
 1

Pele II
Soccer Playing Robot

Karina J. DaCosta
College of Electrical Engineering

University of Florida
December 4, 2001

EEL 5666

 2

Table of Contents

Abstract ……………………………………………. 3

Executive Summary…………………………………. 3

Introduction …………………………………………. 4

Integrated System……………………………………. 4

Platform………………………………………………. 4

Actuation………………………………………………5

Sensors…………………………………………………5

Special Sensor…………………………………………6

Behaviors………………………………………………10

Lessons Learned ……………………………………...10

Conclusion……………………………………………. 11

Appendix A…………………………………………….12

 3

Abstract

Various forms of soccer-style games have been around since Roman times.

The United States as a matter of fact was the first British colony to start

playing soccer-style games. Some form of football was played in the

Colonies as far back as the establishment of the original Jamestown

settlement in 1609. Imaging equipping a robot with the right components to

play American football, it would be a brilliant idea. Even more brilliant

would be equipping a robot to play a game known through out the world.

A game that has an old history and that is still popular today in other forms

such as football, ballown, etc. Thus, creating a soccer playing robot is not

only a challenge but part of history.

Executive Summary

Pele II, was able to find the goal and score. It randomly went around its

enclosed environment searching for the soccer ball. It also avoided

obstacles while it searched for the soccer ball. It uses a breakbeam to detect

the ball and two IRs for collision avoidance. When the ball breaks the beam

the microprocessor detects a different signal indicating the ball is there.

Once Pele II successfully detects the ball it starts looking for the goal. It

slowly turns until it detects a signal from the goal (beacon). There are two

collimate 40 kHz IR cans that are used to detect the signal from the goal.

Once both IRs find this signal, the goal has been found. Once it finds the goal

it starts accelerating towards the goal and finally shoots the ball out into the

 4

goal. The mechanism it uses to shoot the ball out is a solenoid. When the

ball goes inside the goal it touches a flex sensor. This flex sensor is

connected to an RF transmitter which sends a signal to the RF receiver on the

robot. When the robot receives the signal it turns LEDs on and off indicating it has

scored.

Introduction

Pele II is an autonomous soccer playing robot. The main objective of the

robot is to score a goal. Pele II simply looks for a ball and aligns itself with

the goal and shoots for the goal.

Integrated System

Pele II is operated by using the MRC11 and MRSX01 from Mekatronix.

Components on these boards were soldered using the Talrik’s manual. Pele

II contains two partially hacked servos, three 40 kHz IR cans -- one for the

breakbeam and two for beacon detection, and two IR sensors for collision

avoidance. The beacon is a 42 kHz signal that is generated by a 555 timer

chip. There is one solenoid. This solenoid is not directly connected to the

board for the microprocessor’s safety. It’s connected to a photo oscillator,

to oscillate noise. In the goal there is a flex sensor connected to an op-amp which

connects to an RF transmitter.

Mobile Platform

I used a plain platform. A flat board with an angle slot (see Figure 1a). The

design made for the Talrik’s switches were used for Pele II. The height of the

platform was adjusted so that the solenoid could be placed underneath

 5

the platform. The solenoid’s thickness and the height of the wheels were taken

into consideration when the AutoCAD design was made.

Figure 1a

Actuation

Pele II rides on two 3-inch Du-Bro wheels and a rear carriage bolt

 (instead of a caster). The Du-Bro wheels were purchased from

Mekatronix. Each of the two wheels has a partial servo hack, since

each servo needs to behave similarly to a drive motor. By having a partial servo

hack, it is able to control the output shaft’s velocity. In addition, the speed

is controlled via Pulse Width Modulated Signal (PWM). As far as stability

is concerned, placing a rear caster made Pele II gear of a little when it was in

slow-motion trying to go straight. The rear carriage bolt on the other hand ,

created more stability, since it does not move in any direction. The only

shortcoming with the carriage bolt is it renders movement on rug surfaces difficult.

Sensors

Mekatronix IR SENSORS

The Infrared Sensors (IR) that were bought from Mekatronix did not need

hacking. These IRs were used for collision avoidance because they have

great range. They are able to detect better than the regular Sharp Cans. They can also be

combined with the Sharp Cans and not have to worry about signal interference with one another

 6

since they operate at different frequencies.

