

OSCAR
(One Smart Car, an Autonomous Robot)

By Ernesto Cividanes
Fall 2001

IMDL 5666

Table of Contents:

Preface��������������������������.. �3
Abstract��������������������������. ...3
Executive Summary���������������������......3
Introduction�������������������������...3
Integrated System�����������������������..3
Mobile Platform�����������������������.�4
Actuation���������������������������5
Sensors����������������������������5
Behaviors���������������������������7
Closing����������������������������8
Appendix�������������������������...�.11
References��������������������������17

Preface
Thank you to Dr. Arroyo, Dr. Schwartz, Aamir Qaiyumi and Scott Nortman for all their
help and efforts this semester. They are all brilliant people who have helped me either
this semester or in past semesters to get to this point. All of them deserve much of the
credit for the success of OSCAR and I hope them the best. Thank you.

Abstract
OSCAR is One Smart Car, an Autonomous Robot that finds the room with the brightest
light, senses for Anthrax and Anthrax incubators by detecting smoke and or heat. If
smoke and or heat is detected, their corresponding lights go off. However, if both smoke
and heat are detected then an alarm will go off simulated by flashing lights.

Executive Summary
Using four infrareds, 2 bump switches, 3 CdS cells and 2 motors, this robot uses find a
room and using a smoke and heat detector, will warn the user that there is either smoke,
heat, both or none in the room.

Introduction
Currently the United States is under attack by people that are trying to terrorize our lives.
Their intent is clear and the solution is to be prepared and avoid harming any American
lives in the process. It is the intent of this robot to aide those people that are responsible
for dealing with the Anthrax scare. OSCAR has the ability to enter a room, detect
Anthrax and Anthrax incubators. Although the sensors are crude, OSCAR paves the way
for new technologies and ideas for further experimentation.

Integrated System
OSCAR uses the MC68HC11 as its microcontroller. This chip controls or receives input
from the following:
System Qty. Function
MC68HC11 1 Microcontroller
Infrareds 4 Obstacle Avoidance
MC74HC4051(analog mux) 1 Extra Pins for the CdS cells
Motor Drivers 2 Front and rear motor driver
Smoke detector 1 Detect smoke
Heat detector 1 Detect heat
Bump switch 2 Finish testing and obstacle avoidance

The 7805 is not controlled by the HC11 and does not receive input from it, however it
does power the IRs and it is important to mention because without it, the board will
continue to reset itself.

Mobile Platform
The RC car "The Shifter" from Radio Shack is the mobile platform for OSCAR. (For
future projects, the motor drivers already in the car should be tested and tried to be
implemented into the design). The aesthetics of this project are very important because it
tries to keep the platform as untouched as possible which creates large problems when
maneuvering. For example, OSCAR does not have the ability to move at a 90 degree
turn. It however, must move backwards for a certain
period of time, giving it enough room to turn and then
move forward keeping in mind that when turning, it does
not need to be "shy" of the wall unless it is too close to
no longer turn. The front wheels of OSCAR turn very
little so it is beneficial to open the frame of OSCAR and
cut away some of the plastic that keeps it from moving.

When installing the smoke detector, simply put it on top
of the car and use the already made hole for the "Shifter"
antenna and place the wires in there. For the heat
detector, care needs to be given to the window because it
is difficult to cut away the right amount of window needed. This can be done with power
tools being careful not to crack the window. The rest of the fork is lights that fit
comfortable at the front windshield of the car and no further changes need to be made.

The bump switches are by far the hardest to install
than any other part of OSCAR. Tape seems to work
the best when putting the bumper back after it has
been made. Look at the figure on the right.

