David Pinto
EEL 5666 — Fall 2001

Run-N-Shoot

TABLE OF CONTENTS

INTRODUCTION. ..ot i e D
INTEGRATED SYSTEM ... ettt e D
MOBILE PLATFORM ...ttt e e et ettt e e e e D
ACTUATION L. e e e e e e e e e e e e e e e eaeaas 7
BEHAV IORS. ..o e e e 10
TECHNICAL INFORMATIONttt it e et e e e e e e e 11

a. Communications Protocol

b. Kinematics Interface

c. Object Recognition Interface
9. CONCLUSION . .. 0 14
JO. APPEN D X et e e e e e 15
a HC11 Code

NGO~ WDNE

ABSTRACT

This paper focuses on the design and implementation of an autonomous agent designed to
locate a ball and shoot it at atarget.

INTRODUCTION

The objective of this project wasto better understand theissuesinvolved in constructing
an autonomous agent and gain experience in developing real -time image-processing
software. Inorder to accomplish thistask, arobot with the following design goals was
implemented:

L ocate a selected object from the screen

Acquire the object

Locate and line-up with a second selected object
Propel the acquired object towards the second object

INTEGRATED SYSTEM

The agent iscontrolled by awirelesslink to adesktop computer. The desktop computer
processes the video from the robot and sends feedback to therobot. Thefollowingisa

layout of the system.

MOBILE PLATFORM
The platform wasbuilt on thefly from 1/4” plywood. Theframewasmodified asneeded
to satisfy the demands of the project asthey cameup. Thelifeline of the platformisas
follows:
1. ATJ-like platform was put together —a box to mount the motors and house the
processor & batteries along with a circular top to mount the camera onto.
2. A platform was appended to the front of the box with a channel in the center so

that the ball could be captured.

3. A crescent-moon-like section of the circular top was cut away so that the camera
could have aview of the newly appended platform.

4. Various holes were cut away to allow for tie-wraps and wire-passage.

ACTUATION

There are four servos controlled by the microprocessor. Two servos are used for
displacing the robot, one for locking the ball in position and one for shooting the ball.
Thefollowing is a detailed explanation of each servo and its function.

Servo 1 & 2: These servos are hacked Hi-Tec HS605-MGs. By hacking the
servos full rotation of the wheels was permitted. These servos provided the
means by which the robot moved around.

Servo 3: Thisservo isan un-hacked Hi-Tec HS300. The servo has a piece of
wood resembling a paddle glued on to the end of it and “locks” the ball in the
channel when the ball isin the desired position. It doesthis by rotating 90-120
degrees at the appropriate time.

Servo 4. Thisservo isan un-hacked Hi-Tec HS300. The servo has a spring
screwed onto theend of it and “whips” the ball in order to shoot it when desired.

SENSORS

Threetypes of sensorswere mounted and calibrated on therobot, but only twowereused
IR sensors, bump sensors and video were the three sensorsthat wereintegrated, but only
the video and the bump sensorswere used. The IR sensorsdid not facilitate the robot’s
objectives. The following isamore detailed explanation of each sensor and their
function.

IR Sensors

The IR sensors used were 4 SHARP GP2D12 14s. The IRswere mounted on the front
and the side of therobot to detect walls/obstacles. Thesensor interfaceconsisted of a5V
source, aground, and a0-2.5V output. The output wasdirectly connectedtothe HC11's
A/D system. The following graph is a generalized characteristic of their operation.

General IR Operating Characteristics

N

o

Output Voltage (V)
H
o O = 00N U1 W

o 1 2 3 4 5 6 7 8 9 10 11 12 13

Distance (inches)

Bump Sensors

Four bump-sensors were used to detect when the robot wasin contact withawall. The
sensors used were 2 Radio Shack SPDT (275-016) switches and 2 Radio Shack SPDT

SwitchesWith ¥ Roller Lever (275-017). The switcheswithout therollerswere placed
onthefront of therobot to detect when awall wasfrontally contacted. The switcheswith
the rollers were placed on the left and right front ends of the robot to detect when the
robot wasin contact with awall onitsleft or right side —this hel ped decide whether the
robot should turn left or right. The sensorswere organized in groups of 2 on each side of
the robot —in each group 5V indi cated frontal contact, and 2.5V indicated side contact.

