

Mr. T

An Autonomous Trebuchet

Jeffrey Bergman
Intelligent Machine Design Lab

EEL 5666

 - 2 -

Table of Contents

Abstract 3
Executive Summary 4
Introduction 5
Integrated System 6
Mobile Platform 8
Actuation 15
Sensors 17
Behaviors 21
Experimental Results 24
Conclusion 25
Appendices
 A 26
 B 27
 C 31
 D 40

 - 3 -

Abstract

Mr. T (short for Mr. Trebuchet) is an autonomous robotic trebuchet designed to find and
throw ammunition at a target at least 10 yards away. It will continue to hurl objects until
turned off. There is also a logical boundary that Mr. T will travel within. This boundary
is the maximum and minimum distances the objects can be thrown. Mr. T will know his
exact position and angle at all times, and can determine how far he is from the target.

 - 4 -

Executive Summary

Mr. T is a modern version of one of the most powerful and devastating siege engines ever

used. A trebuchet is similar to a catapult, but instead of using tension to launch an object,

a trebuchet uses a pivot arm, a sling, and a massive counterweight to hurl the object over

great distances.

The main purpose of Mr. T is to lay siege on a castle, positioned about 10 yards away

from the robot. He will drive around semi-randomly, searching for appropriate objects to

throw (specially designed ammunition) that can be thrown. Once ammunition is found, it

is loaded onto an electromagnetic sling and hurled at the target. The round is released

from the trebuchet at an optimum time for a direct hit on a target. By adjusting release

times, Mr. T can compensate for being different distances from the target.

In order to stay aware of his body and the environment around him, Mr. T uses four types

of sensors. These include IR sensors, bump sensors, potentiometers, and a special vector

processing unit that can determine, through the use of an optical mouse, the exact

position and angle the robot is facing.

The hardware used includes two Motorola HC11 EVBU boards with the Mekatronix

ME11 memory and port expansion, a mouse, a AWCE PAK-VI, a UART, and several

resistors, capacitor, transistors, and relays.

 - 5 -

Introduction

The trebuchet was first introduced into western society by the Greeks or Romans in the

12th century, but was mostly developed during the middle ages by the French.

Originating at around 300 B.C. in China, the trebuchet became one of the most popular

and devastating siege engines during the middle ages. Characterized by its massive

counterweight and long sling, trebuchets could throw heavy rocks and other objects

(often dead horses or peasants infected with the plague) over hundreds of yards with

amazing accuracy. Because trebuchets use a weight – counterweight design, it does not

rely on tension like a catapult. This means that if you load ammunition with nearly the

same weight every time, the trebuchet will throw it in the exact location.

Little has changed in trebuchet design in the last 500 years. The Hobbyists that compete

in pumpkin throwing contests construct nearly the same devices that were used in the

middle ages. My goal was to create a robot that merged state of the art processors and

sensors with tried and true medieval weaponry to create and autonomous siege engine.

Through this, Mr. T was created.

Mr. T is the first trebuchet that has a mind of its own. The only conditions it needs to

work is for it to be a known distance away from and angle in relation to the target. It then

searches its surrounding area for ammunition, loads that ammunition, and then launches it

at the target. It has the intelligence to know where it is at all times (including angle and

position), so an accurate, direct hit can be thrown every time.

 - 6 -

Integrated System

Mr. T is a multiprocessor based robotic trebuchet. Its system can be broken down into

several categories. Some of these are the hardware used, as well as the behaviors it can

perform, and the sensors used. This hardware can perform all of the functions required of

the robot

Hardware

Mr. T is based on two Motorola 68HC11 evaluation boards each equipped with a

Motorola MC68HC11E9 processor and the Mekatronix ME11 memory and port

expansion board. The robot uses two NiCad battery packs to provide energy, as well as

one 12 V Lead Acid battery which provides energy for the on board electromagnet. A

system of random searching was used by the robot to find the ammunition, 32 bit

precision floating point vector calculations to find its current location, as well as floating

point calculations to find the target.

Sensors and Additional Hardware

Sensors in the device included a mouse, two IR transmitter / receivers, a potentiometer,

and a bump switch. An AWCE PAK-VI, a National Semiconductor UART, and an Eriez

EM-R1 small flat faced electromagnet were some additional hardware that was required.

The connections to the device included two parallel port interfaces, an AC adapter plug,

and several switches and buttons.

Behaviors

 - 7 -

Mr. T has three main modes of operation. These modes are programming, calibration,

and running. The running mode can be broken down into several smaller modes;

searching, loading, returning, aiming, and firing. Also, during running mode the device

is constantly performing obstacle avoidance.

Figure 1 - Behaviors

Program

Bump Switch

Calibrate Run

Bump Switch

 - 8 -

Mobile Platform

The mobile platform needed no only to be able to withstand the large amount of force

generated by the throwing arm, but to also be able to be maneuvered accurately. The

platform can be divided into several sections: the platform, the arm and pivot, the wheels,

the catcher, sling, and the weight crate.

Platform

To make the platform strong enough to survive the force laid upon it, 1" x 2" pine wood

was used instead of the conventional airline plywood. To connect all of the pieces of

wood together, #8 wood screws were used along with two supporting nails. The final,

reinforced design was the third attempt at making the structure. The first implementation

used larger wood and was a little too large for what was needed. The second design used

the same size wood as my final implementation, but was built without reinforcing nails

and with larger screws. The structure could not handle the weight of the test throws and

began to lose stability quickly. The final design, shown below in figure 2, was created

without the side reinforcements which were not being used. See appendix A for scaled

representations of the beams required.

 - 9 -

Figure 2a – Front View

Figure 2b – Side View

Arm and Pivot

The arm was constructed with the same size wood as the body. The arm was 25" in

length. At a point ½" in on both sides a hole was drilled. There was also a larger whole

drilled in 4 ½" from the end of the short side.

 - 10 -

The pivot used was a ¼" threaded rod. Two ½" hollow metal tubes were used where the

arm connects to the body. First, the two tubes were attached to the wood with strong

epoxy, and then secured with metal strips that were screwed into the surface. Next, the

rod was placed through the tube with the lock nut configuration shown in figure 3. The

nuts around the tube were loosely secured, while the two nuts holding the wooden arm

were secured as tightly as possible. The goal of this was to make the rod and the arm turn

together, while having causing as little rotational friction as possible with the body. The

rod needed to always turn with the arm because the rod is then connected to a

potentiometer (with at least a 270° range of motion) for determining the position of the

arm at all times.

Figure 3 – Arm and Pivot

B
ody

H
ollow

 R
od

Throw
ing A

rm
Lock N

ut

Fastener

Potentiom
eter

 - 11 -

Wheels

For the wheels, three 4" tires with supports were used. These can be found at any

hardware store. For the drive wheel, the tire was removed from the axel and secured to

the large round servo connector. This was secured by drilling eight small holes into the

all rubber tire and then hammering in small nails to connect it. Because of the nature of

rubber, when the nails were hammered in, it stretches the rubber which then holds them

tightly in place. Figure 4 shows how the tire is connected.

Figure 4 – Tire Connection

Catcher

The purpose of the catcher is to catch the ammunition as the robot moves towards it, and

position the ammunition so that when the arm lowers to the “load” position the magnet is

resting upon it. The easiest way to do this was to create a “V” shaped aircraft plywood

Nail
Servo Axel
Servo Connector

Tire

 - 12 -

structure, with the widest point of the “V” the same width as the tires. The bottom of the

“V” is about the width of the ammunition (1"), and there is a bump sensor there to tell the

robot when the ammunition is properly placed. This section is shown in figure 4.

Figure 4 – Catcher

Sling

The sling consists of the electromagnet, and a 13" piece of picture wire, as well as a #10

screw. The end of the wire is inserted into the hole in the back of the electromagnet, and

a #10 screw is screwed in. This fastens the wire to the magnet. The other end of the wire

is threaded through the arm and secured by either a knot or some other method (fastener,

solder, etc.).

Bump Sensor
Catcher

 - 13 -

Weight Crate

The final piece of the platform is the weight crate. This is essentially a box that

surrounds the 12 Volt lead-acid battery. It needs to be very strong, or the battery will fly

out of the bottom, and it also must be able to let the battery be removed. In addition to

this, it needs to minimize the sideways swing so that when it moves it will not strike the

sides of the body. It also must be able to swing freely forwards and backwards to

properly transfer its energy. In building testing, the box was destroyed several times.

Because of this, the final version of the box is reinforced with metal sheets, and made to

be almost the exact size of the battery (to minimize that movement of the battery in the

crate). This piece is shown below in figure 5.

 - 14 -

Figure 5 – Weight Crate

“L” B
racket

½
 " Threaded R

od
M

etal R
einforcem

ents

H
inge

H
inged Lock

Lock

Throw
ing A

rm

 - 15 -

Actuation

The only actuation devices used for the robot were four servos. These were used for four

tasks; steering, driving, winching, and locking. The same system calls were used to work

all of the servos. The value in the A register is decimal 0, 50, or 100. When it is 50, the

servo turns to the neutral position (or off if hacked), when it 100 is entered, the servo will

rotate to +90° (or continuously rotate clockwise), and if 0 is entered the servo will rotate

to -90°(or counter clockwise). The code for this can be found in appendix B.

Steering

The same wheel was used for both steering and driving. This was to make it easier for

the robot to travel in a straight line and to pivot around a single point. The servo used for

steering was a Cirrus CS-80. The CS-80 is a metal geared, two ball bearing high torque

servo. At 6 Volts (the voltage it is used at), the CS-80 has 129.86 oz-in. of torque, and

the speed is .25 sec/60°. The steering servo of robot is only needed to go to 0°, 90°, and -

90°. This servo was not hacked.

Drive

The drive servo is massive. Because so much weight must be moved, the servo chosen

was the Cirrus CS-600 FET. This servo can produce a huge 333.29 oz-in. of torque at 6

Volts. Its speed is .22 sec/60°. The drive servo was hacked so it can continuously go

forwards or backwards.

 - 16 -

Winch

The winch needed to be strong enough to lift the 6 lbs counterweight while moving the

arm to the loading and arming position. This servo was a hacked version of the CS-80. It

has the same specifications as the steering servo.

Lock

The lock servo is used to hold the arm in place while the winch releases the wire. This is

needed because the winch would otherwise produce too much rotational friction in the

arm and it would waste too much energy. This servo does not need to be very powerful,

so a smaller Cirrus CS-60 was used. The speed of this servo is .14 sec/60°, and the

torque is 56.38 oz-in.

 - 17 -

Sensors

Four different sensors were used in the design of Mr. T.: a bump sensor, Infrared Range

Detectors, a potentiometer, and a special vector processing unit.

Bump Sensor

Since only one bump sensor was used, it was connected in a simple voltage divider

circuit to one of the analog ports. If the button was depressed the analog port read about

2.5 V, and if it was not pressed the port would read about 0 V.

Infrared Range Detector

The Infrared sensor used was the Sharp GP2DI2. This is a 40 kHz transmitter and

receiver combined into one. The inputs to it are ground, +5 V, and it outputs an analog

signal that represents the range from an object. The IR sensors are situated with one

above the other so that if an object is detected on the lower IR but not the upper IR, than

it is ammunition.

Potentiometer

The third sensor used was also very straight forward. The potentiometer attached to the

pivot of the arm is connected to a voltage divider circuit. The value received by the

analog port represents exactly where the arm is at any time. The potentiometer used had

a range of 0 – 10 kΩ. When placed in series with another 10 kΩ resistor, the values read

to the analog port ranged from 5 V – 2.5 V, and the circuit did not draw too much

amperage to function properly. Initially lower resister values were used, but too much

current was trying to be drawn, and it drained the batteries too quickly.

 - 18 -

Vector Processing Unit

The vector processing was a special sensor designed specifically for Mr. T. Appendix C

shows all of the code written for the VPU.

Function

The main function of the sensor is to give an accurate position measurement, including

angle, based on an initial position.

Guidelines

The sensor had several important guidelines to make it useful. The most important one

was that it must have a very small error. This is important for two main reasons. Since

the device is going to sample many times per second and the same numbers are going to

be used (because current location is always a function of previous location), any small

error will continue to be compounded and make the later results very inaccurate. The

other main reason is that since the target is so far away, any inaccuracies will be

multiplied by this distance and make the final calculation off.

Implementation

To implement this, the robot uses an optical mouse and a dedicated 68HC11. Mr. T

samples the mouse every 10 ms, and computes the calculations with the value returned.

Figure 6 shows the block structure of this sensor.

 - 19 -

Figure 6 – Block Diagram

The intention is to make the sensor a “black box” device with a small instruction set. The

only way the main processor of the robot can communicate with it is through the SPI

interface. The instruction set is shown in figure 7.

Instruction Opcode Input Output
Get X $01 float XAbsolute
Get Y $02 float YAboslute
Get Theta $03 float ThetaAbsolute
Start Mouse $04
Stop Mouse $05
Reset Mouse Counter $06
Reset Angle $07
Compute distance $08 float XTarget, YTarget int Distance

Figure 7 – Instruction Set of Vector Processing Unit

HC11 32K
RAMSPI

UART PAK-VI Mouse

 - 20 -

The PAK-VI is a keyboard controller that can also be used as an all purpose PS/2

controller. There is an instruction that you can send it that passes the next byte of data

directly to the PS/2 port. This function was used to put the mouse into remote mode.

Remote mode is a method where instead of the mouse constantly streaming data to the

PS/2 port, it only reports data when requested. The data it returns is three 8 bit values.

From these values two 9 bit values representing changes in X and Y positions can be

extracted. These values are then put through the mathematical calculations shown in

figure 8. All calculations are done as 32 bit floating point numbers.

()
() YYY

XYX

R
X

X

+Θ⋅∆=
+Θ⋅∆=

∆Θ+Θ=Θ

∆
=∆Θ

=
=∆
=∆

sin
cos

 wheels tomouse from Radius R
Y Sampled Y
XSampled

Figure 9 – Mathematical Vector Calculations

Errors

This sensor was never fully functional. The calculations simulated correctly, but the

interface between the HC11 and the UART never worked properly. Because of this, no

data concerning the accuracy of the sensor has yet to be created.

 - 21 -

Behaviors

Mr. T has three main modes of operation. These modes are program, calibrate, and run.

Programming

In this mode, the robot remains stationary as new code is loaded into its memory. This

mode is the initial mode the robot is in

Calibrate

In the calibration mode, the robot calibrates its sensor values for the room it is in. It

should be placed 12" from a piece of ammunition, and 20" from the wall. It will then

calibrate the IR. The pushbutton is pressed to confirm it is in the correct location. Since

many problems were found with navigation, this mode has yet to be implemented.

Run

During the entire run mode, the robot is performing obstacle avoidance. The run mode

can be broken down into five smaller modes: searching, loading, returning, aiming, and

firing. The code for this mode can be found in appendix D.

