

IMDL Final Report
Daniel Brickman

12/4/2001

 2

Table of Contents

Abstract..3
Introduction...4
Integrated System..5
Mobile Platform..6
Actuation..7
Sensors..8
Behaviors...10
Conclusion...11
Software...12

 3

Abstract

This report will describe the intimate workings of the autonomous robot
Spiderman. It will give an introduction to the problem that the robot was
designed to solve and then address the parts of each solution devised to conquer
the problems. The integrated systems section will describe the overall systems
that interact to make the robot work. It will also detail their interactions. Then,
the mobile platform will be discussed along with the motivation for its unique
design. Next, the actuation utilized in the robot will be discussed. Then the
sensors that feed information to the control system of the robot will be described.
After each of these members of hardware are established, the paper will move to
the behaviors that were created using the controller and software. After
concluding the design experience, the paper will include documentation such as
code in the appendix.

 4

Introduction

When given an open-ended assignment such as create an autonomous robot of
your choice, a student goes through several processes to make a decision. In
deciding to make Spiderman, I wanted to break the mold of the simple TJ design.
I didn’t want to have a two wheeled robot that could to collision avoidance and
wall following. Maybe this is a mental problem of mine, but I think I will save that
for another report. Ok, so now that I know that I want to do something crazy that
has never been doe before and is probably impossible, what should it be?
Hmm...What has never been done before and cannot be done. I hate cats so
forget that. I should try to leave the ground. OK, how do leave the ground. It
took the Wright brothers their entire lives to fly, so forget that. I need to stay
attached to hard surfaces. Of course! I will try to climb walls. Now, if you want
to do something right, find the person who did it best and try to copy. Alas, now I
have a name and an idea. Spiderman.

That was the inspiration for this great big waste of my life. Not that I didn’t enjoy
making that robot, but it took a little too much of my time. This report will attempt
to describe the major parts of Spidey and why they where chosen/designed the
way they were. Actually I spent most of my time designed not writing.

 5

Integrated System

In order to achieve the ultimate goal of climbing walls, a unique integrated
system had to be created. This system includes a mobile platform, actuation,
sensors, and behaviors created in software. Since each of these will be
discussed later individually, this section will describe how these systems interact.

The outer most layer of the system is the platform. It is the way that the robot
can interact with its surroundings. The inner most part of the robot is the control
hardware. This includes the microprocessor and the software to control it. The
interface between the controller and the platform are the sensors. This is the
way that the controller can monitor the platform. In order to make changes to the
platform, the controller uses actuation. These relationships can be seen in the
figure below.

Because of the complexity of the design and the amount of parts it included, I
decided to use a dual microprocessor design. The major reason for this was that
the design required eight servos. This necessitated eight output compares or the
addition of other PWM hardware. In addition, I was planning on using more than
eight sensors, which would overflow the A/D port of an HC11. The second
microprocessor also allowed the addition of more input capture space and digital
I/O lines. The following figure illustrates the interaction of the robot hardware.

PLATFORM CONTROLLER
Actuation

Sensors

uP1 uP2 SPI

SENSOR
BLOCK 1

SENSOR
BLOCK 2

 A/D 1
 A/D 2

SERVOS 1 SERVOS 2

OC
OC

 6

Mobile Platform

In order to complete the task of climbing walls, a unique design for the mobile
platform had to be created. The first problem was deciding what type of wall to
climb. The solution was in between two walls using a squeeze method. So, how
do you create a robot that can squeeze in between two walls? The answer was
to create a robot that had independent moving arms. A figure is given below.

In order to make the body and act of climbing more stable, a design that
employed four arms was used. This in conjunction with other sensors would
prevent the robot from rolling over in any of the two dimensions. A diagram of
the body design is given below.

WALL

WALL PLATFORM

 7

Actuation

There are tow types of actuation required for wall climbing in this particular
situation. The first was in the moving are case. The actuation that was needed
was linear in the outward direction. Since servos are the cheapest and easiest
solution, a way to create a linear motion was required. Incorporating the screw
action of a nut and bolt with the spin action of a servo was the answer. If the bolt
was fastened to the end of the servo, and the nut held in place, then as the bolt
rotated, the nut would travel in a linear fashion. This is shown in the figure
below.

The other type of actuation used was another servo used to actually climb the
walls. The servo was directly coupled to the drive wheels using a drive shaft. A
figure of this setup is given below.

