EEL 5666
Robot Report
Charles Parks

December 7, 2001

Table of Contents

Section

Abstract

Executive summary

Introduction

Integrated System

Mobile Platform

Actuation

Sensors

Behaviors

Experimenta Layout and Results
Documentation

Appendices

Page

10
11

12

Abstract

This project taught me alot about the difficulty of designing and constructing arobot.
Robot design can seem simple until aperson triesto construct one. Themain partsof a
robot are sensors, batteries, servos, and amicro-controller. Sensorsallow arobot to see
theworld aroundit. Batteriesallow arobot to move around and not stop when it reaches
the end of its power cord. The servos or motors propel arobot along. The micro-
controller isthe brain of therobot. This device along with memory holds and runs the
code, which is the personality of therobot. My robot was designed to map out aroom.
Currently scout, my robot, hasthe ability to navigate around aroom and avoid hitting any
thing. The other parts of my robot were not possible sincel wasnot ableto interfacethe
mouse or get usable data from my compass.

Executive Summary

Robots are the way of the future they can help people in amost any task. This paper
examines an attempt at constructing arobot that can map aroom. Thegoal for thisrobot
wasto use aset of sensorsthat cost |ess than $100.00 and still be able to map out aroom.
Another goal wasto interface the sensors with minimal amount of additional hardware.
The optical mouse was selected as the main tool to measure distances traveled by the
robot. Theoptical mouse seam best suited for thistask sinceit was designed to measure
distance moved over avariety of different surfaces. IR range finders along with bump
sensor were used to enable the robot see obstacles. The actuation for thisrobot wastwo
hacked servos. The design for this robot seamed very promising and although the
constructed robot does not perform the task of mapping aroom yet the creator for this
robot is hopeful of still accomplishing this task.

I ntroduction

Robots are autonomous machinesthat are designed to perform tasksthat areimpossible,
difficult, or monotonousfor aperson to accomplish. Theindividual tasks arobot must
perform depend upon the overall purpose of the robot.

Scout, was originally designed to map o ut aroom showing thelocation of all obstaclesin
that room. Scout was designed around two main sensors (an optical mouse and an
electronic compass). Sensorsareonly useful if they can provide accurate datain aformat
that can be understood by the robot. The construction of this project taught me the
importance of these two things.

Integrated System

Scout will consist of four basic systems that will enable it to map out an area.

= Navigation

= Obstacle detection

= Propulsion

= Graphical display
Each of these systems will communicate will any system it needs to and will be
responsible for certain behaviors.

Navigation System

TheNavigation System will beresponsiblefor determining current position and heading.
This system will use an optical mouse and an el ectronic compassto accomplishitstasks.
The optical mouse proved too difficult to interface with the 68HC11 processor in the
limited time span of thisproject. The electronic selected for thisrobot gave valuesthat
did not increase linearly with change in angle. These values may be the result of
magnetic fieldsinthe room or amalfunction of the compass. The compasslacked some
features (such asthe ability to give accurate readings even if slightly tilted) that would
have been useful for the robot.

Obstacle Detection

The Obstacle detection system will be responsiblefor locating all obstacle and sudden
dropsintheareaof operation. Thissystemwill use4 strategically place R sensor and 2
bump sensors. The Obstacle Detection systemworked well for therobot. Thevalueeach
IR sensor gavefor afixed distance varied slightly. Thisslight variation was not much of
a problem since the robot used ranges to determine if the obstacle was too close.

Propulsion

The Propulsion system will be responsible for propelling the robot in the x and y-axis.
The Propulsion system must be able to make accurate 45 and 90 degreeturnsaswell as
forward and reverse movement. This system will use two independently controlled
servos and two 3-inch wheels to perform itstask. The propulsion system was able to
turn the robot and driveit forward. The problem of this method of propulsion was that
the servoswere not perfectly matched and asaresult the robot will tend to drift over long
distances. A robot with one servo controlling the rear wheels and another servo
controlling asteering wheel would be ableto travel in astrait line but may lose some of
its ability to turn.

Graphical Display

The Graphical Display system will convert the values stored in the grid into asequence
of ASCII charactersand transmit themto aPC. Thissystem will usetheserial interface
system of the micro controller and conversion routine to accomplish thistask. The
graphical system of the robot was never implemented since the mouse was never
successfully interfaced. Therobot did have someroutinesto print text on the screen and
convert abinary valueinto an ASCII text format that could be printed to ascreen. These
routines were used for testing.

Mobile Platform

The purpose of the platformisto provide aplace to mount the el ectronicsfor therobot.
Thegoal of the platform | designed wasto make simpl e shape that was symectrical about
oneaxis. The platform should containaway to mount the servos used to propel the robot
aswell asall sensorsused by therobot. Thetwo most important thingsthat the platform
should house are the micro controller, brains, and batteries, food source. An addition
feature of the body thatwould help with debugging isexternal ledsthat indicate the mode
of operation the robot isin and the status of various systems.

The placement of the optical mouse and el ectronic compass are critical to the success of
thisrobot. The optical mouse needs to be place so that the y-axis it measuresis the
forward and reverse movement of the robot and the x-axisisthe sideto side movement of
therobot. The optical mouse needsto be mounted level and should be asfar aspossible
from the servos, which produce magnetic fields.

The below drawing is apreliminary drawing of the shape of the robot as seen from the
side. The complete Auto-cad drawings for this robot are included in the appendices.

IR =zensors

—

JE
1
a1
U__I

wheels / optical mousze

Actuation

Scout will be propelled and steered using two servos. The servos are basic model
airplane servosthat are partially hacked. The servos have been modified to allow for full
360 degreesrange of motion. The modification involved removing aphysically stopin
the servo and disconnecting a mechanical linkage to a potentiometer in the servo. The
modification convertsthe servo into amotor and adriver circuit. Theservoiscontrolled
by using a pulse-width-modulated signal. The width of the signal correspondsto a
desired angle. When the servo ishacked the speed output of the servo is proportional to
the difference between the angle given to the servo and the angle the servo thinksit is at.
The servos provide a simple and reasonably priced solution to propel the robot. The
turning for Scout will be achieved by turning on one servo and leaving the other servo
off. Themicro-controller will be responsiblefor turning on the servosand shutting them
off when the proper amount of turning iscompleted. The servosin conjunctionwiththe
sensorswould allow therobot to make 45 degree and 90 degree turnsif the compasswas
working.

Sensors

Sensors enablerobotsto interact with their environment by providing information about
that environment. The purposes of sensors on Scout are to provide it with sight, feel,
location, and direction. This set of senses should allow scout to generate a map of the
areaitisplaced in. Therewill be four different kinds of sensors for scout.

1 optical mouse

1 electronic compass

4 |R-range detectors

4 bump sensors

The IR —range detectors and bump sensors worked well. These sensors were easy to
interface and they allowed scout to detect obstacles. The electronic compass was
interfaced using input capture. Thereadingsfrom the compass appeared to be non-linear
these values made it impossible for meto use the compass to make accurate 90 and 45
degreeturnsregardless of the current heading. The non-linear values could betheresult
of magneticfieldsinthelab or abad calibration of the compass. The compass| selected
was an inexpensive ($35.00) model from acroname.com. | am not sureif | would
recommend thismodel to others. One of the biggest problemswith thiscompasswastha
it wassensitivetotilting of the platform. There are other el ectronic compassesthat can
compensate for small degreesof tilt. The optical mouse was anecessary sensor for scout.
Theresearch | performed taught me alot about how the datais sent to and from the
mouse. | attempted to use my newly aquired knowledge to connect the mouse to the
MRC11 board. The method | used wasto put port D of the 68hcl11 into wired-or mode
and simulate through software an 11-bit SPI system. This approach appeared
unsuccessful in both assembly and C. | still feel that the mouse can be connect to the
68hcl1l but for now this part of the robot is unfinished. The appendix of this report
shows both theinformation | discovered about the mouse and ablock diagram for how |
connected the mouse and compass to the MRC11 board.

Behaviors required by Robot

Inorder for Scout to performitsfunction it must capable of performing aseriesof basic
behaviors.

= Detect obstacles and record their position

= Avoid obstacles in a predefined routine

= Determine current position relative to starting position

= Determine current heading

= Beableto generate and control locomotion

= Display datain a usable format

Scout had 4 main systems that it was to use to accomplish these tasks.

= Navigation

= Obstacle detection

= Propulsion

= Graphical display
Each of these systems was to communicate will any system it needs to and was
responsible for certain behaviors.

Navigation System

The Navigation System will be responsiblefor determining current position and heading.
Thissystemwill use an optical mouse and an el ectronic compassto accomplishitstasks.
The Navigation system was unfinished in scout mainly due to the inability to
communicate with the mouse.

Obstacle Detection

The Obstacle detection system was responsible for locating all obstaclesin the area of
operation. Thissystemwill use4 strategically place IR sensor and 2 bump sensors. This
system worked well in scout except sometimes awheel would get stuck on an obstacle
since they protruded out from the side of the robot.

Propulsion

The Propulsion system wasresponsiblefor propelling therobot inthex and y-axis. The
Propulsion system must be able to make accurate 45 and 90 degree turns as well as
forward and reeves movement. This system used two independently controlled servos
and two 3-inch wheels to perform itstask. The wheels and servos propelled the robot
along as planed. The compass unfortunately was not effective in enabling the robot to
make 90 and 45 degree turns.

Conclusion

Thisrobot taught me alot about the difficulty of interfacing different pieces of hardware.
Therobot’ sinability to communicate with the mouse prevented it from performing its
primary function of mapping aroom. The failure of the compassto givelinear values of
the degrees prevented the robot from making accurate 90 and 45 degreeturns. Thisclass
wasVvery enjoyable although stressful at times. | enjoyed helping other peoplewith their
robotsand working on my robot. | consider thisproject in an unfinished state and plan to

work on it morein the future.