SHARP CAN SENSORS

The 40 kHz IRs did however need to be hacked. This is because they are digital devices that will

only produce digital outputs. These IRs have to be modified to make them analog devices. This

modification will allow the robot to know how far the objects are, or, if they are being used as a

breakbeam, they’ll detect an interruption. Pele II uses three IRs -- one as a breakbeam combined

with an emitter and two to detect the beacon. This beacon emits a 42 kHz modulated signal

which does not interfere with the Mekatronix IRs used for collision avoidance.

BUMP SENSOR

The bumper sensor is essentially a switch. This switch closes when it is pressed

and the signal is received by the microprocessor PE0. In my design when the

bump switch is pressed, Pele II stops moving.

Special Sensor

Besides having IRs as sensors, Pele II is also equipped with a bend sensor to detect

a goal score. The Bend sensor is a unique component that changes resistance when

bent. An unflexed sensor has a nominal resistance of 10,000 ohms (10 K).

As the flex sensor is bent, the resistance gradually increases. When the sensor

is bent at 90 degrees its resistance will range between 30-40 K ohms. For

my design, I didn’t have to worry about trying to bend the flex sensor 90

degrees since the flex sensor has a thickness of .019 inches is highly sensitive to a

simple tap which is all Pele II needs. As mentioned before, the flex sensor doesn’t need to bend

90 degrees; as long as the ball taps the flex sensor it will create a noticeable resistance. Here

noticeable is defined as any value greater than the nominal value. If R2 = 33 k ohms, and the

 7

input voltage is 5 volts, then the output voltage will be in the range from 2.8 to 4 volts. The

positive power to the op-amp can be 5 volts and the negative power to the op-amp can be 0 volts.

A better value is obtained if R2 = 33 k ohms is changed to R2 = 22 k ohms (see Figure 2).

Figure 1

Figure 2

The reason for claiming this as a special sensor is because it will not stand

on its own; it will be used in conjunction with another device to exploit its unique feature. For

this design, the optimal place where the flex sensor can be placed is at the goal. It keeps track of

the goal. Once the ball taps the flex sensor, the flex sensor along with the 22k (voltage divider)

will send a signal to an op-amp. The op-amp will send out a signal to a transmitter which will

later be received by a receiver that will be mounted on the robot. Let me regress and elaborate

 8

more on how the op-amp works in my design. It has two inputs, the value obtained from the

voltage divider goes into +V op-amp input. I have placed a potentiometer going into –V op-amp

input. This potentiometer allows me to match the voltage to that of the voltage divider during its

initial stage – the initial stage meaning values of the 22k ohms and nominal value of the flex

sensor, 10.3k. By performing a voltage divider, I obtained 3.4 volts coming out of the voltage

divider during its relaxed stage. Therefore, 3.4 volts will go into +V input and the potentiometer

must be matched to 3.4 volts in the other input in order to not produce an output during its

relaxed stage and to produced an output during a tap stage, when the ball hits the flex sensor (See

Figure 3).

Figure 3

During its tap stage, the op-amp with go high sending a high signal to the

transmitter. The wireless transmitter transmits the signal to the receiver

via an λ/4 antenna. The signal is picked up by another λ/4 antenna that

will be connected to the receiver which will be mounted on the robot. Please

 9

refer to Figure 4 for better understanding. In sum, I have combined a flex sensor with a receiver

and a transmitter, making all three components account for a special sensor.

Figure 4

The values that I obtained when I tested the special sensor did not fit a straight line

approximation because there were too many factors to consider: low batteries, all not centered,

which area of the flex sensor was tapped by the ball, etcetera (See chart 1). (Chart 1)

 10

Flex Sensor Values

10.2
10.4
10.6
10.8

11
11.2
11.4
11.6
11.8

12
12.2

0 5 10 15 20 25 30

Distance (inches)

R
es

is
ta

n
ce

 (
K

)

Sensor Values

 Behaviors

The robot has four behaviors: 1) Collision avoidance 2) Identifying

the ball 3) aligning the ball with the goal 4) Making the goal.

Lessons Learned

When I made the photo oscillator circuit I burnt the chip because I left out a pull-up resistor (470

ohms or 1k ohms). I also burned a few LEDs when I was testing the circuit I had built for the 40

kHz modulated signal located at the goal. I forgot to place a pull up resistor in series with the

LEDs. So now when ever I built a circuit that either I obtained from a TA or a schematic from

the Web I make sure I’m not missing a pull up resistor, if needed. Also it’s a good habit to test

circuits you built with a multimeter or logic probe and if available an oscilloscope. I had

difficulties with the servos obtained from Mekatronix. With respect to hacking, they were more

difficult to hack than servos from previous semesters. In the end, once I calibrated the servos I

found myself having to superglue the potentiometer at the 50 % duty cycle in order to prevent it

from losing the 50% duty cycle calibration. Also keep in mind that it is almost impossible for

servos to go in a straight line . Try not to supply more than 6 Volts to the servo power unless

 11

you want to test how fast they burn (this only applies to Mekatronix servos since they’re what I

used) -- see Figure 1. Also sometimes schematics on the Web are not correct, so make sure to

either get a second opinion or an extra part in case the first one burns.