Futaba S3003 Standard

Torque:
4.8VDC: 35.5oz-in. (2.56 kg-cm)
6.0VDC: 44.4oz-in. (3.2 kg-cm)
Speed @ 60 Degrees:
4.8VDC: 0.25 seconds
6.0VDC: 0.23 seconds
Bearing Type:
None (Case serves as bearing)
Case Size:
1.59"x 0.78"x 1.42" (40.4 x 19.8 x 36 mm)
Weight: 1.30oz (36.8 g)
Wire Length: 12" (Including plug)

Cirrus CS-80 MG

Torque:
4.8VDC: 114.58oz-in.
6.0VDC: 129.8oz-in.
Speed @ 60 Degrees:
4.8VDC: 0.31 seconds
6.0VDC: 0.25 seconds
Bearing Type:
Dual Ball Bearings
Case Size:
1.60" x 1.49" x .79"
Weight: 2.01oz (57g)
Wire Length: 12" (Including plug)

SERVO

SERVO

W
H
E
E
L

 8

Sensors

In order for the controller to be able to monitor the operation of the robot at all
times, the robot used four types of sensors. Each of them will be described
below.

In order to ensure that the robot never flipped, a two-axis accelerometer was
used. The ADXL202 is a low cost, low power, complete 2-axis accelerometer
with a measurement range of ±2 g. The ADXL202 can measure both dynamic
acceleration (e.g., vibration) and static acceleration (e.g., gravity). The outputs
are Duty Cycle Modulated (DCM) signals whose duty cycles (ratio of pulsewidth
to period) are proportional to the acceleration in each of the 2 sensitive axes.
These outputs may be measured directly with a microprocessor counter,
requiring no A/D converter or glue logic. The DCM period is adjustable from 0.5
ms to 10 ms via a single resistor (RSET). If an analog output is desired, an analog
output proportional to acceleration is available from the XFILT and YFILT pins, or
may be reconstructed by filtering the duty cycle outputs. The bandwidth of the
ADXL202 may be set from 0.01 Hz to 6 kHz via capacitors CX and CY. They
typical noise floor is 500 µg divided by the square root of Hz allowing signals
below 5 mg to be resolved for bandwidths below 60 Hz.

In order to monitor how much force the robot was exerting against the wall during
expansion, FSR sensors by Interlink electronics were used. FSR stand for force
sensing resistors. The are constructed out of a piezo-resistive material that
decreased in resistance proportionally to the amount of force exerted against
them. They were implemented using a voltage divider with a 2.2k resistor. The
force sensors were used in a threshold manner. After the force broke a
threshold, they sent a signal to the controller to stop expansion. The position of
the sensors in the robot can be seen in the figure below.

Another sensor that was used was linear slide potentiometers. They were used
to track the linear position of the arms. The outside of the pot was attached to
the body and the slide was attached to the inner arm. As the arm traveled, it
created an internal voltage divider. A figure of the pot is shown below.

ARMS

SERVO

F
S
R

S
T
O
P

WHEEL

 9

Here is some data collected from one of the slide pots.

Position Value
1 46
2 57
3 66
4 76
5 84
6 93
7 101
8 110
9 118

10 128
11 138
12 147
13 157
14 167
15 175
16 185
17 194
0 38

20 218

Best Fit Line
Slope Intercept

9.15 37.73

The last sensor that I used was a CdS cell. The information for these is readily
available. I did not use them in a novel way.

OUTER ARM
INNER ARM

SLIDE POTENTIOMETER

Slide Potentiometer 1 (from A to B)

0

50

100

150

200

250

0 5 10 15 20

Position (.25 in)

A
/D

 V
o

lt
ag

e

 10

Behaviors

Behaviors are implemented on the robot using software and control created from
a microprocessor. A Motorola HC11 was used in this case, with the board being
an MRC11 from Mekatronix. The MRC11 board, featuring the MC68HC11
microcontroller with up to 64Kbytes of RAM/ROM, provides a versatile package
for embedded data acquisition and control systems useful in a wide variety of
computer control and measurement applications such as instrumentation,
robotics, control, hobby projects, etc. The MRC11’s principle features are:

1. Motorola MC68HC11 processor,
2. Two 32KB Memory sockets for either RAM or ROM, 64KB total,
3. 5 Volt regulator,
4. Low voltage inhibit reset circuit,
5. Power on LED,
6. IO Map feature in the upper 32Kbyte Memory using H_MEM_SEL# .

