

University of Florida
Department of Electrical and Computer Engineering

EEL5666
Intelligent Machines Design Laboratory

Final Report

Lil’ Helper

By: Jennifer Labush

 2

Table of Contents

Abstract……………………………………...3
Executive Summary…………………………4
Integrated System……………………………5
Mobile Platform …………………………….8
Actuation…………………………………….9
Sensors……………………………………..10
Behaviors…………………………………..11
Conclusion …………………………………12
Appendices…………………………………13

 3

Abstract

The following paper describes the deigsn of an autonomous mobile robot that
vacuums a room. The robot will after being turned on travel around the house without
user interventention. It will avoid obstacles so that is will not get stuck if there is a table
or other object in the room. The motivation for this project is just avoid the monotonous
tacsk of vacuuming.

 4

Executive Summary

Lil’ Helper is a mobile autonomous robot whose sole purpose is to vacuum. It

avoids obstacles in the room and vaccums as it moves around.

Lil’ Helper uses it IR dectectors to avoid obstacles while vacuuming. IT also

implements wall following to more thoroughly clean the floor. The vacumming is done

by a Dust Buster attached to the platform.

 5

Integrated System

 Lil’ Helper is an integration of sensors, microprocessor, platform and a dust

buster. The robot uses its sensors to react to its environment. It has two 8-packs of

batteries one for the dust buster and the other for the electronics. The Servos use 6

batteries tapped off the 8-pack for the electronics.

 6

Overall View

 No

 Yes

Wall Following

Wall

Following
Behavior

 Start Bump
Switch

Obstacle

Avoidance
Behavior

 Start

Calibrate
Distance

From
Wall

Front
Too far
Away?

Turn
Towards
Wall

Back
Too far
Away?

Turn
Away
From
Wall

Yes

Yes

No

No Travel
Straight
Ahead

 7

Obstacle Avoidance

Start

Travel

Straight
Ahead

Left IR
Too
close?

Yes

Turn
Right

Right IR
Too
close?

Yes

No

No

Turn
Left

Bump
Switch

Yes
Go

Backwards

No

 8

Mobile Platform

Lil’ Helper has a wooden platform with a Dust Buster attached. The dimensions

are approximately 18 inches long, 9 inches wide, and 7 inches tall. The robot has three-

inch wheels.

The wooden platform was designed in AutoCAD and is 11 inches long, 6 inches

wide and, 4.25 inches tall. It consists of ten pieces: six pierces for holding on the servos,

bottom, a top and two sides. The microprocessor board is attached to the underside of the

top of the robot. The base holds everything else. The IR’s and Dust Buster are attached

with heavy duty Velcro. The batteries and remainder of electronics rest on the base.

 9

Actuation

There are a total of three actuators on Lil’ Helper. These include two partially

hacked Servos for drive motors. There is also a Dust Buster motor, which does the actual

vacuuming. These three actuators allow the robot to move around and vacuum the carpet.

 The servos used are Cirrus CS-80MG Buggy Servos ordered from Hobby People

(See Appendix). Servo specs:

Size (inches)
1.60 x 1.49 x 0.79

Weight
2.01oz (57g)

Speed (6v)
.25 sec/60 deg

Torque (6v)
129.8 oz/in (9.4 Kg/cm)

Output
Ball Bearings

 The Dust Buster Motor is controlled by the HC11 using a MOSFET circuit to turn

it on and off. It is powered by an 8-pack of batteries.

 10

Sensors

Sensors are useful for providing feedback to the robot. Lil’ Helper has a total of 5

sensors. There are two different types of sensors Infrared Detectors and Bump Switches.

These sensors provide information to the robot about it surroundings allowing it to avoid

obstacles and follow the wall.

The IR sensors used are Sharp GP2D 12 14. There are a total of 4 of these. There

are two IR’s in front for obstacle avoidance. There are also two on the side for wall

following.

 11

Behaviors

 Lil’ Helper has three main behaviors which help it accomplish the goal of

cleaning the floor. These behaviors are Obstacle Avoidance, Wall Following, and

Vacuuming.

 The Obstacle Avoidance behavior causes the robot to turn when it is near an

obstacle to avoid hitting it. The Wall Following behavior was implemented because

presumably there is a lot of dirt near walls. This would be missed if only obstacle

avoidance was implemented because the robot would turn before getting to the wall to

avoid the “obstacle”.

 The vacuum turns on when the robot is turned on. It is turned off when the robot

is turning to conserve battery power and extend the life of the batteries. These behaviors

combine to vacuum a room completely.

 12

Conclusion

 The design has gone through many revisions to bring it to its current state. It does

what it set out to do with the exception of the bag full sensor. I originally intended to

implement this sensor but due to time restrictions I did not complete it.

 Lil’ Helper is a useful robot for cleaning your house. It works well even though

slowly. The main downfall of the robot is battery consumption. The batteries would have

to be changed several times in vacuuming a room. In the future I would like to find a

better longer lasting battery source. In conclusion, Lil’ Helper could clean your house for

you pretty well, as long as you had a few hours to wait!

