data transition to the falling edge of a clock pulse
should be at least 5 microseconds and
no greater than 25 microseconds. This timing is very important--you should follow it
exactly. The host may pull the line
low before the 11th clock pulse (stop bit), causing the device to abort sending the current
byte (this is very rare.) After
the stop bit is transmitted, the device should wait at least 50 microseconds before sending
the next packet. This gives the
host time to inhibit transmission while it processes the received byte (the host will usually
automatically do this after each
packet is received.) The device should wait at least 50 microseconds after the host
releases an inhibit before sending any
data.

I would recommend the following process for sending a single byte from an e mulated
keyboard/mouse to the host:

 1) Wait for Clock = high.

 48

 2) Delay 50 microseconds.
 3) Clock still = high?
 No--goto step 1
 4) Data = high?
 No--Abort (and read byte from host)
 5) Delay 20 microseconds (=40 microseconds to the time Clock is pulled low in
sending the start bit.)
 6) Output Start bit (0) \ After sending each of these bits, test
 7) Output 8 data bits > Clock to make sure host hasn't pulled it
 8) Output Parity bit / low (which would abort this transmission.)
 9) Output Stop bit (1)
 10) Delay 30 microseconds (=50 microseconds from the time Clock is released in
sending the stop bit)

The process for sending a single bit should then be as follows:

 1) Set/Reset Data
 2) Delay 20 microseconds
 3) Bring Clock low
 4) Delay 40 microseconds
 5) Release Clock
 6) Delay 20 microseconds

Here is some sample code written for the PIC16F84 that follows the above algorithms to
send a byte to the host.
"Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the bits connected to the
Clock and Data lines; "TEMP0",
"PARITY", and "COUNTER" are all general purpose registers. Note that in the
"PS2outBit" routine, the Data and Clock
lines are brought low by setting the appropriate I/O pin to output (it's assumed their
output was set to "0" at the beginning
of the program.) And they are allowed to float (high) by setting the I/O pin to input (and
allow a pull-up resistor to pull
the line high.) This was written for a PIC running at 4.61 MHz +/- 25% (RC oscillator:
5k/20pF). This is very important
for timing considerations.
 ByteOut movwf TEMP0 ;Save to-be-sent byte
 InhibitLoop btfss CLOCK ;Check for inhibit
 goto InhibitLoop
 Delay 50 ;Delay 50 microseconds
 btfss CLOCK ;Check again for inhibit
 goto InhibitLoop
 btfss DATA ;Check for request-to-send
 retlw 0xFF
 clrf PARITY ;Init reg for parity calc
 movlw 0x08

 49

 movwf COUNTER
 movlw 0x00
 call BitOut ;Output Start bit (0)
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 Delay 4
 ByteOutLoop movf TEMP0, w
 xorwf PARITY, f ;Calculate parity
 call BitOut ;Output Data bits
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 rrf TEMP0, f
 decfsz COUNTER, f
 goto ByteOutLoop
 Delay 2
 comf PARITY, w
 call BitOut ;Output Parity bit
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 Delay 5
 movlw 0xFF
 call BitOut ;Output Stop bit (1)
 Delay 48
 retlw 0x00

 ByteOutEnd bsf STATUS, RP0 ;Host has aborted
 bsf DATA ;DATA=1
 bsf CLOCK ;CLOCK=1
 bcf STATUS, RP0
 retlw 0xFE

 BitOut bsf STATUS, RP0
 andlw 0x01
 btfss STATUS, Z
 bsf DATA
 btfsc STATUS, Z
 bcf DATA
 Delay 21
 bcf CLOCK
 Delay 45
 bsf CLOCK
 bcf STATUS, RP0
 Delay 5
 return

 50

Host to Device Communication:

The packet is sent a little differently in host-to-device communication...

First of all, the PS/2 device always generates the clock signal. If the host wants to send
data, it must first put the Clock
and Data lines in a "Request-to-send" state as follows:

 Inhibit communication by pulling Clock low for at least 100 microseconds.
 Apply "Request-to-send" by pulling Data low, then release Clock.