Searching

In the searching mode, the robot is looking for ammunition. It starts out by rotating

around in a circle, all the while checking the IR sensors for any objects. If an object is

detected in the lower IR but not the upper, than the robot drives towards it. This object

will be a piece of ammunition. If nothing is detected, or an obstacle is detected, it travels

in a random direction away from the object. It continues to do this until an object is

found. When it drives towards a piece of ammunition, it continues to drive forward until

 - 22 -

the bump switch is depressed, meaning an object is in the ready position. One this

happens, the mode changes to the loading state.

Loading

When the robot is ready to load, it begins to winch down the arm. It continues to do this

while checking the position of arm until the arm reaches a predetermined “loading”

position. Once in the loading position, the electromagnet is turned on. After the

electromagnet, the robot changes to arming mode.

Arming

When arming, the robot winches the arm down more while slowly moving away from the

target. This causes the sling to slide under the robot. It again checks the arms position.

Once the armed position is found, the lock is lowered and the winch is unwound for a

predetermined amount of time.

Aiming

When aiming, the robot first turns its steering wheel to 90°, and then revolves until the

vector processing unit says that it is pointed directly at the target. Once it is aimed at the

target, the vector processing unit is queried for the position to release the ammunition for

it to strike the target. Once this position is found, the robot emits a warning sound and

counts down with an LED display for 5 seconds and then moves to the fire state.

Firing

In the fire state, the robot stops all other calculations and spends all of its time sampling

the analog port. As soon as the value determined in the aiming state is found, the magnet

 - 23 -

is released and the target flies towards its target. After this, the robot returns to the

searching state.

 - 24 -

Experimental Results

The robot is not yet function enough to acquire proper experimental results. This section

will be updated when the robot becomes functional.

 - 25 -

Conclusion

Although countless hours were spent in working on this robot, it has yet to do much of

anything. I am still working on it, and it will be mostly functional soon, but at this point

it does not work.

Many of my problems came from problems with hardware. It took me a very long time

to discover that one of the ME11 boards I am using might not me working properly.

Whenever my servos change direction or stop it resets my board. This even happens

when the servos are on independent power supplies. I was also having problems with my

UART. I can not check to see if my mouse sensor works correctly because the serial

interface does not work.

I plan on finishing this project in the near future. I am very frustrated that it does not

work correctly, and hope to have it fully functional soon.

 - 26 -

Appendix A – Scale Drawing

Scale – 1 square = ¼"

 - 27 -

Appendix B – Servo Code

* INIT INTERRUPT VECTORS *

 ORG $00D3
 JMP HANDLE_OC5
 JMP HANDLE_OC4
 JMP HANDLE_OC3
 JMP HANDLE_OC2

 ORG $8000
 LDX #BASE
 CLRA
 STAA TMSK2,X
 LDAA #%01111000
 STAA TMSK1,X
 STAA TFLG1,X
 CLI

* WINCH IN THE ARM *

 LDAA #0
 JSR S_WINCH

LOWER JSR GET_ARM
 LDAB #$4F
 CBA

 BEQ LOWER_DONE
 BRA LOWER

LOWER_DONE
 LDAA #50
 JSR S_WINCH

here bra here

* DRIVE SERVO *

 ORG $9000
S_DRIVE LDAB #50
 CBA
 BGT DR_CW
 BLT DR_CCW

 LDAA #$0B
 STAA $02

 - 28 -

 RTS

DR_CW LDAA #$04
 STAA $02
 RTS

DR_CCW LDAA #$14
 STAA $02
 RTS

* TURNING SERVO *

 ORG $9100
S_TURN LDAB #50
 CBA
 BGT TN_CW
 BLT TN_CCW

 LDAA #$0B
 STAA $02
 RTS

TN_CW LDAA #$04
 STAA $02
 RTS

TN_CCW LDAA #$14
 STAA $02
 RTS

* WINCH SERVO *

 ORG $9200
S_WINCH LDAB #50
 CBA
 BGT WN_CW
 BLT WN_CCW

 LDAA #$0B
 STAA $08
 LDAA #$A0
 STAA $09
 RTS

WN_CW LDAA #$04
 STAA $08
 LDAA #$A0
 STAA $09
 RTS

WN_CCW LDAA #$14
 STAA $08
 LDAA #$A0
 STAA $09

 - 29 -

 RTS

* LOCK SERVO *

 ORG $9300
S_LOCK LDAB #50
 CBA
 BGT LK_CW
 BLT LK_CCW

 LDAA #$0B
 STAA $02
 RTS

LK_CW LDAA #$04
 STAA $02
 RTS

LK_CCW LDAA #$14
 STAA $02
 RTS

* INTURRUPT SUBROUTINES *

HANDLE_OC5:
 LDX #BASE
 BCLR TFLG1,X %11110111
 LDAA 0,X
 ANDA #%00001000
 BEQ OC5DOWN
 LDD $08
 BRA OC5END
OC5DOWN
 LDD #28960
OC5END
 ADDD TOC5,X
 STD TOC5,X
 RTI

HANDLE_OC4:
 LDX #BASE
 BCLR TFLG1,X %11101111
 LDAA 0,X
 ANDA #%00010000
 BEQ OC4DOWN
 LDD $08
 BRA OC4END
OC4DOWN
 LDD #28960
OC4END
 ADDD TOC4,X
 STD TOC4,X
 RTI

 - 30 -

HANDLE_OC3:
 LDX #BASE
 BCLR TFLG1,X %11011111
 LDAA 0,X
 ANDA #%00100000
 BEQ OC3DOWN
 LDD $08
 BRA OC3END
OC3DOWN
 LDD #28960
OC3END
 ADDD TOC3,X
 STD TOC3,X
 RTI

HANDLE_OC2:
 LDX #BASE
 BCLR TFLG1,X %10111111
 LDAA 0,X
 ANDA #%01000000
 BEQ OC2DOWN
 LDD $08
 BRA OC2END
OC2DOWN
 LDD #28960
OC2END
 ADDD TOC2,X
 STD TOC2,X
 RTI

 - 31 -

Appendix C – Vector Processing Unit Code

* Mr. T Processor 2 *
* *
* Mr. T Processor 2 is called the VPU, which stands for Vector Processing *
* Unit. *
* This uses the floating point package provided by Motorola (Written by *
* Gordon *
* Doughman). I have defined below which portion of the code is mine, and *
* which *
* portion is his. Full documentation of his code and what it does can be *
* found *
* on the Motorola website. My code will do the following: *
* * Interact with the Master Processor using SPI *
* * Act based on instructions sent from Master *
* * Initialize and read input from a mouse through the PAK-IV *
* * Analyze this data to compute positioning relative to the start *
* * Compute the release time of the device to strike the target *
 *
**

* HC11FP Constants *

 ORG $0000

FPACC1EX RMB 1 FLOATING POINT ACCUMULATOR #1..
FPACC1MN RMB 3
MANTSGN1 RMB 1 MANTISSA SIGN FOR FPACC1 (0=+, FF=-).
FPACC2EX RMB 1 FLOATING POINT ACCUMULATOR #2.
FPACC2MN RMB 3
MANTSGN2 RMB 1 MANTISSA SIGN FOR FPACC2 (0=+, FF=-).

FLTFMTER EQU 1 floating point format error in ASCFLT
OVFERR EQU 2 floating point overflow error
UNFERR EQU 3 floating point underflow error
DIV0ERR EQU 4 division by 0 error
TOLGSMER EQU 5 number too large or small to convert to int.
NSQRTERR EQU 6 tried to take the square root of negative #
TAN90ERR EQU 7 TANgent of 90 degrees attempted

* My Constants and Variables *

 ORG $2000

DELTA_X_16 RMB 2
DELTA_Y_16 RMB 2
DELTA_X_FP RMB 4
DELTA_Y_FP RMB 4
RET0 RMB 1
RET1 RMB 1
RET2 RMB 1
ABSOLUTE_X RMB 4
ABSOLUTE_Y RMB 4
ABSOLUTE_THETA RMB 4
TEMP_X_FP RMB 4
TEMP_Y_FP RMB 4
TEMP_THETA RMB 4
MOUSE_ENABLE RMB 1
DIVISOR RMB 4
MAX RMB 4
MIN RMB 4

DISTANCE EQU $0230
V_GET_X EQU $01

 - 32 -

V_GET_Y EQU $02
V_GET_THETA EQU $03
V_START_MOUSE EQU $04
V_STOP_MOUSE EQU $05
V_RESET_M_CNT EQU $06
V_RESET_ANGLE EQU $07
V_COMP_DIST EQU $08

BASE EQU $1000
STACK EQU $7000
PORTA EQU $00
PIOC EQU $02
PORTC EQU $03
PORTB EQU $04
PORTCL EQU $05
DDRC EQU $07
PORTD EQU $08
DDRD EQU $09
PORTE EQU $0A
CFORC EQU $0B
OC1M EQU $0C
OC1D EQU $0D
TCNT EQU $0E
TIC1 EQU $10
TIC2 EQU $12
TIC3 EQU $14
TOC1 EQU $16
TOC2 EQU $18
TOC3 EQU $1A
TOC4 EQU $1C
TI4/O5 EQU $1E
TCTL1 EQU $20
TCTL2 EQU $21
TMSK1 EQU $22
TFLG1 EQU $23
TMSK2 EQU $24
TFLG2 EQU $25
PACTL EQU $26
PACNT EQU $27
SPCR EQU $28
SPSR EQU $29
SPDR EQU $2A
BAUD EQU $2B
SCCR1 EQU $2C
SCCR2 EQU $2D
SCSR EQU $2E
SCDR EQU $2F
ADCTL EQU $30
ADR1 EQU $31
ADR2 EQU $32
ADR3 EQU $33
ADR4 EQU $34
BPROT EQU $35
EPROG EQU $36
OPTION EQU $39
COPRST EQU $3A
PPROG EQU $3B
HPRIO EQU $3C
INIT EQU $3D
TEST EQU $3E
CONFIG EQU $3F

BIT0 EQU %00000001
BIT1 EQU %00000010
BIT2 EQU %00000100
BIT3 EQU %00001000
BIT4 EQU %00010000
BIT5 EQU %00100000
BIT6 EQU %01000000
BIT7 EQU %10000000

BIT543 EQU %00111000

 - 33 -

* SCI Int Vector

 ORG $00C7
 JMP SPI_ISR

* My Main Function *

 ORG $8000

* INITIALIZATION *

 LDS #STACK

 LDX #DELTA_X_16
 LDAA #52

* Initialize Memory

LOOP1 CLR 0,X
 INX
 DECA
 BNE LOOP1

* Set The Divisor

 LDD #DISTANCE
 JSR Convert_D
 JSR TFR1TO2

 LDD #$0000
 JSR Convert_D
 JSR FLTDIV
 LDX #DIVISOR
 JSR PUTFPAC1

* Set Max and Min

 LDD #$0002
 JSR Convert_D
 LDX #MAX
 JSR PUTFPAC1

 LDX #FPACC1EX
 LDAA #$FF
 STAA 4,X
 LDX #MIN
 JSR PUTFPAC1

* Init Systems

 JSR Init_SCI
 JSR Init_SPI

* Main Loop

 WAI
MAIN_LOOP
 LDAA MOUSE_ENABLE
 CMPA #$FF
 BNE MAIN_LOOP
 JSR Get_Local
 JSR Compute_Vectors
 BRA MAIN_LOOP

**

 - 34 -

Calc_Dist:
 LDD #$AA
 RTS

**

Check_Status:
 LDX #BASE
 LDAA #$E9
 JSR Send_Rcv_3
 LDAA #$60
 CMPA RET0
 BNE C_S_1
 LDAA #8
 CMPA RET1
 BNE C_S_1
 LDAA #200
 CMPA RET2
 BNE C_S_1
 CLRA
 RTS
C_S_1
 LDAA #$FF
 RTS

**

Clear_Angle:
 PSHA
 CLRA
 LDX #TEMP_THETA
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 LDS #ABSOLUTE_THETA
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 PULA
 RTS

**

Clear_Counter:
 PSHA
 CLRA
 LDX #TEMP_X_FP
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 LDX #TEMP_Y_FP
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 LDX #ABSOLUTE_X
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 LDX #ABSOLUTE_Y
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 PULA
 RTS

**

 - 35 -

Compute_Vectors:
 LDX #DELTA_X_FP
 JSR GETFPAC1
 LDX #DIVISOR
 JSR FLTMUL
 LDX #ABSOLUTE_THETA
 JSR FLTADD
 LDX #MAX
 JSR GETFPAC2
 JSR FLTCMP
 BLE C_V_1
 JSR FLTSUB
C_V_1
 LDX #MIN
 JSR GETFPAC2
 JSR FLTCMP
 BLE C_V_2
 JSR FLTSUB
C_V_2
 LDX #TEMP_THETA
 JSR PUTFPAC1

 LDX #DELTA_Y_FP
 JSR GETFPAC2
 JSR FLTCOS
 JSR FLTMUL
 LDX #TEMP_X_FP
 JSR PUTFPAC1

 LDX #TEMP_THETA
 JSR GETFPAC1
 LDX #DELTA_Y_FP
 JSR GETFPAC2
 JSR FLTSIN
 JSR FLTMUL
 LDX #TEMP_Y_FP
 JSR PUTFPAC1

 LDX #ABSOLUTE_X
 JSR GETFPAC1
 LDX #TEMP_X_FP
 JSR GETFPAC2
 JSR FLTADD
 JSR PUTFPAC1

 LDX #ABSOLUTE_Y
 JSR GETFPAC1
 LDX #TEMP_Y_FP
 JSR GETFPAC2
 JSR FLTADD
 JSR PUTFPAC1

 PSHA
 PSHB
 LDX #TEMP_X_FP
 LDY #ABSOLUTE_X
 LDD 0,X
 STD 0,Y
 LDD 2,X
 STD 2,Y
 LDX #TEMP_Y_FP
 LDY #ABSOLUTE_Y
 LDD 0,X
 STD 0,Y
 LDD 2,X
 STD 2,Y
 LDX #TEMP_THETA
 LDY #ABSOLUTE_THETA
 LDD 0,X
 STD 0,Y
 LDD 2,X
 STD 2,Y

 - 36 -

 PULB
 PULA
 RTS

**

Conv_16_32:
 PSHA
 PSHB
 LDX #FPACC1EX
 LDD DELTA_X_16
 STD 2,X
 JSR SINT2FLT
 LDX #DELTA_X_FP
 JSR PUTFPAC1
 LDX #FPACC1EX
 LDD DELTA_Y_16
 STD 2,X
 JSR SINT2FLT
 LDX #DELTA_X_FP
 JSR PUTFPAC1
 PULB
 PULA
 RTS