 13

Appendix

//

 14

// Jennifer Labush
//

#include <stdio.h>
#include <mil.h>
#include <hc11.h>

 extern void _start(void);

#define DUMMY_ENTRY (void (*)(void))0xFFFF
#define LEFT 0
#define RIGHT 1
#define PERIOD 30000
#define LEFT_IR analog[0]

#define STOP 0
#define SFORWARD 1
#define SREVERSE 3
#define SRIGHT 4
#define SLEFT 5
#define FRIGHT 6
#define FFORWARD 2

#pragma interrupt_handler TOC1_isr, TOC2_isr, TOC3_isr, TOC4_isr,
TOC5_isr;

void init_pwm(void);
void init_var(void);
void TOC1_isr(void);
void TOC2_isr(void);
void TOC3_isr(void);
void wait(void);
 void updatesensor(void);
 void init_ad(void);
void robot_move(int);

int dutyLEFT;
int dutyRIGHT;
int basedutyLEFT;
int basedutyRIGHT;
int baseFRONT;
int baseBACK;
int time;
int i;
int j;
int sensordata[8];
char clear[]= "\x1b\x5B\x32\x4A\x04"; /*clear screen*/
char place[]= "\x1b[1;1H"; /* Home cursor */
int loop=1;
int loop2=1;
int choice;

void main(void)
{

 15

 printf("%s", clear); /*clear screen*/
 printf("%s", place); /*home cursor*/
printf("it's working here ");

 init_pwm();

 init_ad();

 basedutyLEFT=3000+110;
 basedutyRIGHT=3000+170;

 //begin wall following
updatesensor();
//front is sensordata[5]
//back is sensordata[6]
baseFRONT= sensordata[5];
baseBACK= sensordata[6];

while(loop)
{
updatesensor();
robot_move(SFORWARD);
while ((sensordata[5] > baseFRONT+3) && (sensordata[6] < baseBACK-3))
{ robot_move(SLEFT);
updatesensor();
}
robot_move(SFORWARD);

while ((sensordata[6] > baseBACK+3) && (sensordata[5] < baseFRONT-3))
{ robot_move(SRIGHT);
updatesensor();
}
robot_move(SFORWARD);

if (sensordata[0]<30)
loop=0;

}

 //end wall following

/*

while (1)
{
 //STOP
 //SLOW FORWARD
 //TURN RIGHT
 //SLOW REVERSE
 //TURN LEFT

 16

 //TURN RIGHT
 //FAST FORWARD
 printf("1: Stop");
 printf("2: Slow Forward");
 printf("3: slow revers");
 printf("4: turn right slow");
 printf("5: turn left");
 printf("6: turn right fast");
 printf("7: FAst forward \n");

choice=getchar();
//if (choice=='1')
//robot_move(0);
//if (choice=='2')
robot_move(SFORWARD);
printf("here you are");
//robot_move(choice);

}
*/

//printf("just before the wait");
//getchar();
 time=500;
 wait();
 printf ("vacuum on");
 SET_BIT(PORTA, 0x10);
 //time=600;
 //wait();
 // printf("vacuum off");
// CLEAR_BIT(PORTA, 0x10);
 // choice='7';
// robot_move(2);
robot_move(SFORWARD);
 while (1)
 {

 updatesensor();
 //sensordata[3] is left IR
 //sensordata[1] is right IR
 //sensordata[6] is bump switch
 if (sensordata[1] >85 && sensordata[7] >85)
 {
 //goes back for a little while
//printf ("should start going back here");
robot_move(SREVERSE);

 time=500;
 wait();
robot_move(FFORWARD);
 }
 else if (sensordata[7] > 85)
 {
 //turn left

 17

 printf ("turning left");
 printf("vacuum off");
 CLEAR_BIT(PORTA, 0x10);
robot_move(SLEFT);
 time=500;
 wait();
robot_move(FFORWARD);
printf ("vacuum on");
 SET_BIT(PORTA, 0x10);

 }
 else if (sensordata[1] > 85)
 {
 //turn right
 printf("vacuum off");
 CLEAR_BIT(PORTA, 0x10);

 printf("turning right");
robot_move(SRIGHT);
 time=500;
 wait();
robot_move(FFORWARD);
printf ("vacuum on");
 SET_BIT(PORTA, 0x10);

}
//printf ("should go back if %d >30",sensordata[0]);

if (sensordata[0]<30)
{
//bump switch activated so go back
printf ("the robot should go back now!");
robot_move(SREVERSE);
time=300;
wait();
robot_move(FFORWARD);

 }

 }
// }

//printf ("the duty cycle is %d", dutyLEFT);

}

 void init_pwm(void){
 INTR_OFF();

 SET_BIT(TMSK1, 0x80); //Enable OC1
 SET_BIT(OC1M, 0x60); //OC1 control
 SET_BIT(OC1D, 0x60);

 18

 SET_BIT(TMSK1, 0x40); //Enable OC2
 SET_BIT(TCTL1, 0x80); //Clear on OC
 CLEAR_BIT(TCTL1, 0x40);