External address decode logic can be used to enable or disable
H_MEM_SEL# for IO ports assigned in high storage.

7. 60-Pin Male Header serving as a Processor / IO bus.

The behaviors that can be implemented with the hardware previously listed are
as follows:

1. Arm expansion and retraction
2. Arm force monitoring
3. Arm position monitoring
4. Body roll and pitch monitoring
5. Wall climbing
6. Line following
7. User interaction using LED’s

 11

Conclusion

Well, I guess I have reached the end of a very exciting report on a robot that
caused a lot of headaches. What did I learn? Do not do what Id o ever. It is
assured to cause roommates to hate you, girlfriends to dump you, and parents to
disown you. Did any of that happen to me? Well, again, I think I will save that for
another report.

What are m conclusions for the robot? The accelerometer was easy to interface
and worked well. The same was true for the force sensors. The slide
potentiometers were very inaccurate and had dead spots. I would definitely not
use them in future designs. The body design that I put together was very
successful for a first draft. I was very pleased with its results. With a few tweaks
and successive buildings, it could be perfected and made into a staple of imdl
lore.

What did I think of the class? Well, I liked that it was unstructured, but I never
quite knew what was due when and what was really important, and what
anybody actually wanted from me. Do I think I was successful? Well, that
remains to be seen. Still waiting for my report card.

 12

Software

//
// Daniel Brickman /
// 10-24-2001 /
// This program can drive motors 0-3
// and setup the duty cycles for 4-7
// forward, stop, and reverse
//

#include <stdio.h>
#include <mil.h>
#include <hc11.h>

 extern void _start(void);

#define DUMMY_ENTRY (void (*)(void))0xFFFF
#define PERIOD 30000
#define STOP 0
#define FASTFORWARD 2700
#define SLOWFORWARD 2900
#define CENTER 3000
#define SLOWREVERSE 3100
#define FASTREVERSE 3300
#define THRESHOLD 170

#pragma interrupt_handler TOC1_isr, TOC2_isr, TOC3_isr, TOC4_isr, TOC5_isr;

 void init_pwm(void);
 void init_var(void);
 void init_ad(void);
 void init_ic(void);
 void wait(void);
 void TOC1_isr(void);
 void TOC2_isr(void);
 void TOC3_isr(void);
 void TOC4_isr(void);
 void TOC5_isr(void);
 //void TIC3_isr(void);
 void motorspeed(void);
 void updatesensor(void);
 void updatesensor1(void);
 void updateic(void);
 void getmotornum(void);
 void menu(void);
 void common(void);

 int duty[8];
 int motornum;
 int motordir[8];
 int speedconv[6];
 int time;
 int i;
 int menuchoice;
 int sensordata[8];
 int firsttime;
 int elapsedtime;
 int isitfirst;

 char clear[]= "\x1b\x5B\x32\x4A\x04";

 void main (void){

 init_var();
 init_pwm();
 init_ad();
 common();
 //init_ic();

 13

 while(1){

 menu();

 if(menuchoice == 0){
 updatesensor();
 }
 else if(menuchoice == 1){
 getmotornum();
 motorspeed();
 }
 else if(menuchoice ==2){
 updateic();
 }
 else{

 int i;
 int j;

 while(1){

 updatesensor1();
 j = 0;

 for(i=0;i<4;i++){

 duty[i]=STOP;

 if(sensordata[i+4] < THRESHOLD){
 duty[i] = FASTREVERSE;
 j++;
 }
 }

 if(j == 0){
 SET_BIT(PORTD, 0x02);
 printf("all stop");
 }

 else
 CLEAR_BIT(PORTD, 0x02);
 }
 }
 }
 //End while(1)
 }//End main

 void common(void){

 SET_BIT(DDRD, 0x02);

 }

 void init_ad(void){

 SET_BIT(OPTION, 0x80);
 time = 100;
 wait();
 }

 void init_pwm(void){
 INTR_OFF();

 SET_BIT(TMSK1, 0x80); //Enable OC1

 SET_BIT(TMSK1, 0x40); //Enable OC2
 SET_BIT(TCTL1, 0x80); //Clear on OC
 CLEAR_BIT(TCTL1, 0x40);
 SET_BIT(OC1M, 0x40); //OC1 control
 SET_BIT(OC1D, 0x40);