**

Convert_D:
 LDX #FPACC1EX
 STD 2,X
 LDD #$00
 STD 0,X
 STAA 4,X
 JSR UINT2FLT
 RTS

**

Disable_Mouse:
 PSHA
 LDAA #$00
 STAA MOUSE_ENABLE
 PULA
 RTS

**

Get_Local:
 LDAA #$EB
 JSR Send_Rcv_3
 LDD #$00
 BRCLR RET0 BIT4 S_L_1
 LDAA #$FF
S_L_1
 LDAB RET1
 STD DELTA_X_16
 LDD #$00
 BRCLR RET0 BIT5 S_L_2
 LDAA #$FF
S_L_2
 LDAB RET2
 STD DELTA_Y_16
 RTS

**

Init_Mouse:
 PSHA
 LDAA #$FF
 JSR Send_PAK
 LDAA #$02
 JSR Send_PAK
 LDAA #$F0

 - 37 -

 JSR Send_Mouse
 LDAA #$E8
 JSR Send_Mouse
 LDAA #$03
 JSR Send_Mouse
 LDAA #$F3
 JSR Send_Mouse
 LDAA #$C8
 JSR Send_Mouse
 JSR Check_Status
 CMPA #$00
 BNE Init_Mouse
 LDAA #$FF
 STAA MOUSE_ENABLE
 PULA
 RTS

**

Init_SPI:
 LDX #BASE
 BSET DDRD,X BIT2
 BSET DDRD,X BIT543
 LDAA #$C7
 STAA SPCR,X
 CLI
 RTS

**

Init_SCI:
 PSHA
 LDX #BASE
 LDAA #$30
 STAA BAUD,X
 LDAA #$00
 STAA SCCR1,X
 LDAA #$00
 STAA SCCR2,X
 PULA
 RTS

**

Send_Master_8:
 LDX #BASE
 STAA SPDR,X
S_M_8_1
 BRCLR SPSR,X BIT7 S_M_8_1
 RTS

**

Send_Master_32:
 PSHA
 LDAA 0,X
 JSR Send_Master_8
 LDAA 1,X
 JSR Send_Master_8
 LDAA 2,X
 JSR Send_Master_8
 LDAA 3,X
 JSR Send_Master_8
 PULA
 RTS

**

Send_Mouse:
 LDX #BASE
 PSHB
 LDAB #$0B
 STAB SCDR,X

 - 38 -

S_M_1
 BRCLR SCSR,X BIT5 S_M_1
 STAA SCDR,X
S_M_2
 BRCLR SCSR,X BIT5 S_M_2
 PULB
 RTS

**

Send_PAK:
 LDX #BASE
 STAA SCDR,X
S_P_1
 BRCLR SCSR,X BIT6 S_P_1
 RTS

**

Send_Rcv_3:
 LDX #BASE
 PSHA
 LDAA #$0B
 STAA SCDR,X
S_R_3_1
 BRCLR SCSR,X BIT6 S_R_3_1; BYTE SENT?
 PULA
 STAA SCDR,X; SEND BYTE
S_R_3_2
 BRCLR SCSR,X BIT5 S_R_3_2; BYTE RECEIVED?
 LDAA SCDR,X
 STAA RET0
S_R_3_3
 BRCLR SCSR,X BIT5 S_R_3_3; BYTE RECEIVED?
 LDAA SCDR,X
 STAA RET1
S_R_3_4
 BRCLR SCSR,X BIT5 S_R_3_4; BYTE RECEIVED?
 LDAA SCDR,X
 STAA RET2
 RTS

**

SPI_ISR:
 LDX #BASE
 BRCLR SPSR,X BIT7 RT_SPI

 LDAA SPDR,X
 CMPA #V_GET_X
 BEQ GET_X
 CMPA #V_GET_Y
 BEQ GET_Y
 CMPA #V_GET_THETA
 BEQ GET_THETA
 CMPA #V_START_MOUSE
 BEQ START_MOUSE
 CMPA #V_STOP_MOUSE
 BEQ STOP_MOUSE
 CMPA #V_RESET_M_CNT
 BEQ RESET_M_CNT
 CMPA #V_RESET_ANGLE
 BEQ RESET_ANGLE
 CMPA #V_COMP_DIST
 BEQ COMP_DIST
 BRA SPI_ISR_ERROR

GET_X
 LDX #ABSOLUTE_X
 JSR Send_Master_8
 JSR Send_Master_32
 BRA RT_SPI

 - 39 -

GET_Y
 LDX #ABSOLUTE_Y
 JSR Send_Master_8
 JSR Send_Master_32
 BRA RT_SPI

GET_THETA
 LDX #ABSOLUTE_THETA
 JSR Send_Master_8
 JSR Send_Master_32
 BRA RT_SPI

START_MOUSE
 JSR Init_Mouse
 JSR Send_Master_8
 BRA RT_SPI

STOP_MOUSE
 JSR Disable_Mouse
 JSR Send_Master_8
 BRA RT_SPI

RESET_M_CNT
 JSR Init_Mouse
 JSR Clear_Counter
 JSR Send_Master_8
 BRA RT_SPI

RESET_ANGLE
 JSR Clear_Angle
 JSR Send_Master_8
 BRA RT_SPI

COMP_DIST
 JSR Send_Master_8
 JSR Calc_Dist
 JSR Send_Master_8
 TBA
 JSR Send_Master_8
 BRA RT_SPI

SPI_ISR_ERROR
 LDAA $#FF
 JSR Send_Master_8

RT_SPI
 RTI

* End My Code *

**
* *
* ASCII TO FLOATING POINT ROUTINE *
* *
* This routine will accept most any ASCII floating point format *
* and return a 32-bit floating point number. The following are *
* some examples of legal ASCII floating point numbers. *
* *
* 20.095 *
* 0.125 *
* 7.2984E10 *
* 167.824E5 *
* 5.9357E-7 *
* 500 *
* *
* The floating point number returned is in "FPACC1". *
* *
* *
* The exponent is biased by 128 to facilitate floating point *

 - 40 -

* comparisons. A pointer to the ASCII string is passed to the *
* routine in the D-register. *
* *
* *
**
*
*
* ORG $0000
*
* FPACC1EX RMB 1 FLOATING POINT ACCUMULATOR #1..
* FPACC1MN RMB 3
* MANTSGN1 RMB 1 MANTISSA SIGN FOR FPACC1 (0=+, FF=-).
* FPACC2EX RMB 1 FLOATING POINT ACCUMULATOR #2.
* FPACC2MN RMB 3
* MANTSGN2 RMB 1 MANTISSA SIGN FOR FPACC2 (0=+, FF=-).
*
*
* FLTFMTER EQU 1
*
*
* LOCAL VARIABLES (ON STACK POINTED TO BY Y)
*
EXPSIGN EQU 0 EXPONENT SIGN (0=+, FF=-).
PWR10EXP EQU 1 POWER 10 EXPONENT.
*
*
 ORG $C000 (TEST FOR EVB)
*
ASCFLT EQU *
 PSHX SAVE POINTER TO ASCII STRING.
 JSR PSHFPAC2 SAVE FPACC2.
 LDX #0 PUSH ZEROS ON STACK TO INITIALIZE LOCALS.
 PSHX ALLOCATE 2 BYTES FOR LOCALS.
 STX FPACC1EX CLEAR FPACC1.
 STX FPACC1EX+2
 CLR MANTSGN1 MAKE THE MANTISSA SIGN POSITIVE INITIALLY.
 TSY POINT TO LOCALS.
 LDX 6,Y GET POINTER TO ASCII STRING.
ASCFLT1 LDAA 0,X GET 1ST CHARACTER IN STRING.
 JSR NUMERIC IS IT A NUMBER.
 BCS ASCFLT4 YES. GO PROCESS IT.
*
* LEADING MINUS SIGN ENCOUNTERED?
*
ASCFLT2 CMPA #'- NO. IS IT A MINUS SIGN?
 BNE ASCFLT3 NO. GO CHECK FOR DECIMAL POINT.
 COM MANTSGN1 YES. SET MANTISSA SIGN. LEADING MINUS BEFORE?
 INX POINT TO NEXT CHARACTER.
 LDAA 0,X GET IT.
 JSR NUMERIC IS IT A NUMBER?
 BCS ASCFLT4 YES. GO PROCESS IT.
*
* LEADING DECIMAL POINT?
*

ASCFLT3 CMPA #'. IS IT A DECIMAL POINT?
 BNE ASCFLT5 NO. FORMAT ERROR.
 INX YES. POINT TO NEXT CHARACTER.
 LDAA 0,X GET IT.
 JSR NUMERIC MUST HAVE AT LEAST ONE DIGIT AFTER D.P.
 BCC ASCFLT5 GO REPORT ERROR.
 JMP ASCFLT11 GO BUILD FRACTION.
*
* FLOATING POINT FORMAT ERROR
*
ASCFLT5 INS DE-ALLOCATE LOCALS.
 INS
 JSR PULFPAC2 RESTORE FPACC2.
 PULX GET POINTER TO TERMINATING CHARACTER IN STRING.
 LDAA #FLTFMTER FORMAT ERROR.
 SEC SET ERROR FLAG.
 RTS RETURN.
*

 - 41 -

* PRE DECIMAL POINT MANTISSA BUILD
*
ASCFLT4 LDAA 0,X
 JSR NUMERIC
 BCC ASCFLT10
 JSR ADDNXTD
 INX
 BCC ASCFLT4
*
* PRE DECIMAL POINT MANTISSA OVERFLOW
*
ASCFLT6 INC FPACC1EX INC FOR EACH DIGIT ENCOUNTERED PRIOR TO D.P.
 LDAA 0,X GET NEXT CHARACTER.
 INX POINT TO NEXT.
 JSR NUMERIC IS IT S DIGIT?
 BCS ASCFLT6 YES. KEEP BUILDING POWER 10 MANTISSA.
 CMPA #'. NO. IS IT A DECIMAL POINT?
 BNE ASCFLT7 NO. GO CHECK FOR THE EXPONENT.
*
* ANY FRACTIONAL DIGITS ARE NOT SIGNIFIGANT
*
ASCFLT8 LDAA 0,X GET THE NEXT CHARACTER.
 JSR NUMERIC IS IT A DIGIT?
 BCC ASCFLT7 NO. GO CHECK FOR AN EXPONENT.
 INX POINT TO THE NEXT CHARACTER.
 BRA ASCFLT8 FLUSH REMAINING DIGITS.
ASCFLT7 CMPA #'E NO. IS IT THE EXPONENT?
 BEQ ASCFLT13 YES. GO PROCESS IT.
 JMP FINISH NO. GO FINISH THE CONVERSION.
*
* PROCESS THE EXPONENT
*
ASCFLT13 INX POINT TO NEXT CHARACTER.
 LDAA 0,X GET THE NEXT CHARACTER.
 JSR NUMERIC SEE IF IT'S A DIGIT.
 BCS ASCFLT9 YES. GET THE EXPONENT.
 CMPA #'- NO. IS IT A MINUS SIGN?
 BEQ ASCFLT15 YES. GO FLAG A NEGATIVE EXPONENT.
 CMPA #'+ NO. IS IT A PLUS SIGN?
 BEQ ASCFLT16 YES. JUST IGNORE IT.
 BRA ASCFLT5 NO. FORMAT ERROR.
ASCFLT15 COM EXPSIGN,Y FLAG A NEGATIVE EXPONENT. IS IT 1ST?
ASCFLT16 INX POINT TO NEXT CHARACTER.
 LDAA 0,X GET NEXT CHARACTER.
 JSR NUMERIC IS IT A NUMBER?
 BCC ASCFLT5 NO. FORMAT ERROR.
ASCFLT9 SUBA #$30 MAKE IT BINARY.
 STAA PWR10EXP,Y BUILD THE POWER 10 EXPONENT.
 INX POINT TO NEXT CHARACTER.
 LDAA 0,X GET IT.
 JSR NUMERIC IS IT NUMERIC?
 BCC ASCFLT14 NO. GO FINISH UP THE CONVERSION.
 LDAB PWR10EXP,Y YES. GET PREVIOUS DIGIT.
 LSLB MULT. BY 2.
 LSLB NOW BY 4.
 ADDB PWR10EXP,Y BY 5.
 LSLB BY 10.
 SUBA #$30 MAKE SECOND DIGIT BINARY.
 ABA ADD IT TO FIRST DIGIT.
 STAA PWR10EXP,Y
 CMPA #38 IS THE EXPONENT OUT OF RANGE?
 BHI ASCFLT5 YES. REPORT ERROR.
ASCFLT14 LDAA PWR10EXP,Y GET POWER 10 EXPONENT.
 TST EXPSIGN,Y WAS IT NEGATIVE?
 BPL ASCFLT12 NO. GO ADD IT TO BUILT 10 PWR EXPONENT.
 NEGA
ASCFLT12 ADDA FPACC1EX FINAL TOTAL PWR 10 EXPONENT.
 STAA FPACC1EX SAVE RESULT.
 BRA FINISH GO FINISH UP CONVERSION.
*
* PRE-DECIMAL POINT NON-DIGIT FOUND, IS IT A DECIMAL POINT?
*
ASCFLT10 CMPA #'. IS IT A DECIMAL POINT?