10

Documents

PS/2 Mouse/K eyboard Protocol, Copyright 1999 Adam Chapweske
http://panda.cs.ndsu.nodak.edu/~achapwes/Pl Cmicro/PS2/ps2.htm

The PS/2 Mouse Interface, Copyright 2001 Adam Chapweske
http://panda.cs.ndsu.nodak.edu/~achapwes/Pl Cmicro/mouse/mouse.html

11

Appendix

Block layout of circuit

[E oo Sobernadica - D chemnatic L il L

Siainl o) {1l = siaiajaial syl 3 sie) o3 Sl itls]

Lo =]
£
H
8
I

WA bosd
W Ll

LK
-] 39
| SRR (S
oo GO (2200 1)
- ool s —l__rl
|
o
o paps gt
1
o
4| W
Bathariar —=
A -]
[
Lk Zanm Pighl Sarea W1 chen Capardnn Pags Sox
I Farianke
frwine:, CE 318
-
Fass am |

ek ek
st | Fhogno-oteged | Eirecsizee | B ey, | [et Scbe g0eepiabbesn. | bictotes | Bpctabprtde | (@ NPEEL 0o

Code for Scout

LR R Ik S R S R I R R S T S R A R S S
* %

* Define the address locations of the various registers and user-defined
* constants used in the program

EE R S I I S R S S S S S S
* %

12

BASE EQU
BAUD EQU
SCCR1 EQU
SCCR2 EQU
SCSR EQU
SCDR EQU
SPCR EQU
DDRD EQU
PORTA EQU
PORTD

TCTL1 EQU
TCTL2 EQU
PACTL EQU
TFLG&2 EQU
CFORC EQU
OC1M EQU
OC1D EQU
TIC1 EQU
TMSK1 EQU
TMSK2 EQU
TFLGL EQU
TOC1 EQU
TOC2 EQU
TOC3 EQU
TOCA EQU
TCNT EQU
OPTION EQU
ADCTL EQU
ADR1 EQU
BitO EQU
Bitl EQU
Bit2 EQU
Bit3 EQU
Bit4 EQU
Biths EQU
Bit6 EQU
Bit7 EQU
Bitsl0 EQU
InvBit6 EQU
ECS EQU
CR EQU
LF EQU
ESC EQU

$1000 ; ba
$102B ;
$102C ;
$102D ;
$102E ;
$102F ;

$0028 ; Ser

$0009 ; Dat
$0000

EQU $000
$0020 ;
$0021 ;

$0026 ;
$0025
$000B
$000C
$000D
$0010
$0022
$0024
$0023
$0016
$0018
$001A
$001C
$000E
$0039
$0030
$1031

%90000001
%90000010
%90000100
%9©0001000
290010000
990100000
991000000
940000000
%90000011
%91111111

$04 :
$0D :
$0A ;
$1B ;

** portD pin 5 and pin 3

se value for registers

BAUD rate control register to set the BAUD rate
Serial Communi cation Control Register-1

Serial Conmuni cation Control Register-2

Serial Conmuni cation Status Register

Serial Conmuni cati on Data Regi ster

i al Peripheral control Register
a direction port D

8 ; Port D
timer contro
timer control 2

used to intialize RTlI system

User-defined End O String (EOS) character
Carriage Return Character

Li ne Feed Character

Escape Charracter

are used to calibrate the conpass

cal Pin EQU $20 ;calibration command out put
cal Pin2 EQU $10 ;calibration done pin i nput
** mouse uses 2 bidirectional line to talk to host

13

* %

nousel n and nmouseCut are tied togather with a pull

** 1-k resistor
mouseCl k EQU $10 ;pin 4
nmouseDat a EQU $04 ;pin 2

EE R S S I I R I I R R R S R I R R R S I R

* Conpass val ues *
SRR R S S I S I R I O R I S S S kR R S S I
Max_headi ng EQU 138

C MAX EQU 18495

CMN EQU 500

Cdiff EQU 17995

R I S O S I S R I I S R R O
* BOOLEAN VALUES *
SRR R S S I S R R S R I S S S kR R S S S
TRUE EQU $FF

FALSE EQU $00

Ri ght EQU $AA

Left EQU $55

EE R S S I I R I I R R R S R I R R R S I R

* servo constants *
EIE IR I I I I I I I I I I I I I I R I R R I I I I I I I I A I A IR R R A I I A R I I O

period EQU 7500

Left Forward EQU 450

Left Reverse EQU 1050

Ri ght Forwar d EQU 1050

Ri ght Rever se EQU 450

STOP EQU 750

SRR R S S I S R I S R S S S kS I R S S S
* Di stance constants *
R R I O R I I R R I I I I I R R R R I S I S I A A I A I S R I O
zonel EQU 100 ; too close

zone2 EQU 75 ; Vvisible

zone3 EQU 50 ;

* k% k% % 'Vbuse Comnds * k% k% %

Reset EQU $FF

Resend EQU $FE

Set Defaults EQU $F6

Di sabl e_Data_Reporting
Enabl e_Dat a_Reporting
Set _Sanple_Rate EQU $F3
sanpl es /sec */

EQU $F5
EQU $F4
/* valid rates 20, 40, 60, 80,

Get _ID EQU $F2
St at us_Request EQU $E9
Set _Resol ution EQU $ES8

14

up

100, 200

** This command (Set_Scaling2) will set the nmouse to 2:1 scaling

** Mouse Counter Reported Movenent

* 0 0

* %k 1 1

* 2 1

* 3 3

* 4 6

* 5 9

* N>5 2*N
Set _Scal i ng2 EQU $E7

*** gsets the scaling 1:1 recorded novenent = reported novenent

Set Scal i ngl EQU $E6

requestData EQU $EB // used to request npuse novement when nouse
is in Renpte node

*** Mouse npdes sent as a command to npuse to set to certain nodes **
Renot e_npde EQU $FO

W ap_node EQU $EE

Reset _Wap_Mdde EQU $EC // npuse returns to node it was in prior to
wrap node

Stream node EQU $EA

** commands sent from nopuse to host **

Acknow edge EQU $FA

sel ftest EQU $AA /1l nmeans self test passed

** additionally the nouse may send the Resend Command or Error Comand

EE R R I I O R I R I R S R R O R R I R R R R O I

* Initialize Interrupt Junp Vectors

ESE R I O I R R S R R R S R R R R R R R I R R R O R

ORG $FFFE
FDB Mai n
ORG $FFE2
FDB OC4l SR
FDB OC3I SR
FDB oC21 SR
ORG $FFEE
FDB IC1_I SR
* (I'f you need to use any interrupts |ater,
* put your Interrupt Junp Vectors here).
EE R S I R S R S R R I R I I S I A S I R A R S R R I I R A I I I S
* Define Strings for displaying nessages
EE R R I I S A R S S S R S I O R S O
ORG $1040 ;start of external nmenory
ClrScr FCB ESC, $5B, $32, $4A ; ANSI sequence to clear screen
FCB ESC, $5B, $3B, $48 ; and nove cursor to hone
FCB ECS ; EOCS character
Prompt FCC @Main Menu @; Menu pronpt

15

FCC
FCB
FCC
FCB
FCC
FCB
FCB

Confirm FCB
FCC

@or a new BAUD rate: @; to explain choices

CR, LF ; Carriage return and line feed
@=> print mp @ ;

CR, LF

@=> mp area @

CR, LF

ECS ; EOS character

CR, LF ; Carriage return and line feed
@he robot has been set to Map node pl ease place robot

is starting square and press rear bunp sensor @

FCB
FCB

Prompt 2 FCC
i nput
FCC
FCC
FCB
FCB
FCB

Prompt 3 FCB
FCC

FCC

FCC
FCC

FCB
FCB

Prompt 4 FCB
FCC
FCB
FCB

ConpassHeadi ng
FCC
FCB
FCB

| R1 FCB
FCC
FCB
FCB

| R2 FCB
FCC
FCB
FCB

CR, LF ; Carriage return and line feed
ECS ; ECS character

@l ease enter text now. @ String to pronpt for text

@O Ht ESCto show @ ;

@AUD nmenu. @ ;

CR, LF ; Carriage return and line feed
CR, LF ; Carriage return and line feed
ECS ; EOS character

CR, LF ; Carriage return and line feed
@l ease change the @ ; String to informusers of

@AUD rate on your @ ; change the setting

@onputer, @
@hen hit CR @ ;

CR, LF ; Carriage return and line feed
ECS ; ECS character

CR, LF

@ress any key test the nmouse@
CR, LF

ECS

FCB CR, LF

@ress any key to read conpass headi ng@
CR, LF

ECS

CR LF

@eft IR Val ue@
CR LF

ECS

CR LF

@i ght IR Val ue@
CR, LF

ECS

16

I R3 FCB
FCC
FCB
FCB

| R4 FCB
FCC
FCB
FCB

Bl FCB
FCC
FCB
FCB

B2 FCB
FCC
FCB
FCB

B3 FCB
FCC
FCB
FCB

B4 FCB
FCC
FCB
FCB

Set Speed
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC

FCB
FCC
FCB
FCB

test Msg FCB
FCC
FCB
FCB

Menu FCB
FCC

CR, LF

@eft Front IR Value@

CR LF
ECS

CR, LF

@i ght IR Val ue@
CR, LF

ECS

CR, LF

@eft Bunp Val ue@
CR, LF

ECS

CR, LF

@Ri ght Bunp Val ue@
CR, LF

ECS

CR LF

@-ront Bunp Val ue@
CR LF

ECS

CR, LF

@Rear Bunmp Val ue@
CR, LF

ECS

CR, LF

@eft servo @

CR, LF

@ress 1 to increase
CR, LF

@ress 2 to decrease
CR, LF

@i ght servo@

CR, LF

@ress 3 to increase

CR, LF

@ress 4 to decrease
CR, LF

ECS

CR, LF
@est @
CR, LF
ECS

CR, LF
@main Menu@

17

speed @

speed @

speed @

speed

@

FCB CR, LF

FCC @.: test servos@
FCB CR, LF

FCC @: test Conpass@
FCB CR, LF

FCC @: test IR @
FCB CR, LF

FCC @ test delay@
FCB CR, LF

FCC @: test bump@
FCB CR, LF

FCB ECS

*t abl e of shapes

SQUARE FCB 10 ; distace
FCB 35 ; angle
FCB Ri ght ; direction to turn
FCB 10 ; distance
FCB 35 ; angle
FCB Ri ght ; direction to turn
FCB 10 ; distance
FCB 35 ; angle
FCB Ri ght ; direction to turn
FCB 10 ; distance
FCB 35 ; angle
FCB Ri ght ; direction to turn
FCB ECS
TRI ANGLE FCB 10 ; di stace
FCB 23 ;angl e
FCB Left ;direction
FCB 10
FCB 23
FCB Left
FCB 10
FCB 23
FCB Left
FCB ECS
HOURGLASS: FCB 5 ; distance
FCB 23 ; angle
FCB Left ; direction
FCB 10 ; distance
FCB 23 ; angle
FCB Ri ght ; direction
FCB 5 ; distance
FCB 23 ; angle
FCB Ri ght ; direction
FCB 10 ; distance
FCB 23 ; angle
FCB Left ; direction
FCB ECS