OSCAR has two motor drivers installed on the sides
of it. Two regular screws hold them. The infrareds
are position in the front and by the top of the front
wheel cover. This configuration allows for the front
bump switches to be disregarded and compensated by programming. The smoke detector
is on top of OSCAR allowing the sensor to work as best as possible, which is the same as
the heat detector. It is positioned at the top rear so it can be heated easily and not melting
the smoke detector. The CdS cells are positioned at the front below the frame of the car
to hide them as best as possible. For these to work correctly, they need to be covered
some so regular tubing will work just fine. All of the switches are placed at the rear of
OSCAR to allow easier programming, debugging, and charging. On the rear right side
sits the 7805 and the analog mux is sitting at the bottom of OSCAR where the originally
battery used to sit.
The rest of the of the circuitry is wire wrapped to allow for a cleaner design and sits
inside the plastic covering. The power lights of the car are placed on the rear wheel cover
and the alarm LEDs are mounted at the top of the car using a small board cut out and
wrapped in electric tape. They are held down by glue.

All three battery packs of OSCAR as situated on top of the inner plastic covering. A
small platform holds the 8 pack from moving back and forth when car is moving. Also,
some plastic taped
down to the frame of
the inner covering can
hold the 4 pack down.

The most important aspect of the platform is to continue to use wire wrap because
without it, the robot becomes an incredible mess. Also, until the program seems to run
well, do not make a large hole to put in the wall IRs. Taping them until a good angle has
been decided for them is a plus..

Actuation
The robot moves around using the original motors that the RC car provided. Since these
motors draw a large amount of current, it is important to use good motor drivers that can
drive at least an output of 3 amps. The motor drivers are free from National.com and
receive four inputs, PWM, direction, +5 and ground. The PWM is controlled by an
output compare(See Appendix) with a large period of 60000 for both the front and back.
The direction can be any port and it is simply a digital output. To move left and right,
there needs to be a degree of control because turning to hard could damage the wheels.
Speed control is important here because it keeps the car from breaking the plastic case
and it does not drain the battery as fast. A slow speed to turn is recommended and when
straightening, a fast jerk in the opposite direction for a short period of time works well.
Testing this time makes the programming easier.
Testing whether you have the right motor driver is a plus. Speed control is plausible and
very important. If the motors receive a digital signal to the PWM, the car will run faster
than the IR's can detect things. The motor drivers have their own batteries because if the
car slows down, it will only slow down and not reset the board.

Sensors
The sensors of this robot are pretty much straight forward. The four IRs are from Sharp
and already provide themselves with the clock and correct frequency so all that is needed
is to receive the input. These new IRs work great when using them for obstacle
avoidance. Testing the IRs is necessary because they can vary some between one and the
other. To compensate for the front bump switches, if one IR
is very close but the wall one is also close, then back up.
It does take some time and OSCAR does sit there trying
to move forward but it will soon back up and move
away. (Using front bumpers on OSCAR would ruin the
aesthetics)

The CdS cells are used as any other. In the program, if
the analog input is larger than the other, go in that
direction. (See Appendix) Since there are only enough

analog inputs for the IRs, the analog mux is used to add ports. Choose between one and
the other by choosing the right combination on the select lines. See the figure on the
right for a connection option. The "Heat" input will be discussed below.

The heat detector is very easy to use. It is the Electronic Thermometer Meatfork from
Walmart. The signal easily is taken from the bottom of the fork and fed into the Mux as
shown above. The signal that comes out, stays constant at room temperature and
decreases as the temperature rises. As shown to the right, the signal is merely a wire that
runs out of the fork and can be extended to reach the mux. The output signal is shown in
the next page as a graph.

This signal is easy to read because the programming is easy. If a specific heat index is
wanted, pick an analog signal corresponding with that temperature and added to the code.
The lights that come with fork turn on at the signal 30 so OSCAR waits for that signal
before turning on the lights.

Family Guard Smoke Alarm is the smoke detector for OSCAR. The signal from the
smoke detector is also easy to read but it must be done several times before the right one
is picked out. After detaching the speaker from the smoke detector, the signal is taken
from the output to the speaker. The signals give 4 options: an 9V, 8V, 3V and ground. It
is best to grab the 3 V because it guarantees the signal will not damage the board. The
signal that is taken is then directly put into an analog port. This analog signal is easy to
use also because it peaks out around 255 if there is an alarm. To test the smoke alarm, all
that is needed is to use the test button.
(NOTE: The signal is
sitting at the bottom of
the smoke detector.)