 14

 SET_BIT(TMSK1, 0x20); //Enable OC3
 SET_BIT(TCTL1, 0x20); //Clear on OC
 CLEAR_BIT(TCTL1, 0x10);
 SET_BIT(OC1M, 0x20); //OC1 control
 SET_BIT(OC1D, 0x20);

 SET_BIT(TMSK1, 0x10); //Enable OC4
 SET_BIT(TCTL1, 0x08); //Clear on OC
 CLEAR_BIT(TCTL1, 0x04);
 SET_BIT(OC1M, 0x10); //OC1 control
 SET_BIT(OC1D, 0x10);

 SET_BIT(TMSK1, 0x08); //Enable OC5
 CLEAR_BIT(PACTL, 0x02);
 SET_BIT(TCTL1, 0x02); //Clear on OC
 CLEAR_BIT(TCTL1, 0x01);
 SET_BIT(OC1M, 0x08); //OC1 control
 SET_BIT(OC1D, 0x08);

 INTR_ON();

 }//End init_pwm

 void init_var(void){

 motordir[0] = 0;
 motordir[1] = 0;
 motordir[2] = 0;
 motordir[3] = 0;
 motordir[4] = 0;
 motordir[5] = 0;
 motordir[6] = 0;
 motordir[7] = 0;

 duty[0] = 0;
 duty[1] = 0;
 duty[2] = 0;
 duty[3] = 0;
 duty[4] = 0;
 duty[5] = 0;
 duty[6] = 0;
 duty[7] = 0;

 speedconv[0] = STOP;
 speedconv[1] = FASTFORWARD;
 speedconv[2] = SLOWFORWARD;
 speedconv[3] = CENTER;
 speedconv[4] = SLOWREVERSE;
 speedconv[5] = FASTREVERSE;

 sensordata[0] = 0;
 sensordata[1] = 0;
 sensordata[2] = 0;
 sensordata[3] = 0;
 sensordata[4] = 255;
 sensordata[5] = 255;
 sensordata[6] = 255;
 sensordata[7] = 255;

 isitfirst = 0;
 }

 void init_ic(void){

 SET_BIT(TMSK1, 0x01);
 CLEAR_BIT(TCTL2, 0x02);
 SET_BIT(TCTL2, 0x01);
 }

 15

 void wait(void){

 for (i = time; i > 0; i--);
 }

 void motorspeed(void){

 printf("What direction for motor %d?\n", motornum);
 printf("(0) Stop\n");
 printf("(1) Fast Forward\n");
 printf("(2) Fast Forward\n");
 printf("(3) Center\n");
 printf("(4) Slow Reverse\n");
 printf("(5) Fast Reverse\n");

 while((motordir[motornum] < 0x30) || (motordir[motornum] > 0x35))
 motordir[motornum] = getchar();

 motordir[motornum] &= 0x0F;
 duty[motornum] = speedconv[motordir[motornum]];

 /*
 switch (motordir[motornum])
 {
 case 1:
 duty[motornum] = FASTFORWARD;
 break;
 case 2:
 duty[motornum] = SLOWFORWARD;
 break;
 case 3:
 duty[motornum] = STOP;
 break;
 case 4:
 duty[motornum] = SLOWREV ERSE;
 break;
 case 5:
 duty[motornum] = FASTREVERSE;
 break;
 default:
 printf("You FUCKED UP!!!!\n");
 break;
 }
 */
 }

 void menu(void){

 printf("%s", clear);
 printf("Brickmonster's Main Menu!\n");
 printf("(0) A/D Control\n");
 printf("(1) Motor Control\n");
 printf("(2) Input Capture Control\n");
 printf("(3) Run arm program\n");

 while((menuchoice < 0x30) || (menuchoice > 0x33))
 menuchoice = getchar();

 menuchoice &= 0x0F;
 }

 void updatesensor(void){

 ADCTL = 0x10;

 time = 128;
 wait();

 sensordata[0] = ADR1;
 sensordata[1] = ADR2;

 16

 sensordata[2] = ADR3;
 sensordata[3] = ADR4;