18

* d obal Variabl es

del ayTi ne RVB

del ayTi ne2 RVB

del ayTi ne3 RVB

** Dat a RVB 33
tenpO1 RVB 2
t enp02 RVB 2
t enp03 R\VB 2
templ R\VB 1
tenp2 RVB 1
tenp3 RVB 1
CNT RVB 1
di stance RVB 1
direction RVB 1
T_flag RVB 1
error_flag RVB 1

** gervo duty sizes ****

** controls robot speed and direction **
Lduty RVB 2

Rdut y RVB 2

** Compass heading ****
** current direction the robot is pointed as read fromelectronic
conpass **

headi ng RVB 1

degr ees RVB 1 ;used when the robot is turning
new_headi ng RVB 1 ;used when the robot is turning

ri sing_edge RVB 2 ;yused to record rising edge heading

** heading fromconpass = falling edge - rising edge (pulse w dth)
** see docunentation on electronic conpass for nore information

* * |R/ Bun-p sensors kkhkkkkhkkkkkhkkkk*k
L IR RVB 1
RIR RVB 1
LF_ IR RVB 1
RF_IR RVB 1
F_Bunp R\VB 1
B_Bunp RVB 1
R_Bunp RVB 1
L_Bunp RVB 1
t oggl e RVB 1

19

LR R R R R R RS R R R R R R SRR R R R R R R RS R R EREEEREREEREEEREREEEREEEREEEREEREEEEREERREEE]

MAI N PROGRAM

LR R R R EEEREEEEREEEREEEEREEEREEEEEEEEREEREESEEREEEEREEERE RS SRR SRS SR SRS EEEERERESEE]

*

* %

* *
** mai n2
* %
* %
* %
* %
* %

* %

mai n2

c1

LDS
LDX

BSET
BCLR

JSR
JSR
JSR
JSR

JSR

LDX
JSR
BRA
LDAA
STAA
JSR

LDX
JSR
BRA
LDAA
STAA
JSR
LDX
JSR
LDAA
STAA
JSR

BRA

LDX
JSR
JSR
CMVPA
BNE
JSR
CVPA
BNE
JSR
CVPA
BNE
JSR
CMVPA
BNE
JSR

#$0041
#BASE

TMSK2, X Bit0
TMSK2, X Bitl

InitPortD

[nitSCl
Init_servos
Init_TIC1

Drive2

#SQUARE

Shapes
mai n2

#70

degr ees

turn_|left

#TRI ANGLE
Shapes

mai n2

#70
degrees
turn_|left
#HOURGLASS
Shapes
#70

degr ees
turn_|l eft

mai n2

#Menu
Qut Str
| nChar
#$31

test?2
#$32

test3
#$33

testb
#$34

test4

; Define a stack

;set the timer prescale factor
;must be done in the first 64

c Initialize SCl

20

C5 CMVPA #$35

BNE Cl
JSR test6
BRA Cl

ESE R S S S I I I I R R S S S R R R S R Ik

* SUBROUTI NE - | nit SCI

* Description: This subroutine initializes the BAUD rate to 9600 and
* sets up the SCI port for 1 start bit, 8 data bits and
* 1 stop bit. It also enables the transmitter and
receiver.

* Ef fected regi sters are BAUD, SCCR1, and SCCR2.

* | nput : None.

* Qut put c Initializes SCI

* Destroys : None.

* Calls : None.

LR R R R R R RS R R R R R R SRR R R R R R R RS R R EREEEREREEREEEREREEEREEEREEEREEREEEEREERREEE]

I nitSCl PSHA ; Save contents of A register
PSHY ; Save contents of Y register
PSHX
LDX #BASE
LDAA #$30 ;sets Baud Rate to 9600
STAA BAUD ; Set BAUD rate to 9600
LDY #SCCR1 ; Load Y with address of Seria
Conmruni cati on Control Register-1
BCLR 0, Y #%41101111 ; Set SCI Mode to 1 start bit,
BSET 1,Y #%©0001100 ; 8 data bits, and 1 stop bit.
* ; Enable SCI Transmitter
* ; and Recei ver
PULX
PULY ; Restore Y register
PULA ; Restore A register
RTS ; Return from subtoutine

LR R RS EEEEEEEEREEEREEEEREEEREEEEEEEEREEREESEEREEEREEERE SRR EREE RS SR SRR SRR ERERESEE]

* SUBROUTI NE - CQutByte
* Description . Qutputs a hexadeci mal nunber to the conputer
screen
* | nput . Data to be transmitted in register A
* Qut put . Transmit the data.
* Destroys . None.
* Calls : Qut Char
EIE R I I I I R R I I I I I I I I I R I R I A S S R R A R S R I I O O A A I S I A S R I O
Qut Byt e PSHA ; Save contents of A register
LSRA ; shift regAto the right 4 tines
LSRA
LSRA
LSRA
CVPA #10
BPL letter ; BRANCH | F PLUS
ORAA #$30
BRA outl

21

letter ADDA #$37

outl JSR Cut Char
PULA
PSHA
ANDA #$0F
CVPA #10
BPL letter2
ORAA #$30
BRA out 2

| etter2 ADDA #$37

out2 JSR Cut Char
PULA ; Restore A register
RTS ;. Return from subtoutine

IR R R R R R R SRR R R R R SRR R R R SRR R R SRR R SRR EREEEREEEEREEEREEEREREREEEREEREEE]

* SUBROUTI NE - Cut Char

* Description: Qutputs the character in register Ato the screen after
* checking if the Transmitter Data Register is Enpty
* | nput . Data to be transmitted in register A
* Qut put . Transmit the data.
* Destroys : None.
* Calls : None.
LSRR S S S I R R R R R S S R S S R R I S I I
*
Qut Char PSHB ; Save contents of B register
Loopl LDAB SCSR ; Check status reg (load it into B
reg)
ANDB #94.0000000 ; Check if transmt buffer is enpty
BEQ Loopl ; WAt until enpty
STAA SCDR ; A register ==> SCl data
PULB ; Restore B register
RTS ; Return from subtoutine

*

EE R R R I R O I R R I S I R R R I R R I R S R

* SUBROUTINE - CQutStr

* Description: Qutputs the string term nated by ECS. The starting

| ocation

of the string is pointed by X register. Calls the CQutChar
subroutine to display a character on the screen and

exit once EOCS has been reached.

* X X X X Xk

I nput Starting location of the string to be transmtted
. (passed in X register)

Qut put . Prints the string.

Destroys : regester X

Calls : CQut Char.

EIE R R S I S R R I R O R S I R I R R R I S I I R I

*

Qut Str: PSHA
Qut Strl:

22

LDAA 0, X ; Get a character (put in A

regi ster)
CVPA #EOS ; Check if it's ECS
BEQ Done ; Branch to Done if it's ECS
BSR Qut Char ; Print the character by calling
Qut Char
I NX
BRA QutStri

Done: PULA

*

RTS : Return from subtoutine

LR R R R R R R I R I R R I R R R R R

*

*

* % %k %

SUBROUTI NE - | nChar
Description: Receives the typed character into register A
| nput : None
Qut put . Register A = input from SCl
Destroys . Contents of Register A
Calls . None.

LR R R SRR RS R R R R SRS R RS REE SRR EREEEEEEEREEEREREEEREREEEREEEREEREEE SRR EEEEEREERERESEE]

*

I nChar
Enmpt y LDAA SCSR ; Check status reg.

ANDA #9%9©0100000 ; (load it into A reg)

BEQ Empt y ; Check if receive buffer ful
* ; Wait until data present

LDAA SCDR ; SCI data ==> A register

RTS ; Return from subroutine
*
EE R S R R S R S I I I I I I I S I I S R R S R O O S S I I S
* SUBROUTI NE - Set BAUD
* Description: This subroutine changes the Baud-rate. The only effected
*

* % F X X

*

*

register is BAUD. If the input value is invalid, a nmenu/pronpt is

di spl ayed and a new input is read. The subroutine waits for the
user to type a carriage return after changing the baud-rate manual ly
on the PC. It then prints out a confirmation nessage.
I nput : None.
Qut put : Changes BAUD regi ster. Repeats pronpt if invalid
i nput .
Destroys : None
Calls : QutStr, CQutChar, InChar.

ESE R I O I R R I R R R S R R R I R R R R R O R

*

Set BAUD PSHA ; Save contents of A register
PSHB ; Save reg B
PSHX ; Save reg X
Loop3 LDX #Cl r Scr ; Clear Screen
JSR Qut Str ;
LDX #Pr onpt
JSR Qut str ; Print Baud-rate Menu
JSR I nChar ; Take nmenu choice from keyboard
CVPA #$30 ; check for unreasonabl e nenu choice
BLT Loop3 ; ascii value to small to be a nunber
CVPA #$35 ; Check for unreasonabl e nenu choice
BGT Loop3 ; ascii value to large to be a valid
choi ce

23

JSR Qut Char ; If valid input, Echo the input to

Screen
LDX #Pronpt 3 ; Informusers of change the term na
JSR Qut str ; setting with the new BAUD rate
Wi t LDAB SCSR ; Check status reg (load it to B reg)
ANDB #%9©1000000 ; Check if transmit is conplete
BEQ Wait ; wait until TC = 1
STAA BAUD ; SET the new BAUD rate
Loop4
JSR I nChar ; Get next input from keyboard
CMPA #CR
BNE Loop4 ; wait until carriage return
LDX #Confirm ; Print confirmation nessage
JSR Qut Str
PULX ; Restore X register
PULB ; Restore B register
PULA ; Restore A register
RTS

ESE R S I S S I I O I R O R R S S R R R S R R I

* SUBROUTI NE - del ay
* Description: This subroutine will create a delay tinme equal to the
val ue