Heat Detector Output

0

10

20

30

40

50

60

70

80

S
ig

na
l

Increasing heat

Heat

The signal need is shown to the below. The peaks show when there is smoke around.
This signal is not always easy to use because it happens for a brief period of time so when
testing to see if there is a signal, the code must be easy, quick and loop until something
happens.

The signal will not peak until the test has been set or there is smoke, however it will still
have this pattern when the alarm has been set.

Behaviors
The behaviors of OSCAR are find Anthrax in a specified area and its incubators. To find
the specified area, OSCAR uses the CdS cells to find the brightest spot in the room. This
is merely a small simulation of what more money and tools that are more sophisticated
can accomplish.
Once it finds the area, it will detect for anthrax. Reason why this works with a smoke
detector is the smoke alarm has radioactive material in it. When that radioactive material
interacts with an electrically neutral material such as Anthrax, it ionizes it and that
ionized air is what sets off a smoke alarm. Also, when there is an incubator, there is heat.
Therefore, OSCAR also detects heat using its heat detector.
Another behavior is obstacle avoidance. When OSCAR is put inside of an arena with
obstacles, its first priority to move is the CdS cells but it will turn only if there are no
obstacles in front. Obstacle avoidance proved to be difficult because of the limited speed
control. When OSCAR is moving, it needs time to see a wall infront of it, However, it
needs less time if it is moving slowly. So to make it shy is important if it is moving fast
but not at slow speeds. A solution to this is turning off the motor after running for some
time. However, a better solution would be to use an optical mouse because it opens up
many different ways of perfecting speed control and direction.
Using the optical mouse, OSCAR could know if it has been moving and whether it needs
to slow down. Also, it could determine its speed and decrease the its own speed. Optical
mouse would make this project a huge success. Turning is also important. The original
RC car had a sensor that would tell the car to stop turning. That would be useful because
currently the motor continues to move until it is turned off.

Smoke Detector

0

100

200

300

Signal

CLOSING
OSCAR moves around a room avoiding obstacles and on back up, it might run into an
obstacle because the rear bumpers are set to reset the test and not to avoid obstacles. It
will find the light and stop in front of it and begin testing. The heat and smoke detector
work just fine because of the simplicity of its design. OSCAR is limited by the fact that
it does not have good speed control and can not slow down after some time because it
varies with the charge of the battery and how long it has had to move forward. The
batteries do not die as quickly as the others because there are motor drivers and voltage
regulators in places where lot of amperage is drawn. Switches make the design easy to
use and debug. The aesthetics is what makes OSCAR so much fun to work with
however, all the challenges that it presented required many hours of work. Hopefully in
the future, someone can implement a mouse into OSCAR and use better sensors for more
sensitive temperatures. The front bumpers could help the design of OSCAR however, the
next step is definitely the mouse.

TIPS:
 1. Try using RC car's motor drivers
 2. Try using the front turn motor sensor
 3. Wire wrap everything
 4. Good switches well placed.
 5. Test everything separately
 6. Do not add IRs into hardware until a good position is tested
 7. Bypass capacitors need to be well placed before powering IRs

8. When connecting wires from the outside of the car to the inside, use male and
 female headers for everything. (Allows removal of frame from the rest of
 the car)

 9. Keep the back two screws untouched to secure the car when the frame is shut.
 10. Use black tape for anything that needs tape. Works well and hides itself.

//
//Program: WORKS1.c //
//Description: OBSTACLE AVOIDANCE AND CDL //
// Date: November 28, 2001 //
//

#include <stdio.h> //Standard includes
#include <mil.h>
#include <hc11.h>
#include <analog.h>

extern void _start(void); //This MUST be placed here RIGHT after the
includes, it is for the reset vector

#define DUMMY_ENTRY (void (*)(void))0xFFFF //This is a void function
declaration for the interrupt vector table
#define PERIOD 30000 //User defines
#define PERIOD2 60000 //User DEFINED FOR TOC2
 // SENSORS
#define BUMPER analog(0)
#define RIGHT_IR analog(2)
#define LEFT_IR analog(3)
#define WLEFT_IR analog(4)
#define SMOKE analog(5)
#define WRIGHT_IR analog(6)
#define CDL CandH(1)
#define CDR CandH(2)
#define CDC CandH(3)
#define HEAT CandH(4)