Software hints

I learned that usually timing is everything as far as trying to make the robot turn or

even go in a fairly straight line. So you should give yourself plenty of time to

test the hardware with the software.

Conclusion

The project was successful. The behaviors I proposed were realistic which

contribute to the success of the project. Don’t give up if things start burning, just

learn from your or other people’s mistakes. Also constant hard work and no

procrastination pays off.

 12

Appendix A.

/***********Karina J. DaCosta*************/
/***************PeleII********************/
/**********Avoids Obstacles***************/

#include <stdio.h>
#include <tkbase.h>
#define THRESHOLD 128
#define RIGHT_IR analog (2)
#define LEFT_IR analog(3)
#define L 0 // left servo
#define R 1 //right servo
#define SPEED_1 1000
#define SPEED_2 5000
#define BUMP_STOP 79
#define BEAM_THRESHOLD 129
#define BREAKBEAM analog(4)
#define BEACONR analog(5)//robots'right
#define BEACONL analog(7)
#define BEACON_THRESHOLD 97
#define ANTENNA analog(6)

/*IR emitter output port driver, the output latch at address 0xffb9 */
#define IRE_OUT *(unsigned char *)(0xffb9)

/*Constant for driving all the 40KHz modulated IR emitters on when loaded into IRE_OUT */
#define DIGIT_ON 0x3d
#define SOL_ON 0x3f

/*Constant for turning pin 2 40KHz modulated IR emitters off when loaded into IRE_OUT */
#define DIGIT_OFF 0x3d

#define GOAL_OFF 0x3d
#define GOAL_ON 0xfd

int state=0;
int val,l_ir, r_ir,speedl, speedr ;
int intPrevValue = 999;
int intCurrentValue = 999;
int intDifference = 0;

void read_sensors();
void init();
void print_sensor_values();

void main()
{
 init();
 servo(L, 0);

 13

 servo(R, 0);
 while(1)
 {
 print_sensor_values();
 }
}

/*** END MAIN ***/

void init()
{
 init_analog();
 init_servos();
 init_clocktk();
 IRE_OUT=DIGIT_OFF;
 IRE_OUT=DIGIT_ON;

 //wait(50);

}

void print_sensor_values()
{
 unsigned int rb;
 rb = rear_bumper(); /*Returns rear bumper value*/
 printf("\n \n analog 2: {%d}\n", RIGHT_IR);
 printf("analog 3: {%d}\n", LEFT_IR);
 r_ir = RIGHT_IR;//new from here
 l_ir = LEFT_IR;

 if(state==0){
 if(l_ir >THRESHOLD || r_ir >THRESHOLD){
 if (l_ir > THRESHOLD){
 servo(R, 2950);//slow moving
 servo(L, 3041);
 wait(100);//wait a bit
 servo(R, 3141);//move back
 servo(L, 2950);
 wait(300);
 servo(R, 4000);//turn right
 servo(L, 2950);
 wait(400);
 servo(R, 2000);
 servo(L, 4000);

 }

 else if (r_ir >THRESHOLD) {
 servo(R, 2950);//slow moving
 servo(L, 3041);
 wait(100);//wait a bit

 14

 servo(R, 3141);//move back
 servo(L, 2950);
 wait(300);
 servo(R, 2950);//turn left
 servo(L, 4000);
 wait(400);
 servo(R, 2000);
 servo(L, 4000);
 }

 }//end if l_ir or r_ir greater than threshold
 else {
 servo(R, 2930);//slow moving
 servo(L, 3041);
 }
 if (rb == BUMP_STOP){
 state=5 ;
 }
 if (BREAKBEAM < BEAM_THRESHOLD){
 state = 2 ;
 }
 }//end state 0