* stored in del ayTine

* delay = 4.5 * delayTinme + 2.5 (mcro-seconds)
* | nput . del ayTine

* Qut put . None

* Destroys . del ayTine

* Calls : None

R S R R S R b S S O R R R S O SR S S S I I

*

del ay DEC del ayTi me ;6 cycles
BNE del ay ;3 cycles
RTS ;5 cycles
R I I I S b I I I I O R S I S R I I I S S I
* SUBROUTI NE - del ay2
* Description: This subroutine will itialize OC2 to create a delay tine
* del ay = delayTi me2*(m li-seconds)
* | nput : del ayTi me2
* war ni ng : delayTime2 should be a positive integer |ess than 127
* Qut put . set T flag to TRUE
* Destroys : None
* Calls : None
R I I I S b I I I I O R S I S R I I I S S I
del ay2
PSHA
PSHB
PSHX

24

LDX #BASE

* clear OC2 Fl ag
BSET TFLGL, X Bit6
CLR T flag

* di sabl e OC2 out put function
BCLR TCTL1, X Bit7
BCLR TCTL1, X Bit6
LDAA del ayTi ne2

LDAB #125 ;used to convert delayTinme2 into the
val ue
* ;stored for the interrupt

MUL

LSRD

LSRD

ADDD TCNT, X

STD TOC2, X

* enable OC2 interrupt
BSET TMSK1, X Bit6

CLI

PULX

PULB

PULA

RTS
EIR R R R S S S S T I R R R R S S I I R R S R R I R R S I R R R S S R R S S I R S I R
* Interrupt Service Routine: OC2l SR *
* Functi on: set T_flag to true *
* | nput : none *
* Qut put : set T flag *
* Cal l's: none *
* Destroys: none *

ESE R S I S S I I O I R O R R S S R R R S R R I

OC21 SR
LDX #BASE
BRCLR TFLGL, X Bit6 end_0OC2l SR ;1gonore Illegal Interrupt

LDAA #Bit6
STAA TFLGL, X ;clear Flag
LDAA #TRUE
STAA T flag

* disable OC2 interrupt
BCLR TMSK1, X Bit6

end_OC2l SR

RTI
LSRR S S S I R R R S S S R R S S R R I I
* Subrouti ne: Init_servos *
* Functi on: initializes left and right servo output *
* conpares (0OC3 and OC4) *

25

* I nput : none *
* Cut put : none *
* Calls: none *
* Destroys: none *
R S I I S S I R R I O b S R S I

Init_servos:

PSHX
PSHA
PSHB

LDX
LDD

STD
STD

#BASE

#750
Lduty
Rdut y

* clear OC4 Fl ag
BSET TFLGL, X Bit4
BSET TFLGL, X Bit5

CLI

* enable OC4 interrupt

BSET
BSET

BSET
BSET

PULB
PULA
PULX
RTS

TMSK1, X Bit4
CFORC, X Bit4
* enabl e OC3 interrupt
TMSK1, X Bit5
CFORC, X Bith

ESE R S I S S I I O I R O R R S S R R R S R R I

* Interrupt Service Routine: OC4l SR *
* Functi on: Controls the left servo *
* I nput : Duty cycle *
* Qut put : a specified waveformon PortA pin 4 (OC4) *
* Calls: none *
* Destroys: none *
EE R R I I S A R S S S R S I O R S O
OC41 SR

LDX #BASE

BRCLR TFLGI, X Bit4 end_OC4l SR ;lgonore Illegal Interrupt

LDAA #Bit4

26

STAA

BRSET
BSET
BSET

LDD
SUBD
ADDD
STD

BRA
hi gh:

BCLR

BSET

LDD

ADDD

STD

end_OC4l SR
RTI

TFLGL, X ;clear Flag

PORTA, X Bit4 high

TCTL1, X Bit3
TCTL1, X Bit2

#peri od
Lduty

TOC4, X
TOC4, X

end_OC4Il SR

TCTL1, X Bit2
TCTL1, X Bit3
Lduty

TOC4, X
TOC4, X

;currently | ow nake high next cycle

;currently high make | ow next tine

ESE R I O I R R S R R R S R R R R R R R I R R R O R

* Interrupt Service Routine: OC3lSR *
* Functi on: Controls the right servo *
* I nput : Duty cycle *
* Qut put : a specified waveformon PortA pin 4 (OC4) *
* Cal l's: none *
* Destroys: none *
EE R S I I S I I R S I O R I S O R S S
OC3l SR
LDX #BASE
BRCLR TFLGIL, X Bit5 end_OC3I SR ;lgonore Illegal Interrupt
LDAA #Bit5
STAA TFLGL, X ;cl ear Flag
BRSET PORTA, X Bit5 hi gh2
BSET TCTL1, X Bit5 ;currently |ow nmake high next cycle
BSET TCTL1, X Bit4
LDD #peri od
SUBD Rdut y
ADDD TOC3, X
STD TOC3, X
BRA end_OC3l SR
hi gh2:
BCLR TCTL1, X Bit4 ;currently high nmake | ow next tine
BSET TCTL1, X Bit5
LDD Rdut y
ADDD TOC3, X
STD TOC3, X

27

end_OC3Il SR
RTI

ESE R I O I R R S R R R S R R R R R R R I R R R O R

* Subrouti ne: Init_TICL *
* Functi on: initializes Timer |Input Capturel (TIC1) *
* I nput : none *
* Cut put : none *
* Cal l's: none *
* Destroys: none *
EE R S I I S I I R S S S O R S I O R A S
Init_TICL:

PSHX

LDX #BASE

* Set INCl to capture on the rising edge
BCLR TCTL2, X Bit5
BSET TCTL2, X Bit4

* clear INClL Fl ag

BSET TFLGL, X Bit2
* enabl e I NCL innterupt

BSET TMSK1, X Bit2

CLI

PULX

RTS
EE R I I I S S I I R S S O R O R S
* Interrupt Service Routine: ICL_ISR *
* Functi on: sanpl e i nput pul ses *
* (used to read heading fromthe conpass) *
* I nput : none *
* Qut put : headi ng *
* Calls: none *
* Destroys: none *
EE R I I I S S I S R S O R A I O R S I O I O

ICl_I SR
LDX #BASE ;3 cycles
BRCLR TFLGL, X Bit2 end_ICl ;ignore invalid interrupt
BSET TFLGL, X Bit2 ;clear the flag
LDD TICL, X ; read the tinme of interrupt
BRSET TCTL2, X Bit5 fall ;branch if reading falling edge
STD ri sing_edge

*x set to capure falling edge

BCLR TCTL2, X Bit4
BSET TCTL2, X Bit5
BRA end I Cl

28

fall SUBD ri sing_edge
LSLD
SUBA #04
STAA headi ng

*x set to capture rising edge
BCLR TCTL2, X Bit5
BSET TCTL2, X Bit4

end_| C1 RTI
EE R I I I S S I I R S S O R O R S
* Subrouti ne: Read_ IR *
* Functi on: reads the values of the A/D port and stores *
* then to L_IR, RIR LF_IR RF_IR *
* I nput : none *
* Qut put : none *
* Calls: none *
* Destroys: none *
EE R R I b S R O S I O R S S O O R R S S O
Read | R:

PSHX

PSHY

PSHA

PSHB

LDX #BASE

LDY #ADR1

BSET OPTION, X Bit7 ;enable A/D system

BSET ADCTL, X Bit4 ; set for nultiple scan

BCLR ADCTL, X Bit2 ; read Analog 0 - 3

BCLR ADCTL, X Bit3 ;

BCLR ADCTL, X Bit5 ; single scan
RAL BRCLR ADCTL, X Bit7 RAL ; wait util conversion is conplete

LDAA 0,Y

STAA LF_IR

LDAA 1,Y

STAA RF_IR

LDAA 2,Y

STAA R IR

LDAA 3,Y

STAA L IR

PULB

PULA

PULY

PULX

RTS
EIE R I I R I I R I I I I I I I I I I I I I I I A S R S R R I R S R R A I I O R A S I A I I A S R O O
* Subrouti ne: Read_Bunp *
* Functi on: reads the values of the A/D port and stores *

29

* then to R Bunp, L_Bunp, B_Bunp, F_Bunp *
* I nput : none *
* Qut put : none *
* Calls: none *
* Destroys: none *

EE R I R R R I R I R R I S I I R R R R I R R I R R R

Read_Bunp:
PSHX
PSHY
PSHA
PSHB
LDX #BASE
LDY #ADR1

BSET OPTION, X Bit7 ;enable A/D system
BSET ADCTL, X Bit4 ; set for nultiple scan
BSET ADCTL, X Bit2 ; read Analog 0 - 3
BCLR ADCTL, X Bit3 ;

BCLR ADCTL, X Bit5 ; single scan

RB1 BRCLR ADCTL, X Bit7 RB1 ; wait util conversion is conplete
LDAA 0,Y
STAA R_Bunp
LDAA 1,Y
STAA L_Bunp
LDAA 2,Y
STAA F_Bunp
LDAA 3,Y
STAA B _Bump
PULB
PULA
PULY
PULX
RTS

EE R R R R R R R I R I S O R I R R I R O R R

* Subrouti ne: turn_|left *
* Functi on: turns left the nunber of degreess stored in *
* anount (unsi gned val ue) *
* | nput : degrees, curent heading *
* Qut put : turns robot |eft *
* Calls: Read_Bunp *
* Destroys: none *
EE R R R R I R I I R S I S R I I I R R I R S I O R O R R I R S I
turn_|left

PSHA

PSHB

LDAA #FALSE
STAA error_flag

30

TL2

TL5

TL4

TL6

* %

LDAA
CVPA
BLO

SUBA
STAA

STAA
LDD
STD
LDD
STD
JSR

LDAA
STAA
LDAA
STAA
JSR

JSR
LDAA
CVPA
BHI

LDAA
CVPA
BNE
DEC
BNE

LDD
STD

LDAA
STAA
DEC
BNE

LDAA
ANDA
STAA
JSR

LDAA
ANDA
CVPA
BNE

BRA

headi ng

degr ees

TL1 ; if the nunber of degrees is smaler than the
; headi ng

degr ees

tenmpl

tenp2

#STOP

Lduty

#Ri ght For war d
Rdut y
Read_Bunp

#10

tenp2

#10 ;100 nms del ay
del ayTi ne2

del ay2

Read_Bunp

#150

L_Bunp

TL3 ;the robot hit sonething

#TRUE
T_flag
TL4
tenp2
TL5

#STOP
Rdut y

#$FF
tenp2
tenp2
TL6

headi ng
#$FO

tenmp2
Qut Byt e

tenmpl
#$FO

tenp2
TL2

end_turn_left

31

TL1 LDAA #Max_headi ng ; max conpass headi ng
SUBA degr ees
ADDA headi ng
STAA tenpl
BRA TL2