#pragma interrupt_handler TOC2_isr, TOC3_isr; //This is where
interrupt service routines are specified

void init_pwm(void); //Function Prototypes
void TOC3_isr(void);
void TOC2_isr(void);
void WAIT();
void MOVE();
void TURN();
int CandH();
//Global variables
int forward,backward;
int right, left;
int duty3;
int duty2;
int SPEED;
int STARTSPEED;
int BACKSPEED;
int flag;
int counter;
int turnFlag;
int tcounter;
int rightFlag;
int loop;
int count;
int heatFlag;
int smokeFlag;

void main (void){ //Beginning of main routine
 char clear[]= "\x1b\x5B\x32\x4A\x04";

// INITIALIZATIONS
init_pwm();

 init_analog();
 init_serial();
 SET_BIT(DDRD, 0x04); // TURN PORT
 SET_BIT(DDRD, 0x10); //
 SET_BIT(DDRD, 0x08); // LED SMOKE
 SET_BIT(PACTL, 0x08); // LED GREEN/HEAT

 duty3 = 0;
 duty2 = 0;
 right = 1;
 left = 2;
 forward = 2;
 backward = 1;
 STARTSPEED =80;
 SPEED = 50;
 BACKSPEED = 60;
 flag = 0;
 counter = 0;
 turnFlag = 0;
 tcounter = 0;
 rightFlag = 2;

 while(1){
 MOVE(STARTSPEED, forward);
 WAIT(10);
 if(flag >= 100) {
 MOVE(SPEED, forward);
 }
 if(RIGHT_IR > 35) {
 if(WRIGHT_IR < 15) {
 TURN(25, right);
 rightFlag = 1;
 }
 else if(WLEFT_IR < 15) {
 TURN(25, left);
 rightFlag = 0;
 }
 tcounter = 0;
 }
 else if(LEFT_IR > 35) { // SEES SOMETHING
 WAIT(10);
 if(WLEFT_IR < 15) {
 TURN(25, left);
 rightFlag = 0;
 }
 else if(WRIGHT_IR < 15) {
 TURN(25, right);
 rightFlag = 1;
 }
 }
 WAIT(10);

 if(LEFT_IR > 35 && RIGHT_IR > 35
 && WLEFT_IR > 20 && WRIGHT_IR > 20) {
 TURN(0,0);
 MOVE(BACKSPEED, backward);
 WAIT(600);
 flag = 0;
 if(WRIGHT_IR < 15) {
 TURN(25, right);
 rightFlag = 1;
 }
 else if(WLEFT_IR < 15) {
 TURN(25, left);
 rightFlag = 0;
 }
 }
 if(turnFlag >= 90) {
 tcounter++;
 turnFlag = 0;
 if(tcounter >= 4) {
 if(rightFlag == 1) {
 TURN(90, left);
 }
 else TURN(90, right);
 WAIT(20);
 TURN(0, 0);
 rightFlag = 2;
 }
 }
 }//End while(1)
}//End main

/////////////////////////////////////
//// IF BOTH SMOKE AND HEAT PRESENT//
//// ALARM TOGGLES BETWEEN LEDS //
/////////////////////////////////////

void ALARM(void) {
 loop = 0;
 CLEAR_BIT(PORTA, 0x08);
 CLEAR_BIT(PORTD, 0x08);

 while(BUMPER < 50) {
 CLEAR_BIT(PORTA, 0x08);
 WAIT(50);
 SET_BIT(PORTD, 0x08);
 WAIT(50);
 SET_BIT(PORTA, 0x08);
 WAIT(50);
 CLEAR_BIT(PORTD, 0x08);
 WAIT(50);
 count++;
 } // END OF WHILE
 count = 0;
}