 - 42 -

 BNE ASCFLT7 NO. GO CHECK FOR THE EXPONENT.
 INX YES. POINT TO NEXT CHARACTER.
*
* POST DECIMAL POINT PROCESSING
*
ASCFLT11 LDAA 0,X GET NEXT CHARACTER.
 JSR NUMERIC IS IT NUMERIC?
 BCC ASCFLT7 NO. GO CHECK FOR EXPONENT.
 BSR ADDNXTD YES. ADD IN THE DIGIT.
 INX POINT TO THE NEXT CHARACTER.
 BCS ASCFLT8 IF OVER FLOW, FLUSH REMAINING DIGITS.
 DEC FPACC1EX ADJUST THE 10 POWER EXPONENT.
 BRA ASCFLT11 PROCESS ALL FRACTIONAL DIGITS.
*
*
*
ADDNXTD LDAA FPACC1MN GET UPPER 8 BITS.
 STAA FPACC2MN COPY INTO FPAC2.
 LDD FPACC1MN+1 GET LOWER 16 BITS OF MANTISSA.
 STD FPACC2MN+1 COPY INTO FPACC2.
 LSLD MULT. BY 2.
 ROL FPACC1MN OVERFLOW?
 BCS ADDNXTD1 YES. DON'T ADD THE DIGIT IN.
 LSLD MULT BY 4.
 ROL FPACC1MN OVERFLOW?
 BCS ADDNXTD1 YES. DON'T ADD THE DIGIT IN.
 ADDD FPACC2MN+1 BY 5.
 PSHA SAVE A.
 LDAA FPACC1MN GET UPPER 8 BITS.
 ADCA #0 ADDIN POSSABLE CARRY FROM LOWER 16 BITS.
 ADDA FPACC2MN ADD IN UPPER 8 BITS.
 STAA FPACC1MN SAVE IT.
 PULA RESTORE A.
 BCS ADDNXTD1 OVERFLOW? IF SO DON'T ADD IT IN.
 LSLD BY 10.
 ROL FPACC1MN
 STD FPACC1MN+1 SAVE THE LOWER 16 BITS.
 BCS ADDNXTD1 OVERFLOW? IF SO DON'T ADD IT IN.
 LDAB 0,X GET CURRENT DIGIT.
 SUBB #$30 MAKE IT BINARY.
 CLRA 16-BIT.
 ADDD FPACC1MN+1 ADD IT IN TO TOTAL.
 STD FPACC1MN+1 SAVE THE RESULT.
 LDAA FPACC1MN GET UPPER 8 BITS.
 ADCA #0 ADD IN POSSIBLE CARRY. OVERFLOW?
 BCS ADDNXTD1 YES. COPY OLD MANTISSA FROM FPACC2.
 STAA FPACC1MN NO. EVERYHING OK.
 RTS RETURN.
ADDNXTD1 LDD FPACC2MN+1 RESTORE THE ORIGINAL MANTISSA BECAUSE
 STD FPACC1MN+1 OF OVERFLOW.
 LDAA FPACC2MN
 STAA FPACC1MN
 RTS RETURN.
*
*
*
* NOW FINISH UP CONVERSION BY MULTIPLYING THE RESULTANT MANTISSA
* BY 10 FOR EACH POSITIVE POWER OF 10 EXPONENT RECIEVED OR BY .1
* (DIVIDE BY 10) FOR EACH NEGATIVE POWER OF 10 EXPONENT RECIEVED.
*
*
FINISH EQU *
 STX 6,Y SAVE POINTER TO TERMINATING CHARACTER IN STRING.
 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 SEE IF THE NUMBER IS ZERO.
 BEQ FINISH3 QUIT IF IT IS.
 LDAA FPACC1EX GET THE POWER 10 EXPONENT.
 STAA PWR10EXP,Y SAVE IT.
 LDAA #$80+24 SET UP INITIAL EXPONENT (# OF BITS + BIAS).
 STAA FPACC1EX
 JSR FPNORM GO NORMALIZE THE MANTISSA.
 TST PWR10EXP,Y IS THE POWER 10 EXPONENT POSITIVE OR ZERO?
 BEQ FINISH3 IT'S ZERO, WE'RE DONE.

 - 43 -

 BPL FINISH1 IT'S POSITIVE MULTIPLY BY 10.
 LDX #CONSTP1 NO. GET CONSTANT .1 (DIVIDE BY 10).
 JSR GETFPAC2 GET CONSTANT INTO FPACC2.
 NEG PWR10EXP,Y MAKE THE POWER 10 EXPONENT POSITIVE.
 BRA FINISH2 GO DO THE MULTIPLIES.
FINISH1 LDX #CONST10 GET CONSTANT '10' TO MULTIPLY BY.
 JSR GETFPAC2 GET CONSTANT INTO FPACC2.
FINISH2 JSR FLTMUL GO MULTIPLY FPACC1 BY FPACC2, RESULT IN FPACC1.
 DEC PWR10EXP,Y DECREMENT THE POWER 10 EXPONENT.
 BNE FINISH2 GO CHECK TO SEE IF WE'RE DONE.
FINISH3 INS DE-ALLOCATE LOCALS.
 INS
 JSR PULFPAC2 RESTORE FPACC2.
 PULX GET POINTER TO TERMINATING CHARACTER IN STRING.
 RTS RETURN WITH NUMBER IN FPACC1.
*
*
NUMERIC EQU *
 CMPA #'0 IS IT LESS THAN AN ASCII 0?
 BLO NUMERIC1 YES. NOT NUMERIC.
 CMPA #'9 IS IT GREATER THAN AN ASCII 9?
 BHI NUMERIC1 YES. NOT NUMERIC.
 SEC IT WAS NUMERIC. SET THE CARRY.
 RTS RETURN.
NUMERIC1 CLC NON-NUMERIC CHARACTER. CLEAR THE CARRY.
 RTS RETURN.
*
FPNORM EQU *
 LDX #FPACC1EX POINT TO FPACC1.
 BSR CHCK0 CHECK TO SEE IF IT'S 0.
 BEQ FPNORM3 YES. JUST RETURN.
 TST FPACC1MN IS THE NUMBER ALREADY NORMALIZED?
 BMI FPNORM3 YES. JUST RETURN..
FPNORM1 LDD FPACC1MN+1 GET THE LOWER 16 BITS OF THE MANTISSA.
FPNORM2 DEC FPACC1EX DECREMENT THE EXPONENT FOR EACH SHIFT.
 BEQ FPNORM4 EXPONENT WENT TO 0. UNDERFLOW.
 LSLD SHIFT THE LOWER 16 BITS.
 ROL FPACC1MN ROTATE THE UPPER 8 BITS. NUMBER NORMALIZED?
 BPL FPNORM2 NO. KEEP SHIFTING TO THE LEFT.
 STD FPACC1MN+1 PUT THE LOWER 16 BITS BACK INTO FPACC1.
FPNORM3 CLC SHOW NO ERRORS.
 RTS YES. RETURN.
FPNORM4 SEC FLAG ERROR.
 RTS RETURN.
*
CHCK0 EQU * CHECKS FOR ZERO IN FPACC POINTED TO BY X.
 PSHB SAVE D.
 PSHA
 LDD 0,X GET FPACC EXPONENT & HIGH 8 BITS.
 BNE CHCK01 NOT ZERO. RETURN.
 LDD 2,X CHECK LOWER 16 BITS.
CHCK01 PULA RESTORE D.
 PULB
 RTS RETURN WITH CC SET.
*
CONSTP1 FCB $7D,$4C,$CC,$CD 0.1 DECIMAL
CONST10 FCB $84,$20,$00,$00 10.0 DECIMAL
*
*
**
* *
* FPMULT: FLOATING POINT MULTIPLY *
* *
* THIS FLOATING POINT MULTIPLY ROUTINE MULTIPLIES "FPACC1" BY *
* "FPACC2" AND PLACES THE RESULT IN TO FPACC1. FPACC2 REMAINS *
* UNCHANGED. *
* WORSE CASE = 2319 CYCLES = 1159 uS @ 2MHz *
* *
**
*
*
FLTMUL EQU *
 JSR PSHFPAC2 SAVE FPACC2.

 - 44 -

 LDX #FPACC1EX POINT TO FPACC1
 JSR CHCK0 CHECK TO SEE IF FPACC1 IS ZERO.
 BEQ FPMULT3 IT IS. ANSWER IS 0.
 LDX #FPACC2EX POINT TO FPACC2.
 JSR CHCK0 IS IT 0?
 BNE FPMULT4 NO. CONTINUE.
 CLRA CLEAR D.
 CLRB
 STD FPACC1EX MAKE FPACC1 0.
 STD FPACC1MN+1
 BRA FPMULT3 RETURN.
FPMULT4 LDAA MANTSGN1 GET FPACC1 EXPONENT.
 EORA MANTSGN2 SET THE SIGN OF THE RESULT.
 STAA MANTSGN1 SAVE THE SIGN OF THE RESULT.
 LDAA FPACC1EX GET FPACC1 EXPONENT.
 ADDA FPACC2EX ADD IT TO FPACC2 EXPONENT.
 BPL FPMULT1 IF RESULT IS MINUS AND
 BCC FPMULT2 THE CARRY IS SET THEN:
FPMULT5 LDAA #OVFERR OVERFLOW ERROR.
 SEC SET ERROR FLAG.
 BRA FPMULT6 RETURN.
FPMULT1 BCS FPMULT2 IF RESULT IS PLUS & THE CARRY IS SET THEN ALL OK.
 LDAA #UNFERR ELSE UNDERFLOW ERROR OCCURED.
 SEC FLAG ERROR.
 BRA FPMULT6 RETURN.
FPMULT2 ADDA #$80 ADD 128 BIAS BACK IN THAT WE LOST.
 STAA FPACC1EX SAVE THE NEW EXPONENT.
 JSR UMULT GO MULTIPLY THE "INTEGER" MANTISSAS.
FPMULT3 TST FPACC1EX WAS THERE AN OVERFLOW ERROR FROM ROUNDING?
 BEQ FPMULT5 YES. RETURN ERROR.
 CLC SHOW NO ERRORS.
FPMULT6 JSR PULFPAC2 RESTORE FPACC2.
 RTS
*
*
UMULT EQU *
 LDX #0
 PSHX CREATE PARTIAL PRODUCT REGISTER AND COUNTER.
 PSHX
 TSX POINT TO THE VARIABLES.
 LDAA #24 SET COUNT TO THE NUMBER OF BITS.
 STAA 0,X
UMULT1 LDAA FPACC2MN+2 GET THE L.S. BYTE OF THE MULTIPLIER.
 LSRA PUT L.S. BIT IN CARRY.
 BCC UMULT2 IF CARRY CLEAR, DON'T ADD MULTIPLICAND TO P.P.
 LDD FPACC1MN+1 GET MULTIPLICAND L.S. 16 BITS.
 ADDD 2,X ADD TO PARTIAL PRODUCT.
 STD 2,X SAVE IN P.P.
 LDAA FPACC1MN GET UPPER 8 BITS OF MULTIPLICAND.
 ADCA 1,X ADD IT W/ CARRY TO P.P.
 STAA 1,X SAVE TO PARTIAL PRODUCT.
UMULT2 ROR 1,X ROTATE PARTIAL PRODUCT TO THE RIGHT.
 ROR 2,X
 ROR 3,X
 ROR FPACC2MN SHIFT THE MULTIPLIER TO THE RIGHT 1 BIT.
 ROR FPACC2MN+1
 ROR FPACC2MN+2
 DEC 0,X DONE YET?
 BNE UMULT1 NO. KEEP GOING.
 TST 1,X DOES PARTIAL PRODUCT NEED TO BE NORMALIZED?
 BMI UMULT3 NO. GET ANSWER & RETURN.
 LSL FPACC2MN GET BIT THAT WAS SHIFTED OUT OF P.P REGISTER.
 ROL 3,X PUT IT BACK INTO THE PARTIAL PRODUCT.
 ROL 2,X
 ROL 1,X
 DEC FPACC1EX FIX EXPONENT.
UMULT3 TST FPACC2MN DO WE NEED TO ROUND THE PARTIAL PRODUCT?
 BPL UMULT4 NO. JUST RETURN.
 LDD 2,X YES. GET THE LEAST SIGNIFIGANT 16 BITS.
 ADDD #1 ADD 1.
 STD 2,X SAVE RESULT.
 LDAA 1,X PROPIGATE THROUGH.
 ADCA #0

 - 45 -

 STAA 1,X
 BCC UMULT4 IF CARRY CLEAR ALL IS OK.
 ROR 1,X IF NOT OVERFLOW. ROTATE CARRY INTO P.P.
 ROR 2,X
 ROR 3,X
 INC FPACC1EX UP THE EXPONENT.
UMULT4 INS TAKE COUNTER OFF STACK.
 PULX GET M.S. 16 BITS OF PARTIAL PRODUCT.
 STX FPACC1MN PUT IT IN FPACC1.
 PULA GET L.S. 8 BITS OF PARTIAL PRODUCT.
 STAA FPACC1MN+2 PUT IT IN FPACC1.
 RTS RETURN.
*
*
*
**
* *
* FLOATING POINT ADDITION *
* *
* This subroutine performs floating point addition of the two numbers *
* in FPACC1 and FPACC2. The result of the addition is placed in *
* FPACC1 while FPACC2 remains unchanged. This subroutine performs *
* full signed addition so either number may be of the same or opposite *
* sign. *
* WORSE CASE = 1030 CYCLES = 515 uS @ 2MHz *
* *
**
*
*
FLTADD EQU *
 JSR PSHFPAC2 SAVE FPACC2.
 LDX #FPACC2EX POINT TO FPACC2
 JSR CHCK0 IS IT ZERO?
 BNE FLTADD1 NO. GO CHECK FOR 0 IN FPACC1.
FLTADD6 CLC NO ERRORS.
FLTADD10 JSR PULFPAC2 RESTORE FPACC2.
 RTS ANSWER IN FPACC1. RETURN.
FLTADD1 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS IT ZERO?
 BNE FLTADD2 NO. GO ADD THE NUMBER.
FLTADD4 LDD FPACC2EX ANSWER IS IN FPACC2. MOVE IT INTO FPACC1.
 STD FPACC1EX
 LDD FPACC2MN+1 MOVE LOWER 16 BITS OF MANTISSA.
 STD FPACC1MN+1
 LDAA MANTSGN2 MOVE FPACC2 MANTISSA SIGN INTO FPACC1.
 STAA MANTSGN1
 BRA FLTADD6 RETURN.
FLTADD2 LDAA FPACC1EX GET FPACC1 EXPONENT.
 CMPA FPACC2EX ARE THE EXPONENTS THE SAME?
 BEQ FLTADD7 YES. GO ADD THE MANTISSA'S.
 SUBA FPACC2EX NO. FPACC1EX-FPACC2EX. IS FPACC1 > FPACC2?
 BPL FLTADD3 YES. GO CHECK RANGE.
 NEGA NO. FPACC1 < FPACC2. MAKE DIFFERENCE POSITIVE.
 CMPA #23 ARE THE NUMBERS WITHIN RANGE?
 BHI FLTADD4 NO. FPACC2 IS LARGER. GO MOVE IT INTO FPACC1.
 TAB PUT DIFFERENCE IN B.
 ADDB FPACC1EX CORRECT FPACC1 EXPONENT.
 STAB FPACC1EX SAVE THE RESULT.
 LDX #FPACC1MN POINT TO FPACC1 MANTISSA.
 BRA FLTADD5 GO DENORMALIZE FPACC1 FOR THE ADD.
FLTADD3 CMPA #23 FPACC1 > FPACC2. ARE THE NUMBERS WITHIN RANGE?
 BHI FLTADD6 NO. ANSWER ALREADY IN FPACC1. JUST RETURN.
 LDX #FPACC2MN POINT TO THE MANTISSA TO DENORMALIZE.
FLTADD5 LSR 0,X SHIFT THE FIRST BYTE OF THE MANTISSA.
 ROR 1,X THE SECOND.
 ROR 2,X AND THE THIRD.
 DECA DONE YET?
 BNE FLTADD5 NO. KEEP SHIFTING.
FLTADD7 LDAA MANTSGN1 GET FPACC1 MANTISSA SIGN.
 CMPA MANTSGN2 ARE THE SIGNS THE SAME?
 BEQ FLTADD11 YES. JUST GO ADD THE TWO MANTISSAS.
 TST MANTSGN1 NO. IS FPACC1 THE NEGATIVE NUMBER?
 BPL FLTADD8 NO. GO DO FPACC1-FPACC2.