TL3 LDAA #TRUE ;set the error flag if the robot hit sonething
STAA error_flag

end_turn_left:

LDD #STOP

STD Lduty

STD Rdut y

PULB

PULA

RTS
EIE R I I R I I R I I I I I I I I I I I I I I I A S R S R R I R S R R A I I O R A S I A I I A S R O O
* Subr outi ne: turn_right *
* Functi on: turns right the nunber of degreess stored in *
* anmount (unsi gned val ue) *
* I nput : degrees, curent heading *
* Qut put : turns robot right *
* Calls: Read_Bunp *
* Destroys: none *
EIE R R S S I S S R R R R I S R R R kS I
turn_right

PSHA

PSHB

LDAA #FALSE

STAA error_flag

LDAA headi ng

ADDA degr ees

CVPA #Max_headi ng

BHI TR1 ; if the new heading is larger than the
* ; max headi ng

STAA tenpl

TR2 LDD #STOP
STD Rdut y
LDD #Left Forward
STD Lduty

LDAA #$FF
STAA tenmp2
LDAA #10

STAA tenp2

TR5 LDAA #10 ;10 s del ay
STAA del ayTi ne2
JSR del ay2

TR4

32

JSR Read_Bunp
LDAA #150
CVPA R _Bunp
BHI TR3 ;the robot hit something
LDAA #TRUE
CVPA T flag
BNE TR4
DEC tenp2
BNE TR5
LDAA #100 ; 10 s del ay
STAA del ayTi ne2
JSR del ay2
LDD #STOP
STD Lduty
LDAA #TRUE
TR6 CVPA T flag
BNE TR6
LDAA headi ng
** ANDA #$FO
STAA tenp2
LDAA tenmpl
*x ANDA #$FO
CVPA tenp2
BNE TR2
BRA end_turn_right
TR1 SUBA #Max_headi ng
STAA tenpl
BRA TR2
TR3 LDAA #TRUE ;set the error flag if the robot hit sonething
STAA error_flag
end_turn_right:
LDD #STOP
STD Lduty
STD Rdut y
PULB
PULA
RTS
EIE R I I I I R R I I I I I S I I I R R I I I I R I R R R R I I O I I R I R A R I I I R A I I O I I
* SUBROUTI NE - Drive
* Description this subroutine will case the robot to drive around
* if the robot sees an obstacle in front of it it will |look left and
* turn left if if can if not it will look right and then turn right
* if it cannot turn left of right it will back up
*

Drive:

LDD
STD
LDD

R S I I S R I R I S R I I R S I R S I R S O R I I O

#Lef t Forward
Lduty
#Ri ght For ward

33

STD Rdut y

| ook JSR Read_I R
JSR Read_Bunp
* * check front sensors

LDAA #100
CMPA LF_IR

BLO backup

CVPA RF_IR

BLO backup

LDAA #32

CVPA LF_ IR

BLO turn

CVPA RF_IR

BLO turn

CVPA F_Bunp

BHI backup

BRA Drive
turn LDAA #100

CVPA L IR

BHI | eft

CVPA RIR

BHI right
backup LDD #Left Reverse

STD Lduty

LDD #Ri ght Rever se

STD Rdut y

BRA | ook
| eft LDD #STOP

STD Lduty

LDD #Ri ght Forward

STD Rdut y

LDAA #64

CVPA L_Bunp

BHI right

BRA | ook
right LDD #STOP

STD Rdut y

LDD #Left Forward

STD Lduty

LDAA #64

CVPA R Bunp

BHI left

BRA | ook
EE R R S I b S I S R I I S S I R R I S O
* SUBROUTI NE - Drive2
* Description this subroutine will case the robot to drive around
* if the robot sees an obstacle in front of it it will Iook |eft and
* turn left if if can if not it will look right and then turn right
* if it cannot turn left of right it will back up
* This subroutine will use the conpass to make 90 degree turns

34

IR R R R R R R SRR R R R R SRR R R R SRR R R SRR R SRR EREEEREEEEREEEREEEREREREEEREEREEE]

Drive2:
LDAA #SAA

JSR Qut Byt e
LDD #Lef t Forward
STD Lduty
LDD #Ri ght Forward
STD Rdut y

| ook2 JSR Read_I R
JSR Read_Bunp

* * check front sensors

LDAA #100
CMPA LF_IR

BLO backup2
CVPA RF_IR
BLO backup2
LDAA #75
CVPA LF_ IR
BLO turnR

CMPA RF_IR

BLO turnL

CVPA F_Bunp
BHI backup2
BRA Drive2

turnL
LDAA #100
CVPA L IR
BHI backup2
BRA left2

turnR LDAA #100
CWPA RIR

BHI backup2
BRA right2
backup2

LDD #Lef t Reverse
STD Lduty

LDD #Ri ght Rever se
STD Rdut y

BRA | ook2

left2 LDAA #35
STAA degr ees

JSR turn_|l eft
** LDAA error_flag
*x BEQ right2
BRA | ook2

right2 LDAA #35
35

* %

* %

STAA

JSR
LDAA
BEQ

BRA

degr ees

turn_right
error_flag
left2

| ook2

ESE R S S S I I I I R R S S S R R R S R Ik

* X X X X X ok

Drive3:

* %

* %

d3a

d3b

| ook3

SUBROUTI NE - Drive3
Description this subroutine wll
a set tine and then turn either
di st ance
degrees
direction

EE R R I O I S R R I R O I R R I I R R R R I I R R I R O

I nput

LDAA #$AA
JSR Qut Byt e
LDAA #10
STAA CNT
LDD #Left Forward
STD Lduty
LDD #Ri ght Forward
STD Rdut y
LDAA #100
STAA del ayTi me2
JSR del ay2
JSR Read_ IR
JSR Read_Bunp
check front sensors
LDAA #100
CVPA LF IR
BLO stop
CVPA RF IR
BLO st op
LDAA #TRUE
CVPA T flag
BNE | ook3
DEC CNT
BNE d3b
DEC di st ance
BNE d3a
LDAA direction
CVPA #Ri ght
BEQ d3c
JSR turn_|left
BRA end _drive3

case the robot to drive strait for

| eft or

36

right the specifiecd anmunt

*

*

*

d3c JSR turn_right

BRA end _drive3
stop LDD #STOP

STD Lduty

STD Rdut y

LDAA TRUE
STAA error_flag
BRA end_drive3

end _drive3
RTS

ESE R I O I R R S R R R S R R R R R R R I R R R O R

* %
* Subr outi ne: Shapes
*
* Description: makes a series of shapes that are stored in the
*
* shapes tabl e
*
* I nput : starting val ue of shape
EE IR IR R S S I I R L I b S S S I I R I I S I S R I I I S I Sk I S S I R S S I S I I S S I I S S I I S S I I I I R I I I S I I
* %
Shapes:
LDAA 0, X
STAA di st ance
JSR Qut Byt e
I NX
LDAA 0, X
STAA degr ees
JSR CQut Byt e
I NX
LDAA 0, X
STAA direction
JSR Qut Byt e
JSR Drive3

LDAA #TRUE

CVPA #error_fl ag

BEQ end_shapes
I NX

LDAA 0, X

CVPA #EOS

BNE Shapes

end_shapes:

RTS

IR R R R R R R SRR R R R R SRR R R R SRR R R SRR R SRR EREEEREEEEREEEREEEREREREEEREEREEE]

LR R R R R EEREEEEREEEREEEEREEEREEEEEEEEREREESEEREEEREEER SRR SRR SRS SR SRS EREEEEREEE]

37

* | nput : none

EE R I I R R I R S R I O I R I R R R R S O I O

test 2:
PSHA
t 2a LDX #Set Speed
JSR Qut Str
LDX #Lduty
LDAA 0, X
JSR Qut Byt e
LDAA 1, X
JSR CQut Byt e
LDAA #CR
JSR Qut Char
LDAA #LF
JSR Qut Char
LDX #Rdut y
LDAA 0, X
JSR Qut Byt e
LDAA 1, X
JSR CQut Byt e
JSR I nChar
CVPA #$31
BEQ i ncSpeed
CVPA #$32
BEQ decSpeed
CVPA #$33
BEQ i ncSpeed2
CVPA #$34
BEQ decSpeed?2
BRA end_test2
i ncSpeed
LDD Lduty
ADDD #150
STD Lduty
BRA t 2a
decSpeed
LDD Lduty
SUBD #150
STD Lduty
BRA t2a
i ncSpeed2
LDD Rdut y
ADDD #300
STD Rdut y
BRA t 2a

decSpeed2

LDD Rdut y
SUBD #300

STD Rdut y
BRA t 2a
end_test2
PULA
RTS
IR IR IR R I I I I R I I S R I R R R R R R I I I IR IR I IR R R I R I R R I I IR IR I R I I I I I I R I R R R I I I I I I b b b 0 IE I b b b b b b b 3
* SUBROUTI NE - test3
* Description : this routine will test the conpass of the robot
left turns intersparced by periods of srait |
* | nput . none
EE IR IR R S S I I R L I b S S S I I R I I S I S R I I I S I Sk I S S I R S S I S I I S S I I S S I I S S I I I I R I I I S I I
test3
PSHA
LDX #ConpassHeadi ng
JSR Qut Str
JSR | nChar
LDAA headi ng
JSR Qut Byt e
PULA
RTS
EE IR IR S S S I I S Sk S S S S S S S I I S I S S S S S I S S S S I S S I S S S I S I I S S I I S S I S S S I I I I I kS S I I I I
* SUBROUTI NE - test4
* Description : this routine will test delay routine of the robot
* | nput : none