/////////////////////////////////////
//// TESTS SPECIAL SENSORS HERE /////
/////////////////////////////////////

void SENSORS(void) {

 while(BUMPER < 50) {

 // TOGGLE GREEN TO DENOTE TESTING
 count = 0;
 heatFlag = 0;
 smokeFlag = 0;
 loop = 1;

 while(count < 5) {
 SET_BIT(PORTA, 0x08);
 WAIT(50);
 CLEAR_BIT(PORTA, 0x08);
 WAIT(50);
 count++;
 }

 CLEAR_BIT(PORTD, 0x08);

 while(loop) {

 smokeFlag = 0;

 // DETECT SMOKE AND TURN ON SMOKE LED
 if(SMOKE > 200) {
 SET_BIT(PORTD, 0x08); // SMOKE LED
 smokeFlag = 1;
 } // END OF IF

 // IF NO SMOKE AND HEAT, TURN ON GREEN LED
 if(HEAT < 30 && smokeFlag != 1) {
 SET_BIT(PORTA, 0x08);
 heatFlag = 1;
 } // END OF IF

 if(heatFlag == 1 && smokeFlag == 1) {
 ALARM();
 }

 }// END OF WHILE(loop)

 }// END OF WHILE(1)

}// END OF SENSOR TESTS

///////////////////////////////////////
//// CHOOSE USING MUX WHICH SENSOR //
//// TO USE BETWEEN THE CdS CELLS //
//// AND THE HEAT DETECTOR //
///////////////////////////////////////
int CandH(int temp) {
 if(temp == 1) {
 // LEFT
 CLEAR_BIT(PORTA, 0x10);
 CLEAR_BIT(PORTD, 0x10);
 return(analog(1));
 }
 else if(temp == 2) {
 // RIGHT
 CLEAR_BIT(PORTA, 0x10);
 SET_BIT(PORTD, 0x10);
 return(analog(1));
 }

 else if(temp ==3) {
 // CENTER
 SET_BIT(PORTA, 0x10);
 CLEAR_BIT(PORTD, 0x10);
 return(analog(1));
 }

 else if(temp == 4) {
 SET_BIT(PORTA, 0x10);
 SET_BIT(PORTD, 0x10);
 return(analog(1));
 }

}

// MOVE FORWARD OR BACKWARD ROUTINE

void MOVE(int speed, int direction) {

 duty3 = speed;
 if (direction == 1) {SET_BIT(PORTA, 0x08);} // FORWARD
 else if(direction == 2) {CLEAR_BIT(PORTA, 0x08);} // BACKWARD

}

void TURN(int speed, int direction) {

 duty2 = speed;
 if(direction == 1){SET_BIT(PORTD, 0x04);} // RIGHT
 else if (direction == 2){CLEAR_BIT(PORTD, 0x04);} // LEFT
 if(direction == 0) {duty2 = 0;} // STOP

} // ENF OF TURN

void WAIT(int time) {
 int temp;
 temp = 200;

 while (time > 0) {
 time--;
 while(temp > 0) {
 temp--;
 }
 temp = 200;
 }
}

void init_pwm(void){

 INTR_OFF(); //Turns off interrupts

 SET_BIT(TMSK1, 0x40); //Set up TOC2
 SET_BIT(TCTL1, 0x80);
 CLEAR_BIT(TCTL1, 0x40);

 SET_BIT(TMSK1, 0x20); //Set up TOC3
 SET_BIT(TCTL1, 0x20);
 CLEAR_BIT(TCTL1, 0x10);

 INTR_ON();

}//End init_pwm

//
//INTERRUPT SERVICE ROUTINE THAT HANDLES TURNS
//

void TOC2_isr(void){

 int temp = 0;
 if(duty2 != 0) {
 turnFlag++;
 }
 CLEAR_FLAG(TFLG1, 0x40);
 CLEAR_BIT(CFORC, 0x40); // THIS WAS NOT USED IN ORIGINAL TOC2

 temp = (duty2 / 100.0) * PERIOD2;

 if(temp < 500){

 CLEAR_BIT(TCTL1, 0x40);
 SET_BIT(CFORC, 0x40);
 }

 else if(temp > (PERIOD2 - 500)){

 SET_BIT(TCTL1, 0x40);
 SET_BIT(CFORC, 0x40);
 }

 else if(TCTL1 & 0x40){

 CLEAR_BIT(TCTL1, 0x40);
 TOC2 += temp;