 - 46 -

 LDX FPACC2MN YES. EXCHANGE FPACC1 & FPACC2 BEFORE THE SUB.
 PSHX SAVE IT.
 LDX FPACC1MN GET PART OF FPACC1.
 STX FPACC2MN PUT IT IN FPACC2.
 PULX GET SAVED PORTION OF FPACC2
 STX FPACC1MN PUT IT IN FPACC1.
 LDX FPACC2MN+2 GET LOWER 8 BITS & SIGN OF FPACC2.
 PSHX SAVE IT.
 LDX FPACC1MN+2 GET LOWER 8 BITS & SIGN OF FPACC1.
 STX FPACC2MN+2 PUT IT IN FPACC2.
 PULX GET SAVED PART OF FPACC2.
 STX FPACC1MN+2 PUT IT IN FPACC1.
FLTADD8 LDD FPACC1MN+1 GET LOWER 16 BITS OF FPACC1.
 SUBD FPACC2MN+1 SUBTRACT LOWER 16 BITS OF FPACC2.
 STD FPACC1MN+1 SAVE RESULT.
 LDAA FPACC1MN GET HIGH 8 BITS OF FPACC1 MANTISSA.
 SBCA FPACC2MN SUBTRACT HIGH 8 BITS OF FPACC2.
 STAA FPACC1MN SAVE THE RESULT. IS THE RESULT NEGATIVE?
 BCC FLTADD9 NO. GO NORMALIZE THE RESULT.
 LDAA FPACC1MN YES. NEGATE THE MANTISSA.
 COMA
 PSHA SAVE THE RESULT.
 LDD FPACC1MN+1 GET LOWER 16 BITS.
 COMB FORM THE ONE'S COMPLEMENT.
 COMA
 ADDD #1 FORM THE TWO'S COMPLEMENT.
 STD FPACC1MN+1 SAVE THE RESULT.
 PULA GET UPPER 8 BITS BACK.
 ADCA #0 ADD IN POSSIBLE CARRY.
 STAA FPACC1MN SAVE RESULT.
 LDAA #$FF SHOW THAT FPACC1 IS NEGATIVE.
 STAA MANTSGN1
FLTADD9 JSR FPNORM GO NORMALIZE THE RESULT.
 BCC FLTADD12 EVERYTHING'S OK SO RETURN.
 LDAA #UNFERR UNDERFLOW OCCURED DURING NORMALIZATION.
 SEC FLAG ERROR.
 JMP FLTADD10 RETURN.
FLTADD12 JMP FLTADD6 CAN'T BRANCH THAT FAR FROM HERE.
*
FLTADD11 LDD FPACC1MN+1 GET LOWER 16 BITS OF FPACC1.
 ADDD FPACC2MN+1 ADD IT TO THE LOWER 16 BITS OF FPACC2.
 STD FPACC1MN+1 SAVE RESULT IN FPACC1.
 LDAA FPACC1MN GET UPPER 8 BITS OF FPACC1.
 ADCA FPACC2MN ADD IT (WITH CARRY) TO UPPER 8 BITS OF FPACC2.
 STAA FPACC1MN SAVE THE RESULT.
 BCC FLTADD12 NO OVERFLOW SO JUST RETURN.
 ROR FPACC1MN PUT THE CARRY INTO THE MANTISSA.
 ROR FPACC1MN+1 PROPIGATE THROUGH MANTISSA.
 ROR FPACC1MN+2
 INC FPACC1EX UP THE MANTISSA BY 1.
 BNE FLTADD12 EVERYTHING'S OK JUST RETURN.
 LDAA #OVFERR RESULT WAS TOO LARGE. OVERFLOW.
 SEC FLAG ERROR.
 JMP FLTADD10 RETURN.
*
*
*
**
* *
* FLOATING POINT SUBTRACT SUBROUTINE *
* *
* This subroutine performs floating point subtraction (FPACC1-FPACC2) *
* by inverting the sign of FPACC2 and then calling FLTADD since *
* FLTADD performs complete signed addition. Upon returning from *
* FLTADD the sign of FPACC2 is again inverted to leave it unchanged *
* from its original value. *
* *
* WORSE CASE = 1062 CYCLES = 531 uS @ 2MHz *
* *
**
*
*
FLTSUB EQU *

 - 47 -

 BSR FLTSUB1 INVERT SIGN.
 JSR FLTADD GO DO FLOATING POINT ADD.
FLTSUB1 LDAA MANTSGN2 GET FPACC2 MANTISSA SIGN.
 EORA #$FF INVERT THE SIGN.
 STAA MANTSGN2 PUT BACK.
 RTS RETURN.
*
*
*
**
* *
* FLOATING POINT DIVIDE *
* *
* This subroutine performs signed floating point divide. The *
* operation performed is FPACC1/FPACC2. The divisor (FPACC2) is left *
* unaltered and the answer is placed in FPACC1. There are several *
* error conditions that can be returned by this routine. They are: *
* a) division by zero. b) overflow. c) underflow. As with all *
* other routines, an error is indicated by the carry being set and *
* the error code being in the A-reg. *
* *
* WORSE CASE = 2911 CYCLES = 1455 uS @ 2MHz *
* *
**
*
*
FLTDIV EQU *
 LDX #FPACC2EX POINT TO FPACC2.
 JSR CHCK0 IS THE DIVISOR 0?
 BNE FLTDIV1 NO. GO SEE IF THE DIVIDEND IS ZERO.
 LDAA #DIV0ERR YES. RETURN A DIVIDE BY ZERO ERROR.
 SEC FLAG ERROR.
 RTS RETURN.
FLTDIV1 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS THE DIVIDEND 0?
 BNE FLTDIV2 NO. GO PERFORM THE DIVIDE.
 CLC YES. ANSWER IS ZERO. NO ERRORS.
 RTS RETURN.
FLTDIV2 JSR PSHFPAC2 SAVE FPACC2.
 LDAA MANTSGN2 GET FPACC2 MANTISSA SIGN.
 EORA MANTSGN1 SET THE SIGN OF THE RESULT.
 STAA MANTSGN1 SAVE THE RESULT.
 LDX #0 SET UP WORK SPACE ON THE STACK.
 PSHX
 PSHX
 PSHX
 LDAA #24 PUT LOOP COUNT ON STACK.
 PSHA
 TSX SET UP POINTER TO WORK SPACE.
 LDD FPACC1MN COMPARE FPACC1 & FPACC2 MANTISSAS.
 CPD FPACC2MN ARE THE UPPER 16 BITS THE SAME?
 BNE FLTDIV3 NO.
 LDAA FPACC1MN+2 YES. COMPARE THE LOWER 8 BITS.
 CMPA FPACC2MN+2
FLTDIV3 BHS FLTDIV4 IS FPACC2 MANTISSA > FPACC1 MANTISSA? NO.
 INC FPACC2EX ADD 1 TO THE EXPONENT TO KEEP NUMBER THE SAME.
* DID OVERFLOW OCCUR?
 BNE FLTDIV14 NO. GO SHIFT THE MANTISSA RIGHT 1 BIT.
FLTDIV8 LDAA #OVFERR YES. GET ERROR CODE.
 SEC FLAG ERROR.
FLTDIV6 PULX REMOVE WORKSPACE FROM STACK.
 PULX
 PULX
 INS
 JSR PULFPAC2 RESTORE FPACC2.
 RTS RETURN.
FLTDIV4 LDD FPACC1MN+1 DO AN INITIAL SUBTRACT IF DIVIDEND MANTISSA IS
 SUBD FPACC2MN+1 GREATER THAN DIVISOR MANTISSA.
 STD FPACC1MN+1
 LDAA FPACC1MN
 SBCA FPACC2MN
 STAA FPACC1MN
 DEC 0,X SUBTRACT 1 FROM THE LOOP COUNT.

 - 48 -

FLTDIV14 LSR FPACC2MN SHIFT THE DIVISOR TO THE RIGHT 1 BIT.
 ROR FPACC2MN+1
 ROR FPACC2MN+2
 LDAA FPACC1EX GET FPACC1 EXPONENT.
 LDAB FPACC2EX GET FPACC2 EXPONENT.
 NEGB ADD THE TWO'S COMPLEMENT TO SET FLAGS PROPERLY.
 ABA
 BMI FLTDIV5 IF RESULT MINUS CHECK CARRY FOR POSS. OVERFLOW.
 BCS FLTDIV7 IF PLUS & CARRY SET ALL IS OK.
 LDAA #UNFERR IF NOT, UNDERFLOW ERROR.
 BRA FLTDIV6 RETURN WITH ERROR.
FLTDIV5 BCS FLTDIV8 IF MINUS & CARRY SET OVERFLOW ERROR.
FLTDIV7 ADDA #$81 ADD BACK BIAS+1 (THE '1' COMPENSATES FOR ALGOR.)
 STAA FPACC1EX SAVE RESULT.
FLTDIV9 LDD FPACC1MN SAVE DIVIDEND IN CASE SUBTRACTION DOESN'T GO.
 STD 4,X
 LDAA FPACC1MN+2
 STAA 6,X
 LDD FPACC1MN+1 GET LOWER 16 BITS FOR SUBTRACTION.
 SUBD FPACC2MN+1
 STD FPACC1MN+1 SAVE RESULT.
 LDAA FPACC1MN GET HIGH 8 BITS.
 SBCA FPACC2MN
 STAA FPACC1MN
 BPL FLTDIV10 SUBTRACTION WENT OK. GO DO SHIFTS.
 LDD 4,X RESTORE OLD DIVIDEND.
 STD FPACC1MN
 LDAA 6,X
 STAA FPACC1MN+2
FLTDIV10 ROL 3,X ROTATE CARRY INTO QUOTIENT.
 ROL 2,X
 ROL 1,X
 LSL FPACC1MN+2 SHIFT DIVIDEND TO LEFT FOR NEXT SUBTRACT.
 ROL FPACC1MN+1
 ROL FPACC1MN
 DEC 0,X DONE YET?
 BNE FLTDIV9 NO. KEEP GOING.
 COM 1,X RESULT MUST BE COMPLEMENTED.
 COM 2,X
 COM 3,X
 LDD FPACC1MN+1 DO 1 MORE SUBTRACT FOR ROUNDING.
 SUBD FPACC2MN+1 (DON'T NEED TO SAVE THE RESULT.)
 LDAA FPACC1MN
 SBCA FPACC2MN (NO NEED TO SAVE THE RESULT.)
 LDD 2,X GET LOW 16 BITS.
 BCC FLTDIV11 IF IT DIDNT GO RESULT OK AS IS.
 CLC CLEAR THE CARRY.
 BRA FLTDIV13 GO SAVE THE NUMBER.
FLTDIV11 ADDD #1 ROUND UP BY 1.
FLTDIV13 STD FPACC1MN+1 PUT IT IN FPACC1.
 LDAA 1,X GET HIGH 8 BITS.
 ADCA #0
 STAA FPACC1MN SAVE RESULT.
 BCC FLTDIV12 IF CARRY CLEAR ANSWER OK.
 ROR FPACC1MN IF NOT OVERFLOW. ROTATE CARRY IN.
 ROR FPACC1MN+1
 ROR FPACC1MN+2
FLTDIV12 CLC NO ERRORS.
 JMP FLTDIV6 RETURN.
*
*
*
**
* *
* FLOATING POINT TO ASCII CONVERSION SUBROUTINE *
* *
* This subroutine performs floating point to ASCII conversion of *
* the number in FPACC1. The ascii string is placed in a buffer *
* pointed to by the X index register. The buffer must be at least *
* 14 bytes long to contain the ASCII conversion. The resulting *
* ASCII string is terminated by a zero (0) byte. Upon exit the *
* X Index register will be pointing to the first character of the *
* string. FPACC1 and FPACC2 will remain unchanged. *

 - 49 -

* *
**
*
*
FLTASC EQU *
 PSHX SAVE THE POINTER TO THE STRING BUFFER.
 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS FPACC1 0?
 BNE FLTASC1 NO. GO CONVERT THE NUMBER.
 PULX RESTORE POINTER.
 LDD #$3000 GET ASCII CHARACTER + TERMINATING BYTE.
 STD 0,X PUT IT IN THE BUFFER.
 RTS RETURN.
FLTASC1 LDX FPACC1EX SAVE FPACC1.
 PSHX
 LDX FPACC1MN+1
 PSHX
 LDAA MANTSGN1
 PSHA
 JSR PSHFPAC2 SAVE FPACC2.
 LDX #0
 PSHX ALLOCATE LOCALS.
 PSHX
 PSHX SAVE SPACE FOR STRING BUFFER POINTER.
 TSY POINT TO LOCALS.
 LDX 15,Y GET POINTER FROM STACK.
 LDAA #$20 PUT A SPACE IN THE BUFFER IF NUMBER NOT NEGATIVE.
 TST MANTSGN1 IS IT NEGATIVE?
 BEQ FLTASC2 NO. GO PUT SPACE.
 CLR MANTSGN1 MAKE NUMBER POSITIVE FOR REST OF CONVERSION.
 LDAA #'- YES. PUT MINUS SIGN IN BUFFER.
FLTASC2 STAA 0,X
 INX POINT TO NEXT LOCATION.
 STX 0,Y SAVE POINTER.
FLTASC5 LDX #N9999999 POINT TO CONSTANT 9999999.
 JSR GETFPAC2 GET INTO FPACC2.
 JSR FLTCMP COMPARE THE NUMBERS. IS FPACC1 > 9999999?
 BHI FLTASC3 YES. GO DIVIDE FPACC1 BY 10.
 LDX #P9999999 POINT TO CONSTANT 999999.9
 JSR GETFPAC2 MOVE IT INTO FPACC2.
 JSR FLTCMP COMPARE NUMBERS. IS FPACC1 > 999999.9?
 BHI FLTASC4 YES. GO CONTINUE THE CONVERSION.
 DEC 2,Y DECREMENT THE MULT./DIV. COUNT.
 LDX #CONST10 NO. MULTIPLY BY 10. POINT TO CONSTANT.
FLTASC6 JSR GETFPAC2 MOVE IT INTO FPACC2.
 JSR FLTMUL
 BRA FLTASC5 GO DO COMPARE AGAIN.
FLTASC3 INC 2,Y INCREMENT THE MULT./DIV. COUNT.
 LDX #CONSTP1 POINT TO CONSTANT ".1".
 BRA FLTASC6 GO DIVIDE FPACC1 BY 10.
FLTASC4 LDX #CONSTP5 POINT TO CONSTANT OF ".5".
 JSR GETFPAC2 MOVE IT INTO FPACC2.
 JSR FLTADD ADD .5 TO NUMBER IN FPACC1 TO ROUND IT.
 LDAB FPACC1EX GET FPACC1 EXPONENT.
 SUBB #$81 TAKE OUT BIAS +1.
 NEGB MAKE IT NEGATIVE.
 ADDB #23 ADD IN THE NUMBER OF MANTISSA BITS -1.
 BRA FLTASC17 GO CHECK TO SEE IF WE NEED TO SHIFT AT ALL.
FLTASC7 LSR FPACC1MN SHIFT MANTISSA TO THE RIGHT BY THE RESULT (MAKE
 ROR FPACC1MN+1 THE NUMBER AN INTEGER).
 ROR FPACC1MN+2
 DECB DONE SHIFTING?
FLTASC17 BNE FLTASC7 NO. KEEP GOING.
 LDAA #1 GET INITIAL VALUE OF "DIGITS AFTER D.P." COUNT.
 STAA 3,Y INITIALIZE IT.
 LDAA 2,Y GET DECIMAL EXPONENT.
 ADDA #8 ADD THE NUMBER OF DECIMAL +1 TO THE EXPONENT.
* WAS THE ORIGINAL NUMBER > 9999999?
 BMI FLTASC8 YES. MUST BE REPRESENTED IN SCIENTIFIC NOTATION.
 CMPA #8 WAS THE ORIGINAL NUMBER < 1?
 BHS FLTASC8 YES. MUST BE REPRESENTED IN SCIENTIFIC NOTATION.
 DECA NO. NUMBER CAN BE REPRESENTED IN 7 DIGITS.
 STAA 3,Y MAKE THE DECIMAL EXPONENT THE DIGIT COUNT BEFORE