LR R R R I R R I R I I O R I R R R R O I R

test4

PSHA
LDAA #$2A
JSR Qut Char
t4b LDAA #100
STA del ayTi ne2
JSR del ay2
LDAA #TRUE
t4a CVPA T flag
BNE t4a
LDAA #$2A
JSR Qut Char
BRA t4b
end_test4
PULA
RTS
EE R I I S R S I I R I S R R S R R R S O R S S R O S
* SUBROUTI NE - test5
* Description : this routine will test the IR
* | nput : none

ESE R S I S S I I O I R O R R S S R R R S R R I

testb
PSHA
PSHX

39

JSR Read_| R

LDX #| R1

JSR Qut Str

LDAA L IR

JSR Qut Byt e

LDX #l R2

JSR Qut Str

LDAA R IR

JSR Qut Byt e

LDX #1 R3

JSR Qut Str

LDAA LF IR

JSR CQut Byt e

LDX #| R4

JSR Qut Str

LDAA RF_ IR

JSR Qut Byt e

PULX

PULA

RTS
EE IR IR S S S I I S Sk S S S S S S S I I S I S S S S S I S S S S I S S I S S S I S I I S S I I S S I S S S I I I I I kS S I I I I
* SUBROUTI NE - test6
* Description : this routine will test the Bunp sensors on the robot
* | nput . none
EIE IR R R I I R R I I S I R I I I I I R I R I R I I I I R I R I I I I R R I I I
test6

PSHA

PSHX

JSR Read_Bunp

LDX #B1

JSR Qut Str

LDAA L_Bump

JSR Qut Byt e

LDX #B2

JSR Qut Str

LDAA R_Bunp

JSR CQut Byt e

LDX #B3

JSR Qut Str

LDAA F_Bump

JSR Qut Byt e

LDX #B4

JSR Qut Str

LDAA B_Bunp

JSR Cut Byt e

PULX

PULA

40

RTS

EE R R I R R I R S I R I R R O R R I R R R I R O I R

* END OF PROGRAM

ESE R S S S I I I I R R S S S R R R S R Ik

41

Research about mouse data

PS/2 Mouse/K eyboard Protocol
Copyright 1999 Adam Chapweske

NOTE: THISSERVERISA LITTLE FLAKY... IFANY IMAGES DO NOT LOAD,
CLICK "RELOAD" ON
YOUR BROWSER A FEW TIMES AND THE PICTURESWILL EVENTUALLY
APPEAR.

I ntruduction:

The PS/2 deviceinterface, used by many modern mice and keyboards, was devel oped by
IBM and originally appeared in

the IBM Technical Reference Manual. However, this manual has not been printed for
many years and as far as | know,

thereiscurrently no official publication of thisinformation. | have not had accessto the
IBM Technical Reference

Manual, so all information on this page comesfrom my own experienceswith the mouse
and keyboard, as well as help

from the references listed at the bottom of this page.

Thisdocument descibesthe interface used by the PS/2 mouse and AT (PS/2) keyboard.
I'll cover the physicd and

electrical interface, aswell asthe protocol. If you need higher-level information, such as
commands, data packet formats,

or other information specific to the keyboard or mouse, | have written separate
documents for the two devices:

The AT Keyboard Interface (same as PS/2 keyboard)
The PS/2 Mouse Interface

| also encourage you to check out my homepage for more information related to this
topic, including projects, code, and
links related to the mouse and keyboard.

The Connector:
The physical keyboard/mouse port isone of two stylesof connectors: The5-pinDIN or
the 6-pin mini-DIN. Both

connectorsare completely (electrically) similar; the only practical difference betweenthe
two is the arrangement of pins.

42

This means that the two types of connectors can easily be changed with simple hard-
wired adaptors. These cost about

$6 each or you can make your own by matching the pins on any two connectors. The
DIN standard was created by the

German Standardi zation Organi zation (Deutsches I nstitut fuer Norm) . Their websiteis
at http://lwww.din.de (this siteisin

German, but most of their pages are also available in English.)

PC keyboards can have either a 6-pin mini-DIN or a5-pin DIN connector. If your
keyboard has a 6-pin mini-DIN and

your computer hasa5-pin DIN (or visaversa), the two can be made compatible with the
adaptors described above.

Keyboards with the 6-pin mini-DIN are often referred to as "PS/2" keyboards, while
those with the 5-pin DIN are called

"AT" or "XT" devices. XT keyboards are quite old and haven't been made for about ten
years. All modern keyboards

built for the PC are either PS/2, AT, or USB. This document does not apply to USB
devices, which use a completely

different interface.

Mice come in a number of shapes and sizes (and interfaces.) The most popular typeis
probably the PS/2 mouse, with

USB mice slowly gaining popularity. Serial mice are also quite popular, but the
computer industry is abandoning them in

support of USB and PS/2 devices. Thisdocument appliesonly to PS/2 mice. If you want
to interface a serial mouse,

check out Microchip'sappnote#519, "Implementing aSimple Serial Mouse Controller.”

Asasidenote, thereisone other type of connector you may run into on keyboards. While
most keyboard cables are

hard-wired to the keyboard, there are some whose cableis not permanently attached and
come as a separate

component. These cableshaveaDIN connector on one end (the end that connectsto the
computer) and a SDL

(Sheilded Data Link) connector on the keyboard end. SDL was created by a company
called "AMP." This connector is

somewhat similar to a telephone connector in that it has wires and springs rather than
pins, and aclip holdsit in place. If

you need more information on this connector, you might be able to find it on AMP's
website at

http://www.connect.amp.com. | have only seen this type of connector on (old) XT
keyboards, although there may be AT

keyboards that also use the SDL. Don't confuse the SDL connector with the USB
connector--they probably both ook

similar in my diagram below, but they are actually very different. Keepin mind that the
SDL connector has springs and

43

moving parts, while the USB connector does not.

The pinouts for each connector are shown below:
(If any of these images do not load, hit "reload” on your browser afew times.)

Male

(Plug)
Female

(Socket)
5-pin DIN (AT/XT):
1- Clock
2 - Data
3 - Not Implemented
4 - Ground
5-+5v

Male

(Plug)
Female

(Socket)
6-pin Mini-DIN (PS/2):
1- Data
2 - Not Implemented
3 - Ground
4 - +5v
5 - Clock
6 - Not Implemented

6-pin SDL:

A - Not Implemented
B - Data

C - Ground

D - Clock

E - +5v

F - Not Implemented

General Description:

(Note: Throughout thisdocument, | may usethe more general term "host" to refer to the
computer--or whatever the

keyboard/mouse is connected to-- and the term "device" will refer to the
keyboard/mouse.)

Therearefour interesting pins on the connectorsjust described: Ground, +5v, Data, and
Clock. The +5V issupplied

by the host (computer) and the keyboard/mouse's ground is connected to the host's
electrical ground. Data and Clock

are both open collector, which meansthey are normally held at ahigh logic level but can
easily be pulled down to ground

(logic0.) Any deviceyou connect to aPS/2 mouse, keyboard, or host should have large
pull-up resistors on the Clock

and Datalines. Youapply a"0" by pulling thelinelow and you apply a"1" by letting the
line float high. Refer to Figure 1

for ageneral interfaceto Dataand Clock. (Note: if you are going to use amicrocontroller
such asthe PIC, wherel/Ois

bidirectional, you may skip thetransistorsand buffersand use the same pinfor both input
and output. With this

configuration, a"1" isasserted by setting the pin to input and let theresistor pull theline
high. A "0" isthen asserted by

changing the pin to output and writea"0" to that pin, which will pull thelineto ground.)

Figure 1: Open-collector interfaceto Dataand Clock. Dataand Clock areread on the
microcontroller's port A and

B, respectively. Both lines are normally held at +5V, but can be pulled to ground by
assertinglogiclonCand D. Asa

result, Data equals D, inverted, and Clock equals C, inverted.

The PS/2 mouse and keyboard implement abidirectional synchronousserial protocol. In
other words, Data is sent one

bit at atime on the Dataline and is read on each time Clock is pulsed. The
keyboard/mouse can send data to the host

and the host can send datato the device, but the host always has priority over the busand
can inhibit communication from

the keyboard/mouse at any time by holding Clock low.

45

Data sent from the keyboard/mouse to the host is read on the falling edge of the clock
signal (when Clock goes from

high to low); data sent from the host to the keyboard/mouse is read on the rising edge
(when Clock goes from low to

high.) Regardless of the direction of communication, the keyboard/mouse always
generates the clock signal. If the host

wants to send data, it must first tell the device to start generating a clock signal (that
process is described in the next

section.) The maximum clock frequency is 33 kHz and most devices operate within 10-
20kHz. If you want to build a

PS/2 device, | would recommend keeping this frequency around 15 kHz. This means
Clock should be high for about 40

microseconds and low for 40 microseconds.

All datais arranged in bytes with each byte sent in aframe consisting of 11-12 bits.
These bits are:

1 start bit. ThisisawaysO.

8 data bits, least significant bit first.

1 parity bit (odd parity).

1 stop bit. Thisisalways 1.

1 acknowledge bit (Host-to-device communication only)

The parity bitisset if thereisan even number of 1'sin the databitsand reset (0) if there
is an odd number of 1'sinthe

data bits. The number of 1'sin the data bits plusthe parity bit always add up to an odd
number (odd parity.) Thisisused

for error detection.

When the host is sending datato the keyboard/mouse, ahandshaking bit is sent from the
device to acknowledge the
packet was received. Thisbit isnot present when the device sends data to the host.

Device-to-Host Communication:

The Data and Clock lines are both open collector (normally held at ahigh logic level.)
When the keyboard or mouse

wantsto send information, it first checks Clock to make sureit'sat ahighlogiclevel. If
it's not, the host isinhibiting

communication and the device must buffer any to-be-sent data until it regains control of
the bus (the keyboard has a

16-byte buffer and the mouse's buffer storesonly thelast packet sent.) If the Clock line
is high, the device can begin to

46

transmit its data.

As | mentioned in the previous section, the keyboard and mouse use a serial protocol
consisting of 11-bit frames. These
bits are:

1 start bit. ThisisawaysO.

8 databits, |least significant bit first.
1 parity bit (odd parity).

1 stop bit. Thisisaways 1.

Each bitisread by the host on thefalling edge of the clock, asisillustrated in Figures 2
& 3.

Figure 2: Device-to-host communication. The Dataline changes state when Clock is
high and that datais latched on the
falling edge of the clock signal.