 }

 else {
 SET_BIT(TCTL1, 0x40);
 TOC2 += (PERIOD2 - temp);
 }

}//End TOC2

//
//INTERRUPT SERVICE ROUTINE: FORWARD OR BACKWARD
//

void TOC3_isr(void){

 int temp = 0;
 flag++;

 CLEAR_FLAG(TFLG1, 0x20);
 CLEAR_BIT(CFORC, 0x20);

 temp = (duty3 / 100.0) * PERIOD;

 if(temp < 500){

 CLEAR_BIT(TCTL1, 0x10);
 SET_BIT(CFORC, 0x20);
 }

 else if(temp > (PERIOD - 500)){

 SET_BIT(TCTL1, 0x10);
 SET_BIT(CFORC, 0x20);
 }

 else if(TCTL1 & 0x10){

 CLEAR_BIT(TCTL1, 0x10);
 TOC3 += temp;
 }

 else {
 SET_BIT(TCTL1, 0x10);
 TOC3 += (PERIOD - temp);
 }

}//End TOC3

#pragma abs_address:0xffd6

/* change the above address if your vector starts elsewhere */

void (*interrupt_vectors[])(void) =

 {

 DUMMY_ENTRY, /* SCI, RS232 protocol */
 DUMMY_ENTRY, /* SPI, high speed synchronous serial*/
 DUMMY_ENTRY, /* Pulse accumulator input edge */
 DUMMY_ENTRY, /* Pulse accumulator overflow */
 DUMMY_ENTRY, /* Timer overflow */
 DUMMY_ENTRY, /* TOC5 */
 DUMMY_ENTRY, /* TOC4 */
 TOC3_isr, /* TOC3 */
 TOC2_isr, /* TOC2 */
 DUMMY_ENTRY, /* TOC1 */
 DUMMY_ENTRY, /* TIC3 */
 DUMMY_ENTRY, /* TIC2 */
 DUMMY_ENTRY, /* TIC1 */
 DUMMY_ENTRY, /* RTI */
 DUMMY_ENTRY, /* IRQ */
 DUMMY_ENTRY, /* XIRQ */
 DUMMY_ENTRY, /* SWI */
 DUMMY_ENTRY, /* ILLOP */
 DUMMY_ENTRY, /* COP */
 DUMMY_ENTRY, /* CLMON */
 _start /* RESET */

 };
#pragma end_abs_address

/* ADD THE FOLLOWING TO MAIN ROUTINE TO USE THE CdS CELLS
SEPERATE
while(1){

 WAIT(10);
 if(CDC > 200) {
 TURN(0, right);
 MOVE(0, forward);
 SENSORS();
 }
 else if(CDL > CDR) {
 MOVE(40, forward);
 TURN(25, left);
 WAIT(200);
 TURN(90, right);
 WAIT(20);
 TURN(0, left);
 }
 else if(CDR > CDL) {
 MOVE(40, forward);
 TURN(25, right);
 WAIT(200);
 TURN(90, left);
 WAIT(20);
 TURN(0, right);
 }
 }//End while(1)
}//End main
*/

References:
Radio Schack

http://www.radioshack.com/
Family Guard Smoke Alarm
 BRK Brands, Inc.
Electronic Thermometer Meatfork
 Wal-Mart
Sharp GP2D12 Infrared Ranger
 http://www.acroname.com/robotics/parts/R48-IR12.html
Mux, mc74hc4051
 http://mil.ufl.edu/~datasheets/Analog_MUX_DEMUX/
National Semiconductor
 http://www.national.com/
Mekatronix
 http://www.mekatronix.com/

Future Work:
UART for Optical Mouse
 http://www.national.com/parametric/0,1850,225,00.html
Optical Mouse

Programming
 http://mega.ist.utl.pt/~fjds//mousepolltut.html

 Protocol
 http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/PS2/ps2.htm
 Interfacing
 http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/mouse/mouse.html