 - 50 -

* THE DECIMAL POINT.
 LDAA #2 SETUP TO ZERO THE DECIMAL EXPONENT.
FLTASC8 SUBA #2 SUBTRACT 2 FROM THE DECIMAL EXPONENT.
 STAA 2,Y SAVE THE DECIMAL EXPONENT.
 TST 3,Y DOES THE NUMBER HAVE AN INTEGER PART? (EXP. >0)
 BGT FLTASC9 YES. GO PUT IT OUT.9
 LDAA #'. NO. GET DECIMAL POINT.
 LDX 0,Y GET POINTER TO BUFFER.
 STAA 0,X PUT THE DECIMAL POINT IN THE BUFFER.
 INX POINT TO NEXT BUFFER LOCATION.
 TST 3,Y IS THE DIGIT COUNT TILL EXPONENT =0?
 BEQ FLTASC18 NO. NUMBER IS <.1
 LDAA #'0 YES. FORMAT NUMBER AS .0XXXXXXX
 STAA 0,X PUT THE 0 IN THE BUFFER.
 INX POINT TO THE NEXT LOCATION.
FLTASC18 STX 0,Y SAVE NEW POINTER VALUE.
FLTASC9 LDX #DECDIG POINT TO THE TABLE OF DECIMAL DIGITS.
 LDAA #7 INITIALIZE THE THE NUMBER OF DIGITS COUNT.
 STAA 5,Y
FLTASC10 CLR 4,Y CLEAR THE DECIMAL DIGIT ACCUMULATOR.
FLTASC11 LDD FPACC1MN+1 GET LOWER 16 BITS OF MANTISSA.
 SUBD 1,X SUBTRACT LOWER 16 BITS OF CONSTANT.
 STD FPACC1MN+1 SAVE RESULT.
 LDAA FPACC1MN GET UPPER 8 BITS.
 SBCA 0,X SUBTRACT UPPER 8 BITS.
 STAA FPACC1MN SAVE RESULT. UNDERFLOW?
 BCS FLTASC12 YES. GO ADD DECIMAL NUMBER BACK IN.
 INC 4,Y ADD 1 TO DECIMAL NUMBER.
 BRA FLTASC11 TRY ANOTHER SUBTRACTION.
FLTASC12 LDD FPACC1MN+1 GET FPACC1 MANTISSA LOW 16 BITS.
 ADDD 1,X ADD LOW 16 BITS BACK IN.
 STD FPACC1MN+1 SAVE THE RESULT.
 LDAA FPACC1MN GET HIGH 8 BITS.
 ADCA 0,X ADD IN HIGH 8 BITS OF CONSTANT.
 STAA FPACC1MN SAVE RESULT.
 LDAA 4,Y GET DIGIT.
 ADDA #$30 MAKE IT ASCII.
 PSHX SAVE POINTER TO CONSTANTS.
 LDX 0,Y GET POINTER TO BUFFER.
 STAA 0,X PUT DIGIT IN BUFFER.
 INX POINT TO NEXT BUFFER LOCATION.
 DEC 3,Y SHOULD WE PUT A DECIMAL POINT IN THE BUFFER YET?
 BNE FLTASC16 NO. CONTINUE THE CONVERSION.
 LDAA #'. YES. GET DECIMAL POINT.
 STAA 0,X PUT IT IN THE BUFFER.
 INX POINT TO THE NEXT BUFFER LOCATION.
FLTASC16 STX 0,Y SAVE UPDATED POINTER.
 PULX RESTORE POINTER TO CONSTANTS.
 INX POINT TO NEXT CONSTANT.
 INX
 INX
 DEC 5,Y DONE YET?
 BNE FLTASC10 NO. CONTINUE CONVERSION OF "MANTISSA".
 LDX 0,Y YES. POINT TO BUFFER STRING BUFFER.
FLTASC13 DEX POINT TO LAST CHARACTER PUT IN THE BUFFER.
 LDAA 0,X GET IT.
 CMPA #$30 WAS IT AN ASCII 0?
 BEQ FLTASC13 YES. REMOVE TRAILING ZEROS.
 INX POINT TO NEXT AVAILABLE LOCATION IN BUFFER.
 LDAB 2,Y DO WE NEED TO PUT OUT AN EXPONENT?
 BEQ FLTASC15 NO. WE'RE DONE.
 LDAA #'E YES. PUT AN 'E' IN THE BUFFER.
 STAA 0,X
 INX POINT TO NEXT BUFFER LOCATION.
 LDAA #'+ ASSUME EXPONENT IS POSITIVE.
 STAA 0,X PUT PLUS SIGN IN THE BUFFER.
 TSTB IS IT REALLY MINUS?
 BPL FLTASC14 NO. IS'S OK AS IS.
 NEGB YES. MAKE IT POSITIVE.
 LDAA #'- PUT THE MINUS SIGN IN THE BUFFER.
 STAA 0,X
FLTASC14 INX POINT TO NEXT BUFFER LOCATION.
 STX 0,Y SAVE POINTER TO STRING BUFFER.

 - 51 -

 CLRA SET UP FOR DIVIDE.
 LDX #10 DIVIDE DECIMAL EXPONENT BY 10.
 IDIV
 PSHB SAVE REMAINDER.
 XGDX PUT QUOTIENT IN D.
 ADDB #$30 MAKE IT ASCII.
 LDX 0,Y GET POINTER.
 STAB 0,X PUT NUMBER IN BUFFER.
 INX POINT TO NEXT LOCATION.
 PULB GET SECOND DIGIT.
 ADDB #$30 MAKE IT ASCII.
 STAB 0,X PUT IT IN THE BUFFER.
 INX POINT TO NEXT LOCATION.
FLTASC15 CLR 0,X TERMINATE STRING WITH A ZERO BYTE.
 PULX CLEAR LOCALS FROM STACK.
 PULX
 PULX
 JSR PULFPAC2 RESTORE FPACC2.
 PULA
 STAA MANTSGN1
 PULX RESTORE FPACC1.
 STX FPACC1MN+1
 PULX
 STX FPACC1EX
 PULX POINT TO THE START OF THE ASCII STRING.
 RTS RETURN.
*
*
DECDIG EQU *
 FCB $0F,$42,$40 DECIMAL 1,000,000
 FCB $01,$86,$A0 DECIMAL 100,000
 FCB $00,$27,$10 DECIMAL 10,000
 FCB $00,$03,$E8 DECIMAL 1,000
 FCB $00,$00,$64 DECIMAL 100
 FCB $00,$00,$0A DECIMAL 10
 FCB $00,$00,$01 DECIMAL 1
*
*
P9999999 EQU * CONSTANT 999999.9
 FCB $94,$74,$23,$FE
*
N9999999 EQU * CONSTANT 9999999.
 FCB $98,$18,$96,$7F
*
CONSTP5 EQU * CONSTANT .5
 FCB $80,$00,$00,$00
*
*
FLTCMP EQU *
 TST MANTSGN1 IS FPACC1 NEGATIVE?
 BPL FLTCMP2 NO. CONTINUE WITH COMPARE.
 TST MANTSGN2 IS FPACC2 NEGATIVE?
 BPL FLTCMP2 NO. CONTINUE WITH COMPARE.
 LDD FPACC2EX YES. BOTH ARE NEGATIVE SO COMPARE MUST BE DONE
 CPD FPACC1EX BACKWARDS. ARE THEY EQUAL SO FAR?
 BNE FLTCMP1 NO. RETURN WITH CONDITION CODES SET.
 LDD FPACC2MN+1 YES. COMPARE LOWER 16 BITS OF MANTISSAS.
 CPD FPACC1MN+1
FLTCMP1 RTS RETURN WITH CONDITION CODES SET.
FLTCMP2 LDAA MANTSGN1 GET FPACC1 MANTISSA SIGN.
 CMPA MANTSGN2 BOTH POSITIVE?
 BNE FLTCMP1 NO. RETURN WITH CONDITION CODES SET.
 LDD FPACC1EX GET FPACC1 EXPONENT & UPPER 8 BITS OF MANTISSA.
 CPD FPACC2EX SAME AS FPACC2?
 BNE FLTCMP1 NO. RETURN WITH CONDITION CODES SET.
 LDD FPACC1MN+1 GET FPACC1 LOWER 16 BITS OF MANTISSA.
 CPD FPACC2MN+1 COMPARE WITH FPACC2 LOWER 16 BITS OF MANTISSA.
 RTS RETURN WITH CONDITION CODES SET.
*
*
*
**
* *

 - 52 -

* UNSIGNED INTEGER TO FLOATING POINT *
* *
* This subroutine performs "unsigned" integer to floating point *
* conversion of a 16 bit word. The 16 bit integer must be in the *
* lower 16 bits of FPACC1 mantissa. The resulting floating point *
* number is returned in FPACC1. *
* *
**
*
*
UINT2FLT EQU *
 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS IT ALREADY 0?
 BNE UINTFLT1 NO. GO CONVERT.
 RTS YES. JUST RETURN.
UINTFLT1 LDAA #$98 GET BIAS + NUMBER OF BITS IN MANTISSA.
 STAA FPACC1EX INITIALIZE THE EXPONENT.
 JSR FPNORM GO MAKE IT A NORMALIZED FLOATING POINT VALUE.
 CLC NO ERRORS.
 RTS RETURN.
*
*
*
**
* *
* SIGNED INTEGER TO FLOATING POINT *
* *
* This routine works just like the unsigned integer to floating *
* point routine except the the 16 bit integer in the FPACC1 *
* mantissa is considered to be in two's complement format. This *
* will return a floating point number in the range -32768 to +32767. *
* *
**
*
*
SINT2FLT EQU *
 LDD FPACC1MN+1 GET THE LOWER 16 BITS OF FPACC1 MANTISSA.
 PSHA SAVE SIGN OF NUMBER.
 BPL SINTFLT1 IF POSITIVE JUST GO CONVERT.
 COMA MAKE POSITIVE.
 COMB
 ADDD #1 TWO'S COMPLEMENT.
 STD FPACC1MN+1 PUT IT BACK IN FPACC1 MANTISSA.
SINTFLT1 BSR UINT2FLT GO CONVERT.
 PULA GET SIGN OF ORIGINAL INTEGER.
 LDAB #$FF GET "MINUS SIGN".
 TSTA WAS THE NUMBER NEGATIVE?
 BPL SINTFLT2 NO. RETURN.
 STAB MANTSGN1 YES. SET FPACC1 SIGN BYTE.
SINTFLT2 CLC NO ERRORS.
 RTS RETURN.
*
*
*
**
* *
* FLOATING POINT TO INTEGER CONVERSION *
* *
* This subroutine will perform "unsigned" floating point to integer *
* conversion. The floating point number if positive, will be *
* converted to an unsigned 16 bit integer (0 <= X <= 65535). If *
* the number is negative it will be converted to a twos complement *
* 16 bit integer. This type of conversion will allow 16 bit *
* addresses to be represented as positive numbers when in floating *
* point format. Any fractional number part is disguarded *
* *
**
*
*
FLT2INT EQU *
 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS IT 0?
 BEQ FLT2INT3 YES. JUST RETURN.

 - 53 -

 LDAB FPACC1EX GET FPACC1 EXPONENT.
 CMPB #$81 IS THERE AN INTEGER PART?
 BLO FLT2INT2 NO. GO PUT A 0 IN FPACC1.
 TST MANTSGN1 IS THE NUMBER NEGATIVE?
 BMI FLT2INT1 YES. GO CONVERT NEGATIVE NUMBER.
 CMPB #$90 IS THE NUMBER TOO LARGE TO BE MADE AN INTEGER?
 BHI FLT2INT4 YES. RETURN WITH AN ERROR.
 SUBB #$98 SUBTRACT THE BIAS PLUS THE NUMBER OF BITS.
FLT2INT5 LSR FPACC1MN MAKE THE NUMBER AN INTEGER.
 ROR FPACC1MN+1
 ROR FPACC1MN+2
 INCB DONE SHIFTING?
 BNE FLT2INT5 NO. KEEP GOING.
 CLR FPACC1EX ZERO THE EXPONENT (ALSO CLEARS THE CARRY).
 RTS
FLT2INT1 CMPB #$8F IS THE NUMBER TOO SMALL TO BE MADE AN INTEGER?
 BHI FLT2INT4 YES. RETURN ERROR.
 SUBB #$98 SUBTRACT BIAS PLUS NUMBER OF BITS.
 BSR FLT2INT5 GO DO SHIFT.
 LDD FPACC1MN+1 GET RESULTING INTEGER.
 COMA MAKE IT NEGATIVE.
 COMB
 ADDD #1 TWO'S COMPLEMENT.
 STD FPACC1MN+1 SAVE RESULT.
 CLR MANTSGN1 CLEAR MANTISSA SIGN. (ALSO CLEARS THE CARRY)
 RTS RETURN.
FLT2INT4 LDAA #TOLGSMER NUMBER TOO LARGE OR TOO SMALL TO CONVERT TO INT.
 SEC FLAG ERROR.
 RTS RETURN.
FLT2INT2 LDD #0
 STD FPACC1EX ZERO FPACC1.
 STD FPACC1MN+1 (ALSO CLEARS THE CARRY)
FLT2INT3 RTS RETURN.
*
*
*
**
* *
* SQUARE ROOT SUBROUTINE *
* *
* This routine is used to calculate the square root of the floating *
* point number in FPACC1. If the number in FPACC1 is negative an *
* error is returned. *
* *
* WORSE CASE = 16354 CYCLES = 8177 uS @ 2MHz *
* *
**
*
*
FLTSQR EQU *
 LDX #FPACC1EX POINT TO FPACC1.
 JSR CHCK0 IS IT ZERO?
 BNE FLTSQR1 NO. CHECK FOR NEGATIVE.
 RTS YES. RETURN.
FLTSQR1 TST MANTSGN1 IS THE NUMBER NEGATIVE?
 BPL FLTSQR2 NO. GO TAKE ITS SQUARE ROOT.
 LDAA #NSQRTERR YES. ERROR.
 SEC FLAG ERROR.
 RTS RETURN.
FLTSQR2 JSR PSHFPAC2 SAVE FPACC2.
 LDAA #4 GET ITERATION LOOP COUNT.
 PSHA SAVE IT ON THE STACK.
 LDX FPACC1MN+1 SAVE INITIAL NUMBER.
 PSHX
 LDX FPACC1EX
 PSHX
 TSY POINT TO IT.
 BSR TFR1TO2 TRANSFER FPACC1 TO FPACC2.
 LDAA FPACC2EX GET FPACC1 EXPONENT.
 SUBA #$80 REMOVE BIAS FROM EXPONENT.
 INCA COMPENSATE FOR ODD EXPONENTS (GIVES CLOSER GUESS)
 BPL FLTSQR3 IF NUMBER >1 DIVIDE EXPONENT BY 2 & ADD BIAS.
 LSRA IF <1 JUST DIVIDE IT BY 2.