Figure 3: Scan codefor the" Q" key (15h) being sent from akeyboard to the computer.
Channel A isthe Clock signal;
channel B isthe Data signal.

Theclock frequency is10-16.7kHz. Thetimefromtherising edge of aclock pulsetoa
Data transition should be at | east

5 microseconds. The time from a data transition to the falling edge of a clock pulse
should be at least 5 microseconds and

no greater than 25 microseconds. Thistiming isvery important--you should follow it
exactly. The host may pull theline

low beforethe 11th clock pulse (stop bit), causing the device to abort sending the current
byte (thisisvery rare.) After

the stop bit istransmitted, the device should wait at | east 50 microseconds before sending
the next packet. Thisgivesthe

host timeto inhibit transmission whileit processesthereceived byte (the hos will usudly
automatically do this after each

packet isreceived.) The device should wait at least 50 microseconds after the host
releases an inhibit before sending any

data.

| would recommend the following process for sending a single byte from an emulated
keyboard/mouse to the host:

1) Wait for Clock = high.

47

2) Delay 50 microseconds.
3) Clock still = high?
No--goto step 1
4) Data=high?
No--Abort (and read byte from host)
5) Delay 20 microseconds (=40 microseconds to the time Clock is pulled low in
sending the start bit.)
6) Output Start bit (0) \ After sending each of these bits, test
7) Output 8 databits > Clock to make sure host hasn't pulled it
8) Output Parity bit [low (which would abort this transmission.)
9) Output Stop bit (1)
10) Delay 30 microseconds (=50 microsecondsfrom thetime Clock isreleased in
sending the stop bit)

The process for sending asingle bit should then be as follows:

1) Set/Reset Data

2) Delay 20 microseconds
3) Bring Clock low

4) Delay 40 microseconds
5) Release Clock

6) Delay 20 microseconds

Hereis some sample code written for the PIC16F84 that foll owstheabovealgorithmsto
send a byte to the host.

"Delay" isaself-explanitory macro; "CLOCK" and "DATA" arethe bits connected to the
Clock and Datalines; "TEMPOQ",

"PARITY", and "COUNTER" are all general purpose registers. Note that in the
"PS2outBit" routine, the Data and Clock

lines are brought low by setting the appropriate I/0 pin to output (it's assumed their
output was set to "0" at the beginning

of the program.) Andthey are allowed to float (high) by setting the 1/O pinto input (and
allow apull-up resistor to pull

thelinehigh.) Thiswaswritten for aPIC running at 4.61 MHz +/- 25% (RC oscillator:
5k/20pF). Thisisvery important

for timing considerations.

ByteOut movwf TEMPO ;Save to-be-sent byte
InhibitLoop btfss CLOCK ;Check for inhibit
goto InhibitLoop
Delay 50 ;Delay 50 microseconds
btfss CLOCK ;Check again for inhibit
goto InhibitLoop
btfss DATA ;Check for request-to-send
retlw OxFF
clrf PARITY ;Init reg for parity calc

moviw 0x08

48

movwf COUNTER
moviw 0x00

call BitOut :Output Start bit (0)
btfss CLOCK ;Test for inhibit
goto ByteOutEnd

Delay 4

ByteOutLoop movf TEMPO, w

ByteOutEnd

BitOut

xorwf PARITY, f
cal BitOut
btfss CLOCK
goto ByteOutEnd
rrf TEMPO, f
decfsz COUNTER, f
goto ByteOutLoop
Delay 2

comf PARITY,w
call BitOut
btfss CLOCK
goto ByteOutEnd
Delay 5
moviw OxFF
cal BitOut
Delay 48
retlw 0x00

bsft STATUS, RPO
DATA :DATA=1
bsf CLOCK
bcf STATUS, RPO
rettw OxFE

bsf

bsf STATUS, RPO
andlw 0x01
btfss STATUS, Z
bsf DATA
btfsc STATUS, Z
bcf DATA
Delay 21
bcf CLOCK
Delay 45
bsf CLOCK
bcf STATUS, RPO
Delay 5
return

;Calculate parity
;Output Data bits
;Test for inhibit

;Output Parity bit
;Test for inhibit

;Output Stop bit (1)

:Host has aborted

;CLOCK=1

49

Host to Device Communication:
The packet is sent alittle differently in host-to-device communication...

First of all, thePS/2 device always generatesthe clock signal. If the host wantsto send
data, it must first put the Clock
and Datalinesin a"Request-to-send" state as follows:

Inhibit communication by pulling Clock low for at least 100 microseconds.
Apply "Request-to-send” by pulling Data low, then release Clock.

The device should check for thisstate at intervalsnot to exceed 10 milliseconds. When
the device detects this state, it will

begin generating Clock signals and clock in eight data bits and one stop bit. The host

changes the Data line only when

the Clock lineislow, and datais latched on the rising edge of the clock pulse. Thisis
opposite of what occoursin

device-to-host communication.

After the stop bit is sent, the device will acknow! edge the received byte by bringing the
Dataline low and generating one
last clock pulse. If the host does not release the Dataline after the 11th clock pulse, the
device will continue to generate
clock pulsesuntil thethe Datalineisreleased (the device will then generate an error.)

TheHost may abort transmission at time before the 11th clock pulse (acknowledge bit)
by holding Clock low for at least
100 microseconds.

Tomakethisprocessalittle easier to understand, here's the steps the host must follow to
send data to a PS/2 device:

1) Bringthe Clock line low for at least 100 microseconds.
2) Bringthe Dataline low.

3) Releasethe Clock line.

4) Wait for the device to bring the Clock line low.

5) Set/reset the Dataline to send the first data bit

6) Wait for the device to bring Clock high.

7) Wait for the device to bring Clock low.

8) Repeat steps 5-7 for the other seven data bits and the parity bit
9) Releasethe Dataline.

10) Wait for the device to bring Data low.

11) Wait for the device to bring Clock low.

12) Wait for the device to release Data and Clock

50

Figure 3 showsthisgraphically and Figure 4 separates the timing to show which signals
are generated by the host, and

which are generated by the PS/2 device. Noticethe changeintiming for the Ack bit--the
data transition occours when

the Clock lineis high (rather than when it islow asis the case for the other 11 bits.)

Figure 3: Host-to-Device Communication.

Figure 4: Detailed host-to-device communication.

Figure 4 shows two important timing considerations: (a), and (b). (a), thetimeit takes
the device to begin generating

clock pulses after the host initially takes the Clock line low, must be no greater than
15ms; (b), the time it takes for the

packet to be sent, must be no greater than 2ms. If either of thesetimelimitsisnot met,
the host will generate an error.

Immediately after the packet isreceived, the host may bring the Clock linelow toinhibit
communication while it processes

data. If the command sent by the host requires aresponse, that response must bereceived
no later than 20ms after the

host releasesthe Clock line. 1f thisdoes not happen, the host generatesan error. Aswas
the case with Device-to-host

communication, no Datatransition may occur with 5 microseconds of a Clock trangtion.

If you want to emulate amouse or keyboard, | would recommend reading data from the
host as follows:

In your main program, check for Data=low at |east every 10 milliseconds.
If Data has been brought low by the host, read one byte from the host
1) Wait for Clock=high
2) IsDatastill low?
No--An error occurred; Abort.
3) Read 8 databits \ After reading each of these bits, test
4) Read parity bit > Clock to make sure host hasn't pulled it
5) Read stop bit [low (which would abort this transmission.)
6) Datastill equals 0?
Y es--Keep clocking until Data=1 then generate an error
7) Output Acknowledge bit
8) Check Parity bit.
Generate an error if parity bit isincorrect
9) Delay 45 microseconds (to give host time to inhibit next transmission.)

51

Read each bit (8 data bits, parity bit, and stop bit) as follows:
1) Delay 20 microseconds

2) Bring Clock low

3) Delay 40 microseconds

4) Release Clock

5) Delay 20 microsecond

6) Read Dataline

Send the acknowledge bit as follows:
1) Delay 15 microseconds

2) Bring Datalow

3) Delay 5 microseconds

4) Bring Clock low

5) Delay 40 microseconds

6) Release Clock

7) Delay 5 microseconds

8) Release Data

Here is some sample code written for the PIC16F84 that implements the above
algorithms to read data from a PS/2
host. "Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the port bits
connected to the Clock and Datalines;
"TEMPO", "PARITY", and "COUNTER" are all general purpose registers. Notethat in
the "PS2inBit" routine, Clock is
brought low by setting the appropriate /0 pinto output (it'sassumed they were setto " 0"
at the beginning of the
program.) And itisallowed to float (high) by setting the 1/0 pin to input (and allow a
pull-up resistor to pull the line
high.) Timing was worked out for a PIC running at 4.61 MHz +/- 25% (RC oscillator
with values 5k/20 pF). Will work
for any oscillator between 3.50 MHz - 5.76 MHz.
Byteln btfss CLOCK ;Wait for start bit

goto Byteln

btfsc DATA

goto Byteln

moviw 0x08

movwf COUNTER

clrf PARITY ;Init reg for parity cdc
Delay 28

BytelnLoop call Bitln ;Clock in Data bits
btfss CLOCK ;Test for inhibit
retliw OxFE

bcf STATUS, C
rrf RECEIVE, f
iorwf RECEIVE, f
xorwf PARITY f

52

decfsz COUNTER, f
goto BytelnLoop

Delay 1
call Bitln ;Clock in Parity bit
btfss CLOCK ;Test for inhibit
retliw OxFE
xorwf PARITY, f
Delay 5

BytelnLoopl Delay 1
call Bitln ;Clock in Stop bit
btfss CLOCK ;Test for inhibit
retliw OxFE
xorlw 0x00
btfsc STATUS,Z ;Stopbit=17?
clrf PARITY No--cause an error condition.

Bitln

btfsc STATUS,Z ;Stop bit =1?
goto BytelnLoopl ; No--keep clocking.

bsf STATUS, RPO ;Acknowledge
bcf DATA

Delay 11

bcf CLOCK

Delay 45

bsf CLOCK

Delay 7

bsf DATA

bcf STATUS, RPO

btfss PARITY,7 ;Parity correct?
retlw OxFF : No--return error

Delay 45
retlw 0x00

Delay 8
bsf STATUS, RPO
bcf CLOCK
Delay 45
bsf CLOCK
bcf STATUS, RPO
Delay 21
btfsc DATA
rettw 0x80
retlw 0x00

53

Other Sources/ References:

Adam's micro-Resources Home - Many pages/links to related information.
The AT Keyboard - My page on AT keyboards

The PS/2 Mouse - My page on the PS/2 mouse

Synaptics Touchpad Interfacing Guide-Very informative!