The device should check for this state at intervals not to exceed 10 milliseconds. When
the device detects this state, it will
begin generating Clock signals and clock in eight data bits and one stop bit. The host
changes the Data line only when
the Clock line is low, and data is latched on the rising edge of the clock pulse. This is
opposite of what occours in
device-to-host communication.

After the stop bit is sent, the device will acknowledge the received byte by bringing the
Data line low and generating one
last clock pulse. If the host does not release the Data line after the 11th clock pulse, the
device will continue to generate
clock pulses until the the Data line is released (the device will then generate an error.)

The Host may abort transmission at time before the 11th clock pulse (acknowledge bit)
by holding Clock low for at least
100 microseconds.

To make this process a little easier to understand, here's the steps the host must follow to
send data to a PS/2 device:

 1) Bring the Clock line low for at least 100 microseconds.
 2) Bring the Data line low.
 3) Release the Clock line.
 4) Wait for the device to bring the Clock line low.
 5) Set/reset the Data line to send the first data bit
 6) Wait for the device to bring Clock high.
 7) Wait for the device to bring Clock low.
 8) Repeat steps 5-7 for the other seven data bits and the parity bit
 9) Release the Data line.
 10) Wait for the device to bring Data low.
 11) Wait for the device to bring Clock low.
 12) Wait for the device to release Data and Clock

 51

Figure 3 shows this graphically and Figure 4 separates the timing to show which signals
are generated by the host, and
which are generated by the PS/2 device. Notice the change in timing for the Ack bit--the
data transition occours when
the Clock line is high (rather than when it is low as is the case for the other 11 bits.)

Figure 3: Host-to-Device Communication.

Figure 4: Detailed host-to-device communication.

Figure 4 shows two important timing considerations: (a), and (b). (a), the time it takes
the device to begin generating
clock pulses after the host initially takes the Clock line low, must be no greater than
15ms; (b), the time it takes for the
packet to be sent, must be no greater than 2ms. If either of these time limits is not met,
the host will generate an error.
Immediately after the packet is received, the host may bring the Clock line low to inhibit
communication while it processes
data. If the command sent by the host requires a response, that response must be received
no later than 20ms after the
host releases the Clock line. If this does not happen, the host generates an error. As was
the case with Device-to-host
communication, no Data transition may occur with 5 microseconds of a Clock transition.

If you want to emulate a mouse or keyboard, I would recommend reading data from the
host as follows:

 In your main program, check for Data=low at least every 10 milliseconds.
 If Data has been brought low by the host, read one byte from the host
 1) Wait for Clock=high
 2) Is Data still low?
 No--An error occurred; Abort.
 3) Read 8 data bits \ After reading each of these bits, test
 4) Read parity bit > Clock to make sure host hasn't pulled it
 5) Read stop bit / low (which would abort this transmission.)
 6) Data still equals 0?
 Yes--Keep clocking until Data=1 then generate an error
 7) Output Acknowledge bit
 8) Check Parity bit.
 Generate an error if parity bit is incorrect
 9) Delay 45 microseconds (to give host time to inhibit next transmission.)

 52

 Read each bit (8 data bits, parity bit, and stop bit) as follows:
 1) Delay 20 microseconds
 2) Bring Clock low
 3) Delay 40 microseconds
 4) Release Clock
 5) Delay 20 microsecond
 6) Read Data line
 Send the acknowledge bit as follows:
 1) Delay 15 microseconds
 2) Bring Data low
 3) Delay 5 microseconds
 4) Bring Clock low
 5) Delay 40 microseconds
 6) Release Clock
 7) Delay 5 microseconds
 8) Release Data

Here is some sample code written for the PIC16F84 that implements the above
algorithms to read data from a PS/2
host. "Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the port bits
connected to the Clock and Data lines;
"TEMP0", "PARITY", and "COUNTER" are all general purpose registers. Note that in
the "PS2inBit" routine, Clock is
brought low by setting the appropriate I/O pin to output (it's assumed they were set to "0"
at the beginning of the
program.) And it is allowed to float (high) by setting the I/O pin to input (and allow a
pull-up resistor to pull the line
high.) Timing was worked out for a PIC running at 4.61 MHz +/- 25% (RC oscillator
with values 5k/20 pF). Will work
for any oscillator between 3.50 MHz - 5.76 MHz.
 ByteIn btfss CLOCK ;Wait for start bit
 goto ByteIn
 btfsc DATA
 goto ByteIn
 movlw 0x08
 movwf COUNTER
 clrf PARITY ;Init reg for parity calc
 Delay 28
 ByteInLoop call BitIn ;Clock in Data bits
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 bcf STATUS, C
 rrf RECEIVE, f
 iorwf RECEIVE, f
 xorwf PARITY,f