 - 54 -

 BRA FLTSQR4 GO CALCULATE THE SQUARE ROOT.
FLTSQR3 LSRA DIVIDE EXPONENT BY 2.
 ADDA #$80 ADD BIAS BACK IN.
FLTSQR4 STAA FPACC2EX SAVE EXPONENT/2.
FLTSQR5 JSR FLTDIV DIVIDE THE ORIGINAL NUMBER BY THE GUESS.
 JSR FLTADD ADD THE "GUESS" TO THE QUOTIENT.
 DEC FPACC1EX DIVIDE THE RESULT BY 2 TO PRODUCE A NEW GUESS.
 BSR TFR1TO2 PUT THE NEW GUESS INTO FPACC2.
 LDD 0,Y GET THE ORIGINAL NUMBER.
 STD FPACC1EX PUT IT BACK IN FPACC1.
 LDD 2,Y GET MANTISSA LOWER 16 BITS.
 STD FPACC1MN+1
 DEC 4,Y BEEN THROUGH THE LOOP 4 TIMES?
 BNE FLTSQR5 NO. KEEP GOING.
 LDD FPACC2EX THE FINAL GUESS IS THE ANSWER.
 STD FPACC1EX PUT IT IN FPACC1.
 LDD FPACC2MN+1
 STD FPACC1MN+1
 PULX GET RID OF ORIGINAL NUMBER.
 PULX
 INS GET RID OF LOOP COUNT VARIABLE.
 JSR PULFPAC2 RESTORE FPACC2.
 CLC NO ERRORS.
 RTS
*
*
TFR1TO2 EQU *
 LDD FPACC1EX GET FPACC1 EXPONENT & HIGH 8 BIT OF MANTISSA.
 STD FPACC2EX PUT IT IN FPACC2.
 LDD FPACC1MN+1 GET FPACC1 LOW 16 BITS OF MANTISSA.
 STD FPACC2MN+1 PUT IT IN FPACC2.
 LDAA MANTSGN1 TRANSFER THE SIGN.
 STAA MANTSGN2
 RTS RETURN.
*
*
*
**
* *
* FLOATING POINT SINE *
* *
**
*
*
FLTSIN EQU *
 JSR PSHFPAC2 SAVE FPACC2 ON THE STACK.
 JSR ANGRED GO REDUCE THE ANGLE TO BETWEEN +/-PI.
 PSHB SAVE THE QUAD COUNT.
 PSHA SAVE THE SINE/COSINE FLAG.
 JSR DEG2RAD CONVERT DEGREES TO RADIANS.
 PULA RESTORE THE SINE/COSINE FLAG.
FLTSIN1 JSR SINCOS GO GET THE SINE OF THE ANGLE.
 PULA RESTORE THE QUAD COUNT.
 CMPA #2 WAS THE ANGLE IN QUADS 1 OR 2?
 BLS FLTSIN2 YES. SIGN OF THE ANSWER IS OK.
 COM MANTSGN1 NO. SINE IN QUADS 3 & 4 IS NEGATIVE.
FLTSIN2 CLC SHOW NO ERRORS.
 JSR PULFPAC2 RESTORE FPACC2
 RTS RETURN.
*
*
*
**
* *
* FLOATING POINT COSINE *
* *
**
*
*
FLTCOS EQU *
 JSR PSHFPAC2 SAVE FPACC2 ON THE STACK.
 JSR ANGRED GO REDUCE THE ANGLE TO BETWEEN +/-PI.
 PSHB SAVE THE QUAD COUNT.

 - 55 -

 PSHA SAVE THE SINE/COSINE FLAG.
 JSR DEG2RAD CONVERT TO RADIANS.
 PULA RESTORE THE SINE/COSINE FLAG.
 EORA #$01 COMPLIMENT 90'S COPMLIMENT FLAG FOR COSINE.
 JSR SINCOS GO GET THE COSINE OF THE ANGLE.
 PULA RESTORE THE QUAD COUNT.
 CMPA #1 WAS THE ORIGINAL ANGLE IN QUAD 1?
 BEQ FLTCOS1 YES. SIGN IS OK.
 CMPA #4 WAS IT IN QUAD 4?
 BEQ FLTCOS1 YES. SIGN IS OK.
 COM MANTSGN1 NO. COSINE IS NEGATIVE IN QUADS 2 & 3.
FLTCOS1 JMP FLTSIN2 FLAG NO ERRORS, RESTORE FPACC2, & RETURN.
*
*
*
**
* *
* FLOATING POINT SINE AND COSINE SUBROUTINE *
* *
**
*
*
SINCOS EQU *
 PSHA SAVE SINE/COSINE FLAG ON STACK.
 LDX FPACC1MN+1 SAVE THE VALUE OF THE ANGLE.
 PSHX
 LDX FPACC1EX
 PSHX
 LDAA MANTSGN1
 PSHA
 LDX #SINFACT POINT TO THE FACTORIAL TABLE.
 PSHX SAVE POINTER TO THE SINE FACTORIAL TABLE.
 PSHX JUST ALLOCATE ANOTHER LOCAL (VALUE NOT IMPORTANT)
 LDAA #$4 GET INITIAL LOOP COUNT.
 PSHA SAVE AS LOCAL ON STACK
 TSY POINT TO LOCALS.
 JSR TFR1TO2 TRANSFER FPACC1 TO FPACC2.
 JSR FLTMUL GET Xª2 IN FPACC1.
 TST 10,Y ARE WE DOING THE SINE?
 BEQ SINCOS7 YES. GO DO IT.
 LDX #COSFACT NO. GET POINTER TO COSINE FACTORIAL TABLE.
 STX 1,Y SAVE IT.
 JSR TFR1TO2 COPY Xª2 INTO FPACC2.
 BRA SINCOS4 GENERATE EVEN POWERS OF "X" FOR COSINE.
SINCOS7 JSR EXG1AND2 PUT Xª2 IN FPACC2 & X IN FPACC1.
SINCOS1 JSR FLTMUL CREATE Xª3,5,7,9 OR Xª2,4,6,8.
SINCOS4 LDX FPACC1MN+1 SAVE EACH ONE ON THE STACK.
 PSHX
 LDX FPACC1EX
 PSHX
 LDAA MANTSGN1
 PSHA SAVE THE MANTISSA SIGN.
 DEC 0,Y HAVE WE GENERATED ALL THE POWERS YET?
 BNE SINCOS1 NO. GO DO SOME MORE.
 LDAA #$4 SET UP LOOP COUNT.
 STAA 0,Y
 TSX POINT TO POWERS ON THE STACK.
SINCOS2 STX 3,Y SAVE THE POINTER.
 LDX 1,Y GET THE POINTER TO THE FACTORIAL CONSTANTS.
 JSR GETFPAC2 PUT THE NUMBER IN FPACC2.
 INX POINT TO THE NEXT CONSTANT.
 INX
 INX
 INX
 STX 1,Y SAVE THE POINTER.
 LDX 3,Y GET POINTER TO POWERS.
 LDAA 0,X GET NUMBER SIGN.
 STAA MANTSGN1 PUT IN FPACC1 MANTISSA SIGN.
 LDD 1,X GET LOWER 16-BITS OF THE MANTISSA.
 STD FPACC1EX PUT IN FPACC1 MANTISSA.
 LDD 3,X GET HIGH 8 BITS OF THE MANTISSA & EXPONENT.
 STD FPACC1MN+1 PUT IT IN FPACC1 EXPONENT & MANTISSA.
 JSR FLTMUL MULTIPLY THE TWO.

 - 56 -

 LDX 3,Y GET POINTER TO POWERS BACK.
 LDD FPACC1MN+1 SAVE RESULT WHERE THE POWER OF X WAS.
 STD 3,X
 LDD FPACC1EX
 STD 1,X
 LDAA MANTSGN1 SAVE SIGN.
 STAA 0,X
 INX POINT TO THE NEXT POWER.
 INX
 INX
 INX
 INX
 DEC 0,Y DONE?
 BNE SINCOS2 NO. GO DO ANOTHER MULTIPLICATION.
 LDAA #$3 GET LOOP COUNT.
 STAA 0,Y SAVE IT.
SINCOS3 LDX 3,Y POINT TO RESULTS ON THE STACK.
 DEX POINT TO PREVIOUS RESULT.
 DEX
 DEX
 DEX
 DEX
 STX 3,Y SAVE THE NEW POINTER.
 LDAA 0,X GET NUMBERS SIGN.
 STAA MANTSGN2 PUT IT IN FPACC2.
 LDD 1,X GET LOW 16 BITS OF THE MANTISSA.
 STD FPACC2EX PUT IN FPACC2.
 LDD 3,X GET HIGH 8 BIT & EXPONENT.
 STD FPACC2MN+1 PUT IN FPACC2.
 JSR FLTADD GO ADD THE TWO NUMBERS.
 DEC 0,Y DONE?
 BNE SINCOS3 NO. GO ADD THE NEXT TERM IN.
 TST 10,Y ARE WE DOING THE SINE?
 BEQ SINCOS5 YES. GO PUT THE ORIGINAL ANGLE INTO FPACC2.
 LDX #ONE NO. FOR COSINE PUT THE CONSTANT 1 INTO FPACC2.
 JSR GETFPAC2
 BRA SINCOS6 GO ADD IT TO THE SUM OF THE TERMS.
SINCOS5 LDAA 5,Y GET THE VALUE OF THE ORIGINAL ANGLE.
 STAA MANTSGN2 PUT IT IN FPACC2.
 LDD 6,Y
 STD FPACC2EX
 LDD 8,Y
 STD FPACC2MN+1
SINCOS6 JSR FLTADD GO ADD IT TO THE SUM OF THE TERMS.
 TSX NOW CLEAN UP THE STACK.
 XGDX PUT STACK IN D.
 ADDD #31 CLEAR ALL THE TERMS & TEMPS OFF THE STACK.
 XGDX
 TXS UPDATE THE STACK POINTER.
 RTS RETURN.
*
*
ANGRED EQU *
 CLRA INITIALIZE THE 45'S COMPLIMENT FLAG.
 PSHA PUT IT ON THE STACK.
 INCA INITIALIZE THE QUAD COUNT TO 1.
 PSHA PUT IT ON THE STACK.
 TSY POINT TO IT.
 LDX #THREE60 POINT TO THE CONSTANT 360.
 JSR GETFPAC2 GET IT INTO FPACC.
 TST MANTSGN1 IS THE INPUT ANGLE NEGATIVE:
 BPL ANGRED1 NO. SKIP THE ADD.
 JSR FLTADD YES. MAKE THE ANGLE POSITIVE BY ADDING 360 DEG.
ANGRED1 DEC FPACC2EX MAKE THE CONSTANT IN FPACC2 90 DEGREES.
 DEC FPACC2EX
ANGRED2 JSR FLTCMP IS THE ANGLE LESS THAN 90 DEGREES ALREADY?
 BLS ANGRED3 YES. RETURN WITH QUAD COUNT.
 JSR FLTSUB NO. REDUCE ANGLE BY 90 DEGREES.
 INC 0,Y INCREMENT THE QUAD COUNT.
 BRA ANGRED2 GO SEE IF IT'S LESS THAN 90 NOW.
ANGRED3 LDAA 0,Y GET THE QUAD COUNT.
 CMPA #1 WAS THE ORIGINAL ANGLE IN QUAD 1?
 BEQ ANGRED4 YES. COMPUTE TRIG FUNCTION AS IS.

 - 57 -

 CMPA #3 NO. WAS THE ORIGINAL ANGLE IN QUAD 3?
 BEQ ANGRED4 YES. COMPUTE THE TRIG FUNCTION AS IF IN QUAD 1.
 LDAA #$FF NO. MUST COMPUTE THE TRIG FUNCTION OF THE 90'S
 STAA MANTSGN1 COMPLIMENT ANGLE.
 JSR FLTADD ADD 90 DEGREES TO THE NEGATED ANGLE.
ANGRED4 DEC FPACC2EX MAKE THE ANGLE IN FPACC2 45 DEGREES.
 JSR FLTCMP IS THE ANGLE < 45 DEGREES?
 BLS ANGRED5 YES. IT'S OK AS IT IS.
 INC FPACC2EX NO. MUST GET THE 90'S COMPLIMENT.
 LDAA #$FF MAKE FPACC1 NEGATIVE.
 STAA MANTSGN1
 JSR FLTADD GET THE 90'S COMPLIMENT.
 INC 1,Y SET THE FLAG.
ANGRED5 PULB GET THE QUAD COUNT.
 PULA GET THE COMPLIMENT FLAG.
 RTS RETURN WITH THE QUAD COUNT & COMPLIMENT FLAG.
*
*
EXG1AND2 EQU *
 LDD FPACC1EX
 LDX FPACC2EX
 STD FPACC2EX
 STX FPACC1EX
 LDD FPACC1MN+1
 LDX FPACC2MN+1
 STD FPACC2MN+1
 STX FPACC1MN+1
 LDAA MANTSGN1
 LDAB MANTSGN2
 STAA MANTSGN2
 STAB MANTSGN1
 RTS RETURN.
*
*
SINFACT EQU *
 FCB $6E,$38,$EF,$1D +(1/9!)
 FCB $74,$D0,$0D,$01 -(1/7!)
 FCB $7A,$08,$88,$89 +(1/5!)
 FCB $7E,$AA,$AA,$AB -(1/3!)
*
*
COSFACT EQU *
 FCB $71,$50,$0D,$01 +(1/8!)
 FCB $77,$B6,$0B,$61 -(1/6!)
 FCB $7C,$2A,$AA,$AB +(1/4!)
 FCB $80,$80,$00,$00 -(1/2!)
*
*
ONE FCB $81,$00,$00,$00 1.0
PI FCB $82,$49,$0F,$DB 3.1415927
THREE60 FCB $89,$34,$00,$00 360.0
*
*
*
**
* *
* FLOATING POINT TANGENT *
* *
**
*
*
FLTTAN EQU *
 JSR PSHFPAC2 SAVE FPACC2 ON THE STACK.
 JSR TFR1TO2 PUT A COPY OF THE ANGLE IN FPACC2.
 JSR FLTCOS GET COSINE OF THE ANGLE.
 JSR EXG1AND2 PUT RESULT IN FPACC2 & PUT ANGLE IN FPACC1.
 JSR FLTSIN GET SIN OF THE ANGLE.
 JSR FLTDIV GET TANGENT OF ANGLE BY DOING SIN/COS.
 BCC FLTTAN1 IF CARRY CLEAR, ANSWER OK.
 LDX #MAXNUM TANGENT OF 90 WAS ATTEMPTED. PUT LARGEST
 JSR GETFPAC1 NUMBER IN FPACC1.
 LDAA #TAN90ERR GET ERROR CODE IN A.
FLTTAN1 JSR PULFPAC2 RESTORE FPACC2.