Video Sensor

Thevideo sensor isimplemented by using awireless X 10 cameraand a desktop computer
running the JRE (Java Runtime Environment 1.3). All softwarewasimplemented using

Java. The object detection algorithm works by determining the mean of the pixelsthat lie
within some RGB threshold and taking action based on that mean. The threshold is
determined by the user during runtime and the actionsinclude turning | eft, turning right,
going forward, shooting the ball, and capturing the ball. To determinethe RGB threshold
the user clicks on the desired object and enters a number signifying the number of
standard deviations away that the thresholds should be set at. The mean and variance of
the selected areais cal culated and the threshold is setaccordingly. During runtime, the
mean of the pixel positionsthat werewithin thethreshold regioniscalculated and action
is taken based on the mean. Thebounds for the action taken isdetermined by the user
during runtime aswell. The user defineslinessignifying theleft bound, right bound and
line of sight for the target. Additionally aregion is selected for the “capture” region.

BEHAVIORS

Avoiding Walls/Obstacles

This behavior makesit so that the robot does not get stuck onawall. The bump sensors
indicate that thewall hasbeen hit. Therobot then backsupfor 1-2 sec and then turnsin
the appropriate direction to avoid the wall —the direction is chosen as depicted by the
bump sensors. If the sensors have no information to provide, thenarandomdirectionis
chosen.

Finding a Ball

In this state the robot is looking for aball. If the ball in not in the camera’ s view, the
robot turnsto theright until theball isinview. Itthentargetstheball and movesforward
until the ball in position to “capture” the ball.

Finding a Target

After the ball has been captured, the robot goesinto thismode. |f thetarget isnotinview
of the camera, therobot turnsto theright until itisinview. Therobot then linesup with
the target and goes into shooting mode.

Capturing a Ball

When the ball isin acertain region, alever istoggled to go down to capture the ball.

Shooting a Ball

When the robotislined up with the target, therobot goesinto shooting mode and liftsthe
“ball-capture” lever and shoots the ball.

10

TECHICAL INFORMATION

Communications Interface

In order to communicate to therobot awirelessinterface wasimplemented. Inorder to
overcome noise issues a communications protocol was created.

The desktop sends commands as an 8-bit command. The processor interprets the
command and executes the command for about 30ms. Thisway if an unintended
command was interpreted, it doesn’'t go crazy forever but only for 30ms. After the
command isprocessed a“ready” signal issent back to the desktop letting it know that the
command has been processed and itisready for more. If the desktop doesnot receivea
“ready” command within 3 seconds, it pollstherobot askingif it ready until it receivesa
ready command.

Additionally a SCI interface that the user can interface with the robot was made. The
following is a snapshot of it.

The Connect and Disconnect buttons enabl e/disabl es feedback to the robot.

E.?HCH SCl-Interface

Connect DisConnect \

11

Kinematics I nterface

In order to calibrate the servos and set the “directional” controls, akinematics control
interface was implemented. The following figure is a screenshot of the interface.

BT T T I T O i b onn
210 2.1 2z 21 | 24 25 2 [SE
1,0 1,1 3z 13 | 34 55
iv | 1 42 13 | 44 | 1,5 Lipelaather Load S St ..
‘ Scale
Wz Set Raset ‘ Do Dowmoze A

The sliding bars ontheright represent each servo. Thecenter isthe“idle” position. As
the bars slide the servos increase and decrease their respective speeds.

Thegridwith the coordinateson it represent the programmabledirections. To programa
direction, a coordinate is clicked, the desired servo settings are set and then Update
buttonisclicked which savesthe setting. Additionally, the user can typethe servo values
manually in the textboxes provided on the bottom and clicking on theManual Set icon.
The Reset button sets the selected direction to idle. A set of directions can be saved by
clicking theSave button and loaded by clicking theLoad button. To setthe“idle” values
an idle position is set with the scrollbar.

The Scale button scales all the speeds by the factor provided by the user.

The Download button downloads the selected sped to the robot. The Download All
button downloads all the setting to the robot.

12

Object Recognition Interface

In order to select the object/target the following interface was implemented.

The desired object is clicked on. To more precisely vary the size and position of the
circle theBigger, Smaller, Left, Right, Up& Down buttonsare provided. After the object
isencapsulated, the user entersthe number of standards deviations away from the mean
that the threshold should be set at by entering the number in the textbox and then clicking
on the Calculate Histogram button.

Bounds Interface

To dynamically set the bounds of the feedback bounds the interface on the right was
implemented.

The shaded region isthe region where the [a
ball is“captured”. Thelineinthe centeris o
the

13

CONCLUSION

My objective was reached and | feel that | completed what it was | set out to do. The
robot isnot perfect initsdesign andit would be nice to implement moreadvancedimage-
processing algorithms and make the hardware for displacing the robot more precise.
Additionally, it would be niceto make another robot, have them communicate and play a
“soccer” game.