 53

 decfsz COUNTER, f
 goto ByteInLoop
 Delay 1
 call BitIn ;Clock in Parity bit
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 xorwf PARITY, f
 Delay 5
 ByteInLoop1 Delay 1
 call BitIn ;Clock in Stop bit
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 xorlw 0x00
 btfsc STATUS, Z ;Stop bit = 1?
 clrf PARITY No--cause an error condition.
 btfsc STATUS, Z ;Stop bit = 1?
 goto ByteInLoop1 ; No--keep clocking.

 bsf STATUS, RP0 ;Acknowledge
 bcf DATA
 Delay 11
 bcf CLOCK
 Delay 45
 bsf CLOCK
 Delay 7
 bsf DATA
 bcf STATUS, RP0

 btfss PARITY, 7 ;Parity correct?
 retlw 0xFF ; No--return error

 Delay 45
 retlw 0x00

 BitIn Delay 8
 bsf STATUS, RP0
 bcf CLOCK
 Delay 45
 bsf CLOCK
 bcf STATUS, RP0
 Delay 21
 btfsc DATA
 retlw 0x80
 retlw 0x00

 54

Other Sources / References:

 Adam's micro-Resources Home - Many pages/links to related information.
 The AT Keyboard - My page on AT keyboards
 The PS/2 Mouse - My page on the PS/2 mouse
 Synaptics Touchpad Interfacing Guide -Very informative!
 PS/2 Keyboard and Mouse Protocols - Timing diagrams.
 Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).

 55

 Interfacing the AT Keyboard
 Copyright 2001 Adam Chapweske

 This document is under construction... I'll post more information as I have time...
Click here for the old
 version of this guide.

 Note: This document refers to AT and PS/2 keyboards. The two keyboards are
exactly the same except for their
 connectors. The AT keyboard uses a 5 -pin DIN connector, while the PS/2 keyboard
uses the 6-pin mini-DIN. That is
 the only difference.

 General Description:

 Keyboards consist of a large matrix of keys, all of which are monitored by an on-
board processor. The specific
 processor(1) varies from keyboard-to-keyboard but they all basically do the same
thing: Monitor which key(s) are
 being pressed/released and send the appropriate data to the host. This processor takes
care of all the debouncing and
 buffers any data in its 16-byte buffer, if needed. Your motherboard contains a
keyboard controller that is in charge of
 decoding all of the data received from the keyboard and informing your software o f
what's going on. All communication
 between the host and the keyboard uses an IBM protocol.

 Electrical Interface / Protocol:

 The keyboard uses the same protocol as the PS/2 mouse. Click here for detailed
information about that protocol.

 Scan Codes:

 Your keyboard's processor spends most of its time scanning, or monitoring, the
matrix of keys. If it finds that any key
 is being pressed, released, or held down, the keyboard will send a packet of
information known as a scan code to your
 computer. There are two different types of scan codes: make codes and break codes.
A make code is sent when a
 key is pressed or held down. A break code is sent when a key is released. Every key
is assigned its own unique make
 code and break code so the host can determine exactly what happened to which key
simply by looking at a single scan
 code sent from the keyboard. The set of make and break codes for every key

 56

comprises a scan code set. There are
 three standard scan code sets, named 1, 2, and 3. Scan code set 2 is the default, and is
the only set used by all modern
 PCs. Sets 1 and 3 exist for compatibility with older systems. You may switch scan
code sets using the "Set Scan Code
 Set" (0xF0) command.