 - 58 -

 RTS RETURN.
*
*
MAXNUM EQU *
 FCB $FE,$7F,$FF,$FF LARGEST POSITIVE NUMBER WE CAN HAVE.
*
*
*
**
* *
* TRIG UTILITIES *
* *
* The routines "DEG2RAD" and "RAD2DEG" are used to convert angles *
* from degrees-to-radians and radians-to-degrees respectively. The *
* routine "GETPI" will place the value of PI into FPACC1. This *
* routine should be used if the value of PI is needed in calculations *
* since it is accurate to the full 24-bits of the mantissa. *
* *
**
*
*
DEG2RAD EQU *
 JSR PSHFPAC2 SAVE FPACC2.
 LDX #PIOV180 POINT TO CONVERSION CONSTANT PI/180.
DEG2RAD1 JSR GETFPAC2 PUT IT INTO FPACC2.
 JSR FLTMUL CONVERT DEGREES TO RADIANS.
 JSR PULFPAC2 RESTORE FPACC2.
 RTS RETURN. (NOTE! DON'T REPLACE THE "JSR/RTS" WITH
* A "JMP" IT WILL NOT WORK.)
*
*
RAD2DEG EQU *
 JSR PSHFPAC2 SAVE FPACC2.
 LDX #C180OVPI POINT TO CONVERSION CONSTANT 180/PI.
 BRA DEG2RAD1 GO DO CONVERSION & RETURN.
*
*
GETPI EQU *
 LDX #PI POINT TO CONSTANT "PI".
 JMP GETFPAC1 PUT IT IN FPACC1 AND RETURN.
*
*
PIOV180 EQU *
 FCB $7B,$0E,$FA,$35
*
C180OVPI EQU *
 FCB $86,$65,$2E,$E1
*
*
*
**
* *
* The following two subroutines, PSHFPAC2 & PULPFAC2, push FPACC2 *
* onto and pull FPACC2 off of the hardware stack respectively. *
* The number is stored in the "memory format". *
* *
**
*
*
PSHFPAC2 EQU *
 PULX GET THE RETURN ADDRESS OFF OF THE STACK.
 PSHX ALLOCATE FOUR BYTES OF STACK SPACE.
 PSHX
 XGDX PUT THE RETURN ADDRESS IN D.
 TSX POINT TO THE STORAGE AREA.
 PSHB PUT THE RETURN ADDRESS BACK ON THE STACK.
 PSHA
 JMP PUTFPAC2 GO PUT FPACC2 ON THE STACK & RETURN.
*
*
PULFPAC2 EQU *
 TSX POINT TO THE RETURN ADDRESS.
 INX POINT TO THE SAVED NUMBER.

 - 59 -

 INX
 JSR GETFPAC2 RESTORE FPACC2.
 PULX GET THE RETURN ADDRESS OFF THE STACK.
 INS REMOVE THE NUMBER FROM THE STACK.
 INS
 INS
 INS
 JMP 0,X RETURN.
*
*
*
**
* *
* GETFPACx SUBROUTINE *
* *
* The GETFPAC1 and GETFPAC2 subroutines get a floating point number *
* stored in memory and put it into either FPACC1 or FPACC2 in a format *
* that is expected by all the floating point math routines. These *
* routines may easily be replaced to convert any binary floating point *
* format (i.e. IEEE format) to the format required by the math *
* routines. The "memory" format converted by these routines is shown *
* below: *
* *
* 31_______24 23 22_____________________0 *
* exponent s mantissa *
* *
* The exponent is biased by 128 to facilitate floating point *
* comparisons. The sign bit is 0 for positive numbers and 1 *
* for negative numbers. The mantissa is stored in hidden bit *
* normalized format so that 24 bits of precision can be obtained. *
* Since a normalized floating point number always has its most *
* significant bit set, we can use the 24th bit to hold the mantissa *
* sign. This allows us to get 24 bits of precision in the mantissa *
* and store the entire number in just 4 bytes. The format required by *
* the math routines uses a seperate byte for the sign, therfore each *
* floating point accumulator requires five bytes. *
* *
**
*
*
GETFPAC1 EQU *
 LDD 0,X GET THE EXPONENT & HIGH BYTE OF THE MANTISSA,
 BEQ GETFP12 IF NUMBER IS ZERO, SKIP SETTING THE MS BIT.
 CLR MANTSGN1 SET UP FOR POSITIVE NUMBER.
 TSTB IS NUMBER NEGATIVE?
 BPL GETFP11 NO. LEAVE SIGN ALONE.
 COM MANTSGN1 YES. SET SIGN TO NEGATIVE.
GETFP11 ORAB #$80 RESTORE MOST SIGNIFICANT BIT IN MANTISSA.
GETFP12 STD FPACC1EX PUT IN FPACC1.
 LDD 2,X GET LOW 16-BITS OF THE MANTISSA.
 STD FPACC1MN+1 PUT IN FPACC1.
 RTS RETURN.
*
*
GETFPAC2 EQU *
 LDD 0,X GET THE EXPONENT & HIGH BYTE OF THE MANTISSA,
 BEQ GETFP22 IF NUMBER IS 0, SKIP SETTING THE MS BIT.
 CLR MANTSGN2 SET UP FOR POSITIVE NUMBER.
 TSTB IS NUMBER NEGATIVE?
 BPL GETFP21 NO. LEAVE SIGN ALONE.
 COM MANTSGN2 YES. SET SIGN TO NEGATIVE.
GETFP21 ORAB #$80 RESTORE MOST SIGNIFICANT BIT IN MANTISSA.
GETFP22 STD FPACC2EX PUT IN FPACC1.
 LDD 2,X GET LOW 16-BITS OF THE MANTISSA.
 STD FPACC2MN+1 PUT IN FPACC1.
 RTS RETURN.
*
*
*
**
* *
* PUTFPACx SUBROUTINE *
* *

 - 60 -

* These two subroutines perform to opposite function of GETFPAC1 and *
* GETFPAC2. Again, these routines are used to convert from the *
* internal format used by the floating point package to a "memory" *
* format. See the GETFPAC1 and GETFPAC2, documentation for a *
* description of the "memory" format. *
* *
**
*
*
PUTFPAC1 EQU *
 LDD FPACC1EX GET FPACC1 EXPONENT & UPPER 8 BITS OF MANT.
 TST MANTSGN1 IS THE NUMBER NEGATIVE?
 BMI PUTFP11 YES. LEAVE THE M.S. BIT SET.
 ANDB #$7F NO. CLEAR THE M.S. BIT.
PUTFP11 STD 0,X SAVE IT IN MEMORY
 LDD FPACC1MN+1 GET L.S. 16 BITS OF THE MANTISSA.
 STD 2,X
 RTS
*
*
PUTFPAC2 EQU *
 LDD FPACC2EX GET FPACC1 EXPONENT & UPPER 8 BITS OF MANT.
 TST MANTSGN2 IS THE NUMBER NEGATIVE?
 BMI PUTFP21 YES. LEAVE THE M.S. BIT SET.
 ANDB #$7F NO. CLEAR THE M.S. BIT.
PUTFP21 STD 0,X SAVE IT IN MEMORY
 LDD FPACC2MN+1 GET L.S. 16 BITS OF THE MANTISSA.
 STD 2,X
 RTS
*

 - 61 -

Appendix D – Loading and Firing Code

This is the most recent version of my code. It is not complete of functional, and I am

constantly changing it. I will replace this with the final version when I have complete it.

* My Constants and Variables *

DISTANCE EQU $0230
V_GET_X EQU $01
V_GET_Y EQU $02
V_GET_THETA EQU $03
V_START_MOUSE EQU $04
V_STOP_MOUSE EQU $05
V_RESET_M_CNT EQU $06
V_RESET_ANGLE EQU $07
V_COMP_DIST EQU $08

BASE EQU $1000
STACK EQU $7000
PORTA EQU $00
PIOC EQU $02
PORTC EQU $03
PORTB EQU $04
PORTCL EQU $05
DDRC EQU $07
PORTD EQU $08
DDRD EQU $09
PORTE EQU $0A
CFORC EQU $0B
OC1M EQU $0C
OC1D EQU $0D
TCNT EQU $0E
TIC1 EQU $10
TIC2 EQU $12
TIC3 EQU $14
TOC1 EQU $16
TOC2 EQU $18
TOC3 EQU $1A
TOC4 EQU $1C
TI4/O5 EQU $1E
TOC5 EQU $1E
TCTL1 EQU $20
TCTL2 EQU $21
TMSK1 EQU $22
TFLG1 EQU $23
TMSK2 EQU $24
TFLG2 EQU $25
PACTL EQU $26
PACNT EQU $27
SPCR EQU $28
SPSR EQU $29
SPDR EQU $2A

 - 62 -

BAUD EQU $2B
SCCR1 EQU $2C
SCCR2 EQU $2D
SCSR EQU $2E
SCDR EQU $2F
ADCTL EQU $30
ADR1 EQU $31
ADR2 EQU $32
ADR3 EQU $33
ADR4 EQU $34
BPROT EQU $35
EPROG EQU $36
OPTION EQU $39
COPRST EQU $3A
PPROG EQU $3B
HPRIO EQU $3C
INIT EQU $3D
TEST EQU $3E
CONFIG EQU $3F

PE1 EQU %00000001 ;Value for ADCTL:
PE2 EQU %00000010

BIT0 EQU %00000001
BIT1 EQU %00000010
BIT2 EQU %00000100
BIT3 EQU %00001000
BIT4 EQU %00010000
BIT5 EQU %00100000
BIT6 EQU %01000000
BIT7 EQU %10000000

BIT543 EQU %00111000

* Interupt Vectors
 ORG $00D3
 JMP handle_oc5
 JMP handle_oc4
 JMP handle_oc3
 JMP handle_oc2
 JMP handle_oc1

 ORG $8000
INT
 lds #$01ff
 clra
 staa TMSK2,x
 ldaa #%11111000 ;the 1's corrospond to OC1-5
 staa TFLG1,x
 staa TMSK1,x
 bset TCTL1,x %01010101 ; toggle at interrupt, OC2-4
 ldaa #$80 ; special OC1 setup
 staa PACTL,x
 staa OC1M,x
 cli
 LDX #$1000

 - 63 -

 LDAA #%10000000 ; Bit 7 (ADPU) of OPTION
 STAA OPTION,X ; ..turn on A/D system

* Wait 100 microsec = 200 E-cycles for Charge Pump to Stabilize
 LDAA #40 ; 2 E cycles
WAIT1 DECA ; 2 E cycles
 BNE WAIT1 ; 3 E cycles [(2+3)*40=200 E's]

 rts

 ORG $8500
LOAD LDD #$14B0
 STD $2
 LDAB $D7

 LDAA #PE1
 JSR SAMPLE
 CBA
 BGT LOAD
 BEQ DONE1
 LDD #$04B0
 STD $2
 BRA LOAD
DONE1 LDD #$0BA0
 STD $2
 RTS

 ORG $9000
ARM LDD #$14B0
 STD $2
 LDAB $F7

 LDAA #PE1
 JSR SAMPLE
 CBA
 BGT ARM
 BEQ DONE2
 LDD #$04B0
 STD $2
 BRA ARM
DONE2 LDD #$0BA0
 STD $2

 LDAA $FF
 STAA $7000
 RTS

 ORG $9500
LOCK LDD #$14A0
 STD $4
 LDAA #106
LOCK1 NOP
 DECA
 BNE LOCK1

 LDD #$0BA0
 STD $04

 - 64 -

 LDD #$04B0
 STD $02
 RTS

FIRE LDD #$04A0
 STD $4
 LDAA #106
FIRE1 NOP
 DECA
 BNE FIRE1

 LDD #$0BA0
 STD $04
 RTS

SAMPLE LDX #1000
 STAA ADCTL,X ; PE1=BIT0

 LDAA #6 ; 2 E cycles
WAIT2 DECA ; 2 E cycles
 BNE WAIT2 ; 3 E cycles (2+3)*6=30 E's
 LDAA ADR1,X ; Get new data

 RTS

handle_oc5:
 ldx #$1000 ;required for bclr
 bclr TFLG1,x %11110111
 ldaa 0,x ;find level of PWM now
 anda #%00001000
 beq oc5pwmdown ;level is down
 ldd $08 ;load 'on' period from low mem
 bra oc5pwmend
oc5pwmdown
 ldd #28960 ;load constant low period
oc5pwmend
 addd TOC5,x ;add loaded period (hi or low)
 std TOC5,x ;set next inerrupt
 rti ;all done
handle_oc4:
 ldx #$1000 ;a slightly different routine is needed
 bclr TFLG1,x %11101111 ;for each line. (different masks)
 ldaa 0,x
 anda #%00010000
 beq oc4pwmdown
 ldd $06
 bra oc4pwmend
oc4pwmdown
 ldd #28960
oc4pwmend
 addd TOC4,x
 std TOC4,x
 rti
handle_oc3:
 ldx #$1000
 bclr TFLG1,x %11011111

 - 65 -

 ldaa 0,x
 anda #%00100000
 beq oc3pwmdown
 ldd $04
 bra oc3pwmend
oc3pwmdown
 ldd #28960
oc3pwmend
 addd TOC3,x
 std TOC3,x
 rti
handle_oc2:
 ldx #$1000
 bclr TFLG1,x %10111111
 ldaa 0,x
 anda #%01000000
 beq oc2pwmdown
 ldd $02
 bra oc2pwmend
oc2pwmdown
 ldd #28960
oc2pwmend
 addd TOC2,x
 std TOC2,x
 rti
handle_oc1:
 ldx #$1000
 bclr TFLG1,x %01111111
 ldaa 0,x
 anda #%10000000
 beq oc1pwmdown
 ldd $00
 bra oc1pwmend
oc1pwmdown
 ldd #28960
oc1pwmend
 addd TOC1,x
 std TOC1,x
 ldaa OC1D,x
 eora #$80
 staa OC1D,x
 rti

	Title
	Table Of Contents
	Abstract
	Executive Summary
	Introduction
	Integrated System
	Mobile Platform
	Actuation
	Sensors
	Behaviors
	Experimental Results
	Conclusion
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