14

HC11 Code

#include <hcll.h>
#include <mil.h>
#include <stdio.h>

[*Interrupt Procedures/Variables*/

#pragma interrupt_handler isrTOC2
#pragma interrupt_handler isrTOC3
#pragma interrupt_handler issrTOC4
#pragma interrupt_handler isrTOC5
#pragma interrupt_handler rtii

#define LEFT_BUMPER_THRESHOLD 90
#define RIGHT_BUMPER_THRESHOLD 90
#define leftiR ADR3

#define rightiR ADR1

#define rightBumper ADR4

#define leftBumper ADR3

#define gateUp 4000

#define gateDown 5000

#define shootWidth 500

#define stopSh ootWidth 4500

int debug = 1;
int menuDisplay = 1,

int period = 40000;

int pulseWidth_TOC3 = 3000;
int pulseWidth_TOC2 = 3000;
int pulseWidth_TOC4 = 3000;
int pulseWidth_TOCS5 = 3000;

int pulseOn_TOC2 = 0;
int pulseOn_TOC3 = 0;
int pulseOn_TOCS5 = 0;
int pulseOn_TOCA4 = 0;

int rtilnterrupts = 0;
int rtiTime = 0;

int shooting = 0;

int ADStatus = 0;

int sensorCheckEnable = 0;
int wirelessMode = 0;

int speed[5][6][2];
/* Prototypes*/

void processSelection(int);
void displayMenu(void);
int parselnputTolnt(void);
int readAD(void);

void checkSensors(void);
void setSpeed(int,int);

void shootSolenoid(void);
void initializeSystem(void);
void initializeServos(void);

/*MAIN*/
void main(void)
char menuSelection = '0';

initializeSystem();

15

while (menuSelection != 9)

{
displayMenu();
menuSel ection = ((int)getchar());
processSel ection(menuSel ection);

}
printf(" System. off.\n");

void initializeSystem(void)

inti =0;
intj=0;

printf("Initializing System.\n");
setbaud(BAUD9600);
initializeServos();

rtilnterrupts = 0;
rtiTime= 90;

shooting = 0;
CLEAR_BIT(PORTA, 0x10);
ADStatus = 0;
CLEAR_BIT(OPTION, 0x80);
sensorCheckEnable = 0;
wirelessMode = 0;

pulseWidth_TOC2 = 3000;
pulseWidth_TOC3 = 3000;
pulseWidth_TOCS = gateUp;
pulseWidth_TOC4 = stopShootWidth;

TCTL1=0;

init_serial();
printf("Done Initializing.\n");

/* Present Menu*/
void displayMenu(void)

if (menuDisplay)
{

printf("\n\n");
printf(" MENU\n\n");
printf("1.) Adjust Left Motor\n");
printf("2.) Adjust Right Motor\n");
printf("3.) Turn On Interrupts.\n");
printf("4.) Turn Off Interrupts.\n");
printf("5.) Set Speed.\n");
printf("6.) Toggle DeBug.\n");
printf("7.) Toggle Menu Display.\n");
printf("8.) Toggle Solenoid 1.\n");
printf("a.) Select Speed/State.\n");
printf("b.) RTI Time Set\n");
printf("c.) Turn On AD System.\n");
printf("d.) Read AD Ports.\n");
printf("e.) Toggle Sensor Check.\n");
printf("f.) Wireless Mode On.\n");
printf("u.) Toggle Gate");
printf("9.) Exit\n");
}
}

/*Process Input*/

void processSel ection(int menuSel ection)
{
int a, b;
if(debug)
printf("Processing Selection: %d\n", menuSelection);

switch (menuSelection)
{
case'0"
//IRe-Sync
break;
case'l"
if (wirdlessMode == 0)
{
pulseWidth_TOC2 = parsel nputTolnt();
if (debug)
printf("Servo 1 Updated: pulseWidth = %d\n", pulseWidth_TOC?2);
}

break;
case ‘2"
if (wirdlessMode == 0)

pulseWidth_TOC3 = parsel nputTolnt();
if (debug)
printf("Servo 2 Updated: pulseWidth = %d\n", pulseWidth_TOC3);
}

break;
case '3"
if (wirdlessMode == 0)

asm("cli");

}
break;
case '4"
if (wirelessMode == 0)
{
asm("sel");
}
break;
case 'S
if (wirdlessMode == 0)

{
if (debug)
printf("Enter Row# Y ou Want Modified.\n");
a = getchar();
a=a- 0x30;
if (debug)
printf("Enter Column# Y ou Want Modified.\n");
b=getchar();
b=b - 0x30;

menuSelection = parsel nputTolnt();
speed[a][b][0] = menuSelection;

menuSelection = parsel nputTolnt();
speed[a][b][1] = menuSelection;

if (debug)
printf(" (%d, %d) Updated: %d - %d", a, b, speed[a][b][0], speed[a][b][1]);

break;
case'6":
if (wirdlessMode == 0)
debug = (debug + 1)%2;
}
break;
case'7":
if (wirelessMode == 0)