 So how do you figure out what the scan codes are for each key? Unfortunately,
there's no simple formula for calculating
 this. If you want to know what the make code or break code is for a specific key,
you'll have to look it up in a table.
 I've composed tables for all make codes and break codes in all three scan code sets:

 Scan Code Set 1
 Scan Code Set 2
 Scan Code Set 3

 Make Codes, Break Codes, and Typematic Repeat:

 Whenever any key on a keyboard is pressed, that key's make code is sent to the
computer. Keep in mind that a make
 code only represents a key on a keyboard--it does not represent the character printed
on that key. This means that
 there is no defined relationship between a make code and a character. It's up to your
software to translate the scan
 codes to characters or commands. If you want to associate a make code with a
character, you'll have to implement a
 look-up table in your program.

 Although most set 2 make codes are only one-byte wide, there are a handfull of
extended keys whose make codes are
 two or four bytes wide. These make codes can be identified by the fact that the first
byte is E0h.

 Just as a make code is sent to the computer whenever a key is pressed, a break code is
sent to the computer whenever
 a key is released. In addition to every key having its own unique make code, they all
have their own unique break
 code. Fortunately, however, you won't always have to use tables to figure out a key's
break code--certain relationships
 do exist between make codes and break codes. Most set 2 break codes are two bytes
long where the first byte is F0h
 and the second byte is t he make code for that key. Break codes for extended keys are
usually three bytes long and the
 first two bytes are E0h, F0h, and the last byte is the last byte of that key's make code.
As an example, I have listed

 57

 below a few set 2 make codes and break codes for some keys:

 Key
 (Set 2)
 Make Code
 (Set 2)
 Break Code
 "A"
 1C
 F0,1C
 "5"
 2E
 F0,2E
 "F10"
 09
 F0,09
 Right Arrow
 E0, 74
 E0, F0, 74
 Right "Ctrl"
 E0, 14
 E0, F0, 14

 Example: What sequence of make codes and break codes should be sent to your
computer for the
 character "G" to appear in a word processor? Since this is an upper-case letter, the
sequence of events
 that need to take place are: press the "Shift" key, press the "G" key, release the "G"
key, release the "Shift"
 key. The scan codes associated with these events are the following: make code
for the "Shift" key (12h),
 make code for the "G" key (34h), break code for the "G" key(F0h,34h), break code
for the "Shift" key
 (F0h,12h). Therefore, the data sent to your computer would be: 12h, 34h, F0h,
34h, F0h, 12h.

 If you press a key, its make code is sent to the computer. When you press and hold
down a key, that key becomes typematic,
 which means the keyboard will keep sending that key's make code until the key is
released or another key is pressed. To verify this,
 open a text editor and hold down the "A" key. When you first press the key, the
character "a" immediately appears on your screen.
 After a short delay, another "a" will appear followed by a whole stream of "a"s until you
release the "A" key. There are two important

 58

 parameters here: the typematic delay, which is the short delay between the first and
second "a", and the typematic rate, which is
 how many characters per second will appear on your screen after the typematic delay.
The typematic delay can range from 0.25
 seconds to 1.00 second and the typematic rate can range from 2.0 cps (characters per
second) to 30.0 cps. You may change the
 typematic rate and delay using the "Set Typematic Rate/Delay" (0xF3) command.

 Command Set:

 The following are the only commands that may be sent to the keyboard:

 0xFF (Reset) - Keyboard responds with acknowledge (0xFA) then enters Reset mode.
 0xFE (Resend) - Keyboard responds by resending the last scan code or command sent
to the host.
 0xFD (Set Key Type Make) -
 0xFC (Set Key Type Make/Break) -
 0xFB (Set Key Type Typematic) -
 0xFA (Set All Keys Typematic/Make/Break) -
 0xF9 (Set All Keys Make) -
 0xF8 (Set All Keys Make/Break) -
 0xF7 (Set All Keys Typematic) -
 0xF6 (Set Default) -
 0xF5 (Disable) - Keyboard responds with acknowledge (0xFA), then stops scanning
and waits further instructions.
 0xF4 (Enable) -
 0xF3 (Set Typematic Rate/Delay) - Keyboard responds with acknowledge (0xFA),
then waits for the host to send one more
 byte, which it also responds to with acknowledge (0xFA). The second byte defines
the typematic rate and delay as follows:

 Repeat Rate
 Bits 0-4
 Rate(cps)

 Bits 0-4
 Rate(cps)

 Bits 0-4
 Rate(cps)