PS/2 Keyboard and Mouse Protocols- Timing diagrams.

Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).

Interfacing the AT Keyboard
Copyright 2001 Adam Chapweske

This document is under construction... I'll post more information as| havetime...
Click herefor theold
version of this guide.

Note: This document refersto AT and PS/2 keyboards. The two keyboards are
exactly the same except for their

connectors. The AT keyboard usesa5-pin DIN connector, whilethe PS/2 keyboard
uses the 6-pin mini-DIN. Thatis

the only difference.

General Description:

Keyboards consist of alarge matrix of keys, all of which are monitored by an on-
board processor. The specific

processor(1) varies from keyboard-to-keyboard but they all basically do the same
thing: Monitor which key(s) are

being pressed/rel eased and send the appropriate datato the host. This processor takes
care of all the debouncing and

buffers any datain its 16-byte buffer, if needed. Y our motherboard contains a
keyboard controller that isin charge of

decoding all of the datareceived from the keyboard and informing your software of
what's going on. All communication

between the host and the keyboard uses an IBM protocol.

Electrical Interface/ Protocol:

The keyboard uses the same protocol as the PS/2 mouse. Click here for detailed
information about that protocol.

Scan Codes:

Y our keyboard's processor spends most of its time scanning, or monitoring, the
matrix of keys. If it findsthat any key

is being pressed, released, or held down, the keyboard will send a packet of
information known as a scan code to your

computer. Therearetwo different types of scan codes: make codes and break codes.
A make code is sent when a

key ispressed or held down. A break codeissent when akey isreleased. Every key
is assigned its own unique make

code and break code so the host can determine exactly what happened to which key
simply by looking at a single scan

code sent from the keyboard. The set of make and break codes for every key

55

comprises a scan code set. There are

three standard scan code sets, named 1, 2, and 3. Scan code set 2 isthe default, and is
the only set used by all modern

PCs. Sets 1 and 3 exist for compatibility with older systems. Y ou may switch scan
code sets using the "Set Scan Code

Set" (0xFO) command.

So how do you figure out what the scan codes are for each key? Unfortunately,
there's no simple formulafor calculating

this. If you want to know what the make code or break code is for a specific key,
you'll haveto look it up in atable.

I've composed tablesfor all make codes and break codesin all three scan code sets:

Scan Code Set 1
Scan Code Set 2
Scan Code Set 3

Make Codes, Break Codes, and Typematic Repeat:

Whenever any key on a keyboard is pressed, that key's make code is sent to the
computer. Keep in mind that a make

code only represents akey on akeyboard--it does not represent the character printed
on that key. This means that

there isno defined rel ationship between amake code and acharacter. It'supto your
software to translate the scan

codes to characters or commands. If you want to associate a make code with a
character, you'll have to implement a

look-up table in your program.

Although most set 2 make codes are only one-byte wide, there are a handfull of
extended keys whose make codes are

two or four byteswide. These make codes can beidentified by the fact that the first
byte is EOh.

Just asamake codeis sent to the computer whenever akey ispressed, abreak codeis
sent to the computer whenever

akey isreleased. In addition to every key having its own unique make code, they all
have their own unique break

code. Fortunately, however, youwon't alwayshaveto usetablesto figure out akey's
break code--certain relationships

do exist between make codes and break codes. Most set 2 break codes are two bytes
long where the first byte is FOh

and the second byte isthe make codefor that key. Break codesfor extended keysare
usually three bytes long and the

first two bytes are EOh, FOh, and the last byte isthe last byte of that key's make code.
Asan example, | havelisted

56

below afew set 2 make codesand break codes for some keys:

Key
(Set 2)
Make Code
(Set 2)
Break Code
np
1C
FO,1C
"
2E
FO,2E
"F10"
09
F0,09
Right Arrow
EO, 74
EO, FO, 74
Right "Ctrl"
EO, 14
EO, FO, 14

Example: What sequence of make codes and break codes should be sent to your
computer for the
character "G" to appear in aword processor? Since thisisan upper-caseletter, the
sequence of events
that need to take place are: pressthe " Shift" key, pressthe"G" key, releasethe"G"
key, release the " Shift"
key. The scan codes associated with these events are the following: make code
for the "Shift" key (12h),
make code for the " G" key (34h), break code for the"G" key(FOh,34h), break code
for the "Shift" key
(FOh,12h). Therefore, the data sent to your computer would be: 12h, 34h, FOh,
34h, FOh, 12h.

If you press a key, its make code is sent to the computer. When you press and hold
down akey, that key becomes typematic,

which means the keyboard will keep sending that key's make code until the key is
released or another key is pressed. To verify this,

open atext editor and hold down the "A" key. When you first press the key, the
character "a" immediately appears on your screen.

After ashort delay, another "a" will appear followed by awhole stream of "a"suntil you
release the"A" key. There are two important

57

parameters here: the typematic delay, which isthe short delay between the first and
second "a", and the typematic rate, which is

how many characters per second will appear on your screen after the typematic delay.
The typematic delay can range from 0.25

seconds to 1.00 second and the typematic rate can range from 2.0 cps (characters per
second) to 30.0 cps. Y ou may change the

typematic rate and delay using the " Set Typematic Rate/Delay” (OxF3) command.

Command Set:
The following are the only commands that may be sent to the keyboard:

OXFF (Reset) - Keyboard respondswith acknowledge (OxFA) then enters Reset mode.

OxFE (Resend) - Keyboard responds by resending the last scan code or command sent
to the host.

OXFD (Set Key Type Make) -

OXFC (Set Key Type Make/Break) -

OXFB (Set Key Type Typematic) -

OXFA (Set All Keys Typematic/Make/Break) -

OxF9 (Set All Keys Make) -

OXF8 (Set All Keys Make/Break) -

OxF7 (Set All KeysTypematic) -

OxF6 (Set Default) -

OxF5 (Disable) - Keyboard responds with acknowledge (OxFA), then stops scanning
and waits further instructions.

OxF4 (Enable) -

OxF3 (Set Typematic Rate/Delay) - Keyboard responds with acknowledge (OxFA),
then waits for the host to send one more

byte, which it also responds to with acknowledge (OxFA). The second byte defines
the typematic rate and delay as follows:

Repeat Rate
Bits 0-4
Rate(cps)
Bits 0-4
Rate(cps)
Bits 0-4
Rate(cps)
Bits0-4
Rate(cps)
00h
2.0

58

08h

4.0
10h
8.0
18h
16.0
01lh
2.1
09h
4.3
11h
8.6
19h
171
02h
2.3
OAh
4.6
12h
9.2
1Ah
18.5
03h
2.5
0Bh
5.0
13h
10.0
1Bh
20.0
04h
2.7
0Ch

59

5.5

14h
10.9
1Ch
21.8
05h
3.0
ODh
6.0
15h
12.0
1Dh
24.0
06h
3.3
OEh
6.7
16h
13.3
1Eh
26.7
07h
3.7
OFh
7.5
17h
15.0
1Fh
30.0
Delay
Bits 5-6
Delay (seconds)
00b

60

0.25

01b

0.50
10b

0.75
11b

1.00

0xF2 (Read ID) - The keyboard responds with "Acknowledge" (0xFA) follwed by a
two-byte device ID of 0x83, OXAB.

OxFO (Set Scan Code Set)

OXEE (Echo) - The keyboard responds with "Echo" (OXEE).

OXED (Set/Reset LEDS) -

Initialization:

Thefollowing isthe communication between my computer and keyboard when it boots-
up:

Keyboard: AA Self-test passed

Host: ED Set/Reset Status Indicators
Keyboard: FA Acknowledge

Host: 00 Turn off all LEDs
Keyboard: FA Acknowledge

Host: F2 Read ID

Keyboard: FA Acknowledge
Keyboard: AB First byte of ID

Host: ED Set/Reset Status Indicators
Keyboard: FA Acknowledge

Host: 02 Turn on Num Lock LED
Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/Delay
Keyboard: FA Acknowledge

Host: 20 500 ms/ 30.0 reports/sec
Keyboard: FA Acknowledge

Host: F4 Enable

Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/delay
Keyboard: FA Acknowledge

Host: 00 250 ms/ 30.0 reports/sec
Keyboard: FA Acknowledge

61

Emulation:

Click here for routines that emulate a PS/2 mouse or keyboard
Footnotes:

1) Some of these processors include:

Holtek: HT82K28A, HT82K628A, HT82K68A, HT82K 68E
EMC: EM83050, EM83050H, EM83052H, EM83053H,
Intel: 8048, 8049

Motorola: 6868, 68HC11, 6805

Zilog: 28602, 28614, 28615, Z86C15, Z86E23

Other Sources/ References:

Holtek - Informative datasheets on many different AT keyboards (and other
peripherals).

PS/2 Mouse/K eyboard Protocol - My page on the protocol used for communication
between a keyboard and host.

KB2LCD Keyboard Reader - My keyboard reader with schematics and code.

Scan Codes- My tables of scan codesfor various keyboards. Print them out-- they're
very handy to have.

Command Sets- My list of commands that can be sent between the host and the
keyboard.

Zilog Keyboard Encoder Appnote- Lotsof great information on making akeyboard
encoder.

Help with keyboard interfacing - Article describing how to interface with AT
keyboards.

IBM Keyboard Interfact Project - Good breif article on interfacingto AT and XT
keyboards.

PC Keyboard FAQ - Extensive FAQ; large collection of keyboard-related
information.

Steve's PC Keyboard info- Links, short FAQ, pinouts, Keyboard viewer softwareand
circuit.

PIC Keyboard Routines- Serial host engine; Keyboard host (8042) emulator; AT
Keyboard emulator.

John Voth's Home Page - 8042 Keyboard Controller Schematic.

Philips AN434 - Connecting a PC keyboard to the | 2C bus. Examplesforthe8XC751
MCU.

AVR AN313- AT Keyboard-RS232 converter using an AVR MCU. Includes short
description/timing diagrams of AT

keyboard.

- Adam's micro-Resources -

62

63