17

{
menuDisplay = (menuDisplay + 1)%2;
}
break;
case'8"
if (wirelessMode == 0)

{ if (shooting)
{

CLEAR_BIT(PORTA, 0x10);
shooting = O;

}

ese

{
SET_BIT(PORTA, 0x10);
shooting = 1;

}

if (debug)
if (shooting)
printf(" Shooting Solenoid on PORTA - 0x10.\n");
ese
printf(" Shooting stopped on PORTA - 0x10.\n");

break;
case'a:
if (wirelessMode == 0)

{ if (debug)
printf("Enter Speed Y ou Want:\n");
a = getchar();
a=a- 0x30;
b = getchar();
b = b-0x30;
} setSpeed(a, b);
break;

case'b'
if (wirelessMode == 0)

if (debug)
printf("What is the new RTII value you want\n");
rtiTime = parselnputTolnt();

if (debug)
printf("RTI Time: %d\n", rtiTime);
}

break;
/IQuick Speeds and Commands
case'c:

if (wirelessMode == 0)

if (ADStatus)
{

CLEAR_BIT(OPTION, 0x80);
ADStatus = 0;
}

dse

SET_BIT(OPTION, 0x80);
ADStatus = 1;
}

if (debug)
if (ADStatus)
printf("AD System On.\n");
else
printf("AD System Off.\n");

18

break;
case'd"
if (wirelessMode == 0)

readAD();

break;

case'e’
if (wiredlessMode == 0)
{

if (sensorCheckEnable)

sensorCheckEnable = 0;
printf("Sensor Check: Disabled.\n");
}
ese
{
sensorCheckEnable = 1;
printf("Sensor Check: Enable\n");

}
break;
case 'f":
if (wirelessMode == 0)
wirelessMode = 1;
break;
case'u’
/IToggle Gate
if (pulseWidth_TOCS5 == gateUp)

pulseWidth_TOCS5 = gateDown;
if (debug)
printf("Gate is Down\n");
}

dse
{
pulseWidth_TOCS5 = gateUp;
if (debug)
printf("Gate is Up\n");
}

break;

case'v"

//Shoot Solenoid
shootSolenoid();
break;

case'w".

/IRight
setSpeed(2,3);
break;

case X"

/L eft
setSpeed(2,1);
break;

case'y"

/IForward
setSpeed(1,2);
break;

case'z:

/IStop
setSpeed(2,2);
break;

default:
printf("What the fuck did you sayAn");
break;

}

if (sensorCheckEnable)
checkSensors();

printf("ready\n");

19

int readAD(void)
if ({ADStatus)
{

printf("AD System is not turned on.");
return O;

}
ADCTL = 0x14;
while ((ADCTL & 0x80) ==0);
if (debug)
printf("AD Complete:\n\n\tChannel 4: %d\n\tChannel 5: %d\n\tChannel 6: %d\n\tChannd 7: %d\n\n’, ADR1, ADR2, ADR3,
ADR4);
return 1;

}
void checkSensors(void)

if (readAD())

/ICheck Left Bumper
if (leftBumper > LEFT_BUMPER_THRESHOLD)

{

//IReverse 1x & Turn Right
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(2,4);
while (rtilnterrupts < rtiTime);
setSpeed(2,4);
while (rtilnterrupts < rtiTime);

}

//Check Right Bumper
if (rightBumper > RIGHT_BUMPER_THRESHOL D)
{

/IReverse 1x & Turn Left
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(4,2);
while (rtilnterrupts < rtiTime);
setSpeed(2,0);
while (rtilnterrupts < rtiTime);
setSpeed(2,0);
while (rtilnterrupts < rtiTime);

}

}

}

void shootSolenoid(void)
pulseWidth_TOC4 = shootWidth;
shooting = 1;
rtilnterrupts = 0;

SET_BIT(TMSK?2, 0x40);
}

int parsel nputTolnt(void)

int input = 0;
intn=0;

if (debug)
printf("Getting Int Input....\n");

input = ((int)getchar() - 0x30)* 10000;
input = input + ((int)getchar() - 0x30)* 1000;

20

input = input + ((int)getchar() - 0x30)* 100;
input = input + ((int)getchar() - 0x30)* 10;
input = input + ((int)getchar() - 0x30);

return input;

}
void setSpeed(int a, int b)