 Bits 0-4
 Rate(cps)
 00h
 2.0

 59

 08h
 4.0

 10h
 8.0

 18h
 16.0
 01h
 2.1

 09h
 4.3

 11h
 8.6

 19h
 17.1
 02h
 2.3

 0Ah
 4.6

 12h
 9.2

 1Ah
 18.5
 03h
 2.5

 0Bh
 5.0

 13h
 10.0

 1Bh
 20.0
 04h
 2.7

 0Ch

 60

 5.5

 14h
 10.9

 1Ch
 21.8
 05h
 3.0

 0Dh
 6.0

 15h
 12.0

 1Dh
 24.0
 06h
 3.3

 0Eh
 6.7

 16h
 13.3

 1Eh
 26.7
 07h
 3.7

 0Fh
 7.5

 17h
 15.0

 1Fh
 30.0

 Delay
 Bits 5-6
 Delay (seconds)
 00b

 61

 0.25
 01b
 0.50
 10b
 0.75
 11b
 1.00

 0xF2 (Read ID) - The keyboard responds with "Acknowledge" (0xFA) follwed by a
two-byte device ID of 0x83, 0xAB.
 0xF0 (Set Scan Code Set)
 0xEE (Echo) - The keyboard responds with "Echo" (0xEE).
 0xED (Set/Reset LEDs) -

 Initialization:

 The following is the communication between my computer and keyboard when it boots-
up:

 Keyboard: AA Self-test passed
 Host: ED Set/Reset Status Indicators
 Keyboard: FA Acknowledge
 Host: 00 Turn off all LEDs
 Keyboard: FA Acknowledge
 Host: F2 Read ID
 Keyboard: FA Acknowledge
 Keyboard: AB First byte of ID
 Host: ED Set/Reset Status Indicators
 Keyboard: FA Acknowledge
 Host: 02 Turn on Num Lock LED
 Keyboard: FA Acknowledge
 Host: F3 Set Typematic Rate/Delay
 Keyboard: FA Acknowledge
 Host: 20 500 ms / 30.0 reports/sec
 Keyboard: FA Acknowledge
 Host: F4 Enable
 Keyboard: FA Acknowledge
 Host: F3 Set Typematic Rate/delay
 Keyboard: FA Acknowledge
 Host: 00 250 ms / 30.0 reports/sec
 Keyboard: FA Acknowledge

 62

 Emulation:

 Click here for routines that emulate a PS/2 mouse or keyboard

 Footnotes:

 1) Some of these processors include:

 Holtek: HT82K28A, HT82K628A, HT82K68A, HT82K68E
 EMC: EM83050, EM83050H, EM83052H, EM83053H,
 Intel: 8048, 8049
 Motorola: 6868, 68HC11, 6805
 Zilog: Z8602, Z8614, Z8615, Z86C15, Z86E23

 Other Sources / References:

 Holtek - Informative datasheets on many different AT keyboards (and other
peripherals).
 PS/2 Mouse/Keyboard Protocol - My page on the protocol used for communication
between a keyboard and host.
 KB2LCD Keyboard Reader - My keyboard reader with schematics and code.
 Scan Codes - My tables of scan codes for various keyboards. Print them out -- they're
very handy to have.
 Command Sets - My list of commands that can be sent between the host and the
keyboard.
 Zilog Keyboard Encoder Appnote - Lots of great information on making a keyboard
encoder.
 Help with keyboard interfacing - Article describing how to interface with AT
keyboards.
 IBM Keyboard Interfact Project - Good breif article on interfacing to AT and XT
keyboards.
 PC Keyboard FAQ - Extensive FAQ; large collection of keyboard-related
information.
 Steve's PC Keyboard info - Links, short FAQ, pinouts, Keyboard viewer software and
circuit.
 PIC Keyboard Routines - Serial host engine; Keyboard host (8042) emulator; AT
Keyboard emulator.
 John Voth's Home Page - 8042 Keyboard Controller Schematic.
 Philips AN434 - Connecting a PC keyboard to the I2C bus. Examples for the 8XC751
MCU.
 AVR AN313 - AT Keyboard-RS232 converter using an AVR MCU. Includes short
description/timing diagrams of AT
 keyboard.

 - Adam's micro-Resources -

 63