 SET_BIT(TMSK1, 0x20); //Enable OC3
 SET_BIT(TCTL1, 0x20); //Clear on OC
 CLEAR_BIT(TCTL1, 0x10);

 INTR_ON();

 }//End init_pwm

 void TOC1_isr(void){

 CLEAR_FLAG(TFLG1, 0x80);

 TOC2 = TOC1 + dutyLEFT;
 TOC3 = TOC1 + dutyRIGHT;
 TOC1 += PERIOD;

// printf ("oc1\n");
 }//End TOC1

 void TOC2_isr(void){

 CLEAR_FLAG(TFLG1, 0x40);

 }//End TOC2

 void TOC3_isr(void){

 CLEAR_FLAG(TFLG1, 0x20);

 }//End TOC3

 void wait(void){

 for (i = time; i > 0; i--)
 { for (j = time; j > 0; j--);}
 }

 void init_ad(void)
 {

 SET_BIT(OPTION, 0x80);
 time = 100;
 wait();
 }

void updatesensor(void){

 ADCTL = 0x10;

 19

 time = 12;
 wait();

 sensordata[0] = ADR1;
 sensordata[1] = ADR2;
 sensordata[2] = ADR3;
 sensordata[3] = ADR4;

 ADCTL = 0x14;

 time = 12;
 wait();

 sensordata[4] = ADR1;
 sensordata[5] = ADR2;
 sensordata[6] = ADR3;
 sensordata[7] = ADR4;

 printf("%s", clear); /*clear screen*/
 printf("%s", place); /*home cursor*/
printf ("here I came to save the day\n");
 printf("Sensor 0: %d, ", sensordata[0]);
 printf("Sensor 1: %d, ", sensordata[1]);
 printf("Sensor 2: %d, ", sensordata[2]);
 printf("Sensor 3: %d,\n", sensordata[3]);
 printf("Sensor 4: %d, ", sensordata[4]);
 printf("Sensor 5: %d, ", sensordata[5]);
 printf("Sensor 6: %d, ", sensordata[6]);
 printf("Sensor 7: %d,\n", sensordata[7]);

 //printf("Press any key to continue\n");
 //getchar();
 }

void robot_move(int choice2)
{ //begin robot_move

 if (choice2 ==0)
 {
 //STOP ROBOT
 dutyLEFT= basedutyLEFT;
 dutyRIGHT=basedutyRIGHT;

 }
 if (choice2 ==1)
 {
 printf("the robot should be going forward slowly");
 //SLOW FORWARD
 dutyLEFT= basedutyLEFT-100;
 dutyRIGHT=basedutyRIGHT+100;
 }

 if (choice2 ==2)
 {

 20

 //FAST FORWARD
 dutyLEFT= basedutyLEFT-200;
 dutyRIGHT=basedutyRIGHT+200;
 }

 if (choice2 ==3)
 {
 //SLOW REVERSE
 dutyLEFT= basedutyLEFT+200;
 dutyRIGHT=basedutyRIGHT-200;
 }

 if (choice2 ==4)
 {
 //TURN LEFT SLOW
 dutyLEFT= basedutyLEFT+100;
 dutyRIGHT=basedutyRIGHT+200;
 }

 if (choice2==5)
 {
 dutyLEFT= basedutyLEFT-100;
 dutyRIGHT=basedutyRIGHT-200;
 }

 if (choice2 ==6)
 {
 //TURN LEFT FAST
 dutyLEFT= basedutyLEFT+200;
 dutyRIGHT=basedutyRIGHT+100;
 }

} //end robot_move

#pragma abs_address:0xffd6
/* change the above address if your vector starts elsewhere */

 void (*interrupt_vectors[])(void) =
 {
 /* to cast a constant, say 0xb600, use(void (*)())0xb600 */

 DUMMY_ENTRY, /* SCI, RS232 protocol */
 DUMMY_ENTRY, /* SPI, high speed synchronous serial*/
 DUMMY_ENTRY, /* Pulse accumulator input edge */
 DUMMY_ENTRY, /* Pulse accumulator overflow */
 DUMMY_ENTRY, /* Timer overflow */
 DUMMY_ENTRY, /* TOC5 */
 DUMMY_ENTRY, /* TOC4 */
 TOC3_isr, /* TOC3 */
 TOC2_isr, /* TOC2 */
 TOC1_isr, /* TOC1 */
 DUMMY_ENTRY, /* TIC3 */
 DUMMY_ENTRY, /* TIC2 */

 21

 DUMMY_ENTRY, /* TIC1 */
 DUMMY_ENTRY, /* RTI */
 DUMMY_ENTRY, /* IRQ */
 DUMMY_ENTRY, /* XIRQ */
 DUMMY_ENTRY, /* SWI */
 DUMMY_ENTRY, /* ILLOP */
 DUMMY_ENTRY, /* COP */
 DUMMY_ENTRY, /* CLMON */
 _start /* RESET */
 };

#pragma end_abs_address