 ADCTL = 0x14;

 time = 128;
 wait();

 sensordata[4] = ADR1;
 sensordata[5] = ADR2;
 sensordata[6] = ADR3;
 sensordata[7] = ADR4;

 printf("Sensor 0: %d, ", sensordata[0]);
 printf("Sensor 1: %d, ", sensordata[1]);
 printf("Sensor 2: %d, ", sensordata[2]);
 printf("Sensor 3: %d,\n", sensordata[3]);
 printf("Sensor 4: %d, ", sensordata[4]);
 printf("Sensor 5: %d, ", sensordata[5]);
 printf("Sensor 6: %d, ", sensordata[6]);
 printf("Sensor 7: %d,\n", sensordata[7]);

 printf("Press any key to continue\n");
 getchar();
 }

 void updatesensor1(void){

 ADCTL = 0x10;

 time = 128;
 wait();

 sensordata[0] = ADR1;
 sensordata[1] = ADR2;
 sensordata[2] = ADR3;
 sensordata[3] = ADR4;

 ADCTL = 0x14;

 time = 128;
 wait();

 sensordata[4] = ADR1;
 sensordata[5] = ADR2;
 sensordata[6] = ADR3;
 sensordata[7] = ADR4;

 }

 void updateic(void){

 printf("The width is %d\n", elapsedtime);
 printf("Press any key to continue\n");
 getchar();
 }

 void getmotornum(void){
 printf("What motor do you want to control?\n");
 printf("Motor 0: %d, ", motordir[0]);
 printf("Motor 1: %d, ", motordir[1]);
 printf("Motor 2: %d, ", motordir[2]);
 printf("Motor 3: %d,\n", motordir[3]);
 printf("Motor 4: %d, ", motordir[4]);
 printf("Motor 5: %d, ", motordir[5]);
 printf("Motor 6: %d, ", motordir[6]);
 printf("Motor 7: %d,\n", motordir[7]);

 /*for (i = 0;i < 8;i++)
 {

 17

 printf("Motor %d: %d, ", i, motordir[i]);
 if (i == 3)
 printf("\n");
 }*/

 while((motornum < 0x30) || (motornum > 0x37))
 motornum = getchar();

 motornum &= 0x0F;
 }

 void TOC1_isr(void){

 CLEAR_FLAG(TFLG1, 0x80);

 TOC2 = TOC1 + duty[0];
 TOC3 = TOC1 + duty[1];
 TOC4 = TOC1 + duty[2];
 TOC5 = TOC1 + duty[3];
 TOC1 += PERIOD;

 }//End TOC1

 void TOC2_isr(void){

 CLEAR_FLAG(TFLG1, 0x40);

 }//End TOC2

 void TOC3_isr(void){

 CLEAR_FLAG(TFLG1, 0x20);

 }//End TOC3

 void TOC4_isr(void){

 CLEAR_FLAG(TFLG1, 0x10);

 }//End TOC4

 void TOC5_isr(void){

 CLEAR_FLAG(TFLG1, 0x08);

 }//End TOC5

 /*void TIC3_isr(void){

 CLEAR_FLAG(TFLG1, 0x01);

 if(isitfirst == 0){
 firsttime = TIC3;
 isitfirst = 1;
 }
 else{
 elapsedtime = (TIC3 - firsttime);
 isitfirst = 0;
 }
 }
*/
#pragma abs_address:0xffd6
/* change the above address if your vector starts elsewhere */

 void (*interrupt_vectors[])(void) =
 {
 /* to cast a constant, say 0xb600, use(void (*)())0xb600 */

 DUMMY_ENTRY, /* SCI, RS232 protocol */
 DUMMY_ENTRY, /* SPI, high speed synchronous serial*/

 18

 DUMMY_ENTRY, /* Pulse accumulator input edge */
 DUMMY_ENTRY, /* Pulse accumulator overflow */
 DUMMY_ENTRY, /* Timer overflow */
 TOC5_isr, /* TOC5 */
 TOC4_isr, /* TOC4 */
 TOC3_isr, /* TOC3 */
 TOC2_isr, /* TOC2 */
 TOC1_isr, /* TOC1 */
 DUMMY_ENTRY, /* TIC3 */
 DUMMY_ENTRY, /* TIC2 */
 DUMMY_ENTRY, /* TIC1 */
 DUMMY_ENTRY, /* RTI */
 DUMMY_ENTRY, /* IRQ */
 DUMMY_ENTRY, /* XIRQ */
 DUMMY_ENTRY, /* SWI */
 DUMMY_ENTRY, /* ILLOP */
 DUMMY_ENTRY, /* COP */
 DUMMY_ENTRY, /* CLMON */
 _start /* RESET */
 };

#pragma end_abs_address