{
pulseWidth_TOC2 = speed[0][5][0] + speed[a][b][O];
pulseWidth_TOC3 = speed[0][5][1] + speed[a][b][1];
rtilnterrupts = 0;
SET_BIT(TMSK?2, 0x40);

}

/* Interrupt Routines */
void isrTOC2(void)

{
int temp = period - pulseWidth_TOC2;

if (pulseOn_TOC2)

TOC2 = TOC2 + temp;
SET_BIT(TCTL1, 0xCO);
pulseOn_TOC2 = 0;

}

dse

TOC2 = TOC2 + pulseWidth_TOC2;
SET_BIT(TCTL1, 0x80);
CLEAR_BIT(TCTL1, 0x40);
pulseOn_TOC2 = 1,

}

CLEAR_FLAG(TFLG1,0x40);
}

void isrT OC3(void)

{
int temp = period - pulseWidth_TOCS3;

if (pulseOn_TOC3)

TOC3 = TOC3 + temp;
SET_BIT(TCTL1, 0x30);
pulseOn_TOC3 = 0;

}

else

TOC3 = TOC3 + pulseWidth_TOC3;
SET_BIT(TCTL1, 0x20);
CLEAR_BIT(TCTL1, 0x10);
pulseOn_TOC3 = 1;

}
CLEAR_FLAG(TFLG1,0x20);
}

void isrTOC5(void)
{
int temp = period - pulseWidth_TOCS5;

if (pulseOn_TOC5)

{
TOCS5 = TOCS + temp;
SET_BIT(TCTL1, 0x03);
pulseOn_TOCS5 = 0;

}

dse

TOCS5 = TOC5 + pulseWidth_TOCS;

21

SET_BIT(TCTL1, 0x02);
CLEAR_BIT(TCTL1, Ox01);
pulseOn_TOCS5 = 1;

}

CLEAR_FLAG(TFLG1,0x08);
}

void isrTOC4(void)

{
int temp = period - pulseWidth_TOC4;
if (pulseOn_TOC4)
{

TOC4 = TOC4 + temp;
SET_BIT(TCTL1, 0x0OC);
pulseOn_TOC4 = 0;

}

dse

TOC4 = TOC4 + pulseWidth_TOC4;
SET_BIT(TCTL1, 0x08);
CLEAR_BIT(TCTL1, 0x04);
pulseOn_TOC4 = 1,

}

CLEAR_FLAG(TFLG1,0x10);
}

void rtii(void)

/IReset To Idle Position After aspecified Time

if (rtilnterrupts++ > rtiTime)

pulseWidth_TOC2 = speed[0][5][0];
pulseWidth_TOC3 = speed[0][5][1];
CLEAR_BIT(TMSK2, 0X40);

//Stop Shooting Solenoid If Shooting
if (shooting == 1)

pulseWidth_TOC4 = shootWidth;
rtilnterrupts = 0;
SET_BIT(TMSK?2, 0x40);
shooting = 2;

}
elseif (shooting == 2)
{

pulseWidth_TOC4 = stopShootWidth;

}

}
CLEAR_FLAG(TFLG2,0x40);
}

void initializeServos()

printf("Initializing Servos: Begin.\n");
*((void (**)())Oxffe6) =isrTOC2; [*
*((void (**)())0xffed) =isrTOC3; /*
*((void (**)())Oxffe2) =isrTOC4; [*
*((void (**)())OxffeQ) =isrTOC5; /*

Set Interrupt Vector:
Set Interrupt Vector:
Set Interrupt Vector:

Set Interrupt Vector:

*((void (**)())Oxfff0) =rtii; /* Set Interrupt Vector: RTII *

CLEAR_BIT(OC1M, 0xff);/* Disable OC1 Access */

SET_BIT(TMSK1, 0x40):
SET_BIT(TMSK1, 0x20);
SET_BIT(TMSKZ1, 0x08);
SET_BIT(TMSK1, 0x10);

/

TOC2 */
TOC2*/
TOC2 */
TOC5 */

/* Enable TOC2 Interrupt */
/* Enable TOCS3 Interrupt */
/* Enable TOCS3 Interrupt */
/* Enable TOC4 Interrupt */

CLEAR_FLAG(TFLGL, 0x40); /* Clear Possible Flag: TOC2 */
CLEAR_FLAG(TFLG1, 0x20); /* Clear Possible Flag: TOC3 */

22

CLEAR_FLAG(TFLG1, 0x08); I* Clear Possible Flag: TOC3 */
CLEAR_FLAG(TFLGL, 0x10); I* Clear Possible Flag: TOC4 */
printf("Initializing Servos: Completén");

23