/********************BALL DETECTION****************************/

 else if (state == 2){

 if (BREAKBEAM < BEAM_THRESHOLD){
 printf("Ball Breakbeam 4: {%d}\n", BREAKBEAM);
 servo(R, 2930);//slow moving
 servo(L, 3041);
 wait(50);
 servo(R, 0);//stop moving
 servo(L, 0);

 state = 3;
 }
 else state = 0;
 if(rb == BUMP_STOP) state = 5 ; // end rb

 }// end state 2

/************* GOAL DETECTION *********************/

 else if(state == 3){
 // printf("goal detection");
 printf("right beacon5: {%d}\n", BEACONR);
 printf("left beac analog 7: {%d}\n", BEACONL);

 if (BEACONR > BEACON_THRESHOLD && BEACONL >
BEACON_THRESHOLD){

 15

 printf("Found Goal");
 state = 4 ;

 }// end beacon > BEACON_THRESHOLD

 else if (BEACONR < BEACON_THRESHOLD && BEACONL >
BEACON_THRESHOLD){
 printf("LEFT FOUND - TURNING RIGHT-------");
 servo(R, 2930);
 servo(L, 3041);
 wait(200);

 servo(R, 0);//turn robot's right
 servo(L, 3041);
 wait(300);

 servo(R, 0);
 servo(L, 0);
 if (BEACONR > BEACON_THRESHOLD && BEACONL >
BEACON_THRESHOLD){
 printf("Found Goal");
 state = 4 ;
 }// end beacon > BEACON_THRESHOLD

 }// end else if
 else if (BEACONR > BEACON_THRESHOLD && BEACONL <
BEACON_THRESHOLD) {
 printf("RIGHT FOUND - TURNING LEFT*******");
 servo(R, 2930);// slow moving
 servo(L, 3041);
 wait(200);
 servo(R, 2930);//turn left
 servo(L, 0);
 wait(100);
 servo(R, 0);
 servo(L, 0);
 //check if goal found
 if (BEACONR > BEACON_THRESHOLD && BEACONL >
BEACON_THRESHOLD){
 printf("Found Goal");
 state = 4 ;
 }// end beacon > BEACON_THRESHOLD

 }// end else if beacon
 else if (BEACONR < BEACON_THRESHOLD && BEACONL <
BEACON_THRESHOLD){
 servo(R, 2930);//turn right
 servo(L, 0);
 wait(200);
 servo(R, 0);

 16

 servo(L, 0);
 if (BEACONR > BEACON_THRESHOLD && BEACONL >
BEACON_THRESHOLD){
 printf("Found Goal");
 state = 4 ;
 }

 }// end else if they are both less than 97

 if (rb == BUMP_STOP){
 state = 5 ;
 }
 }// end state 3
/*****************KICK BALL******************/

 else if(state == 4){

 if (BREAKBEAM < BEAM_THRESHOLD){
 servo(R, 2930);//slow moving
 servo(L, 3041);
 wait (200);
 servo(R, 1000);
 servo(L, 5000);
 wait (400);
 IRE_OUT = SOL_ON;
 wait (400);
 IRE_OUT = DIGIT_OFF;
 state = 6;

 }
 else if(BREAKBEAM >= BEAM_THRESHOLD) {
 IRE_OUT=DIGIT_OFF;
 wait(400);
 servo(R, 2930);//slow moving
 servo(L, 3041);
 wait (200);
 state = 4 ;
 }
 if (rb == BUMP_STOP){
 state = 5 ;
 }

 }// end state 4

 else if (state == 5){
 if (rb == BUMP_STOP){
 servo(R, 0);// stop the servos
 servo(L, 0);
 printf("\n \n analog 0: {%d}\n", rb);
 wait(100);

 17

 }
 }// end state 5 which is bumper to stop servos

/********** STOP EXECUTION ***************/
 else if (state == 5){
 if (rb == BUMP_STOP){
 servo(R, 0);// stop the servos
 servo(L, 0);
 printf("\n \n analog 0: {%d}\n", rb);
 wait(100);
 }

 }// end state 5

/********* SENSE GOAL ********************/

 else if (state == 6){
 intPrevValue = ANTENNA;
 servo(L, 0);
 servo(R, 0);
 printf("\n \n previous value: {%d}\n", intPrevValue);
 if(intPrevValue != 999 && intCurrentValue != 999){
 intDifference = abs(intPrevValue - intCurrentValue);
 if (intDifference >= 165){
 printf("\n******* GOL!!! *******\n");
 state = 7;
 }
 }
 intCurrentValue = ANTENNA;
 printf("\n \n current value: {%d}\n", intCurrentValue);
 if(intPrevValue != 999 && intCurrentValue != 999){
 intDifference = abs(intPrevValue - intCurrentValue);
 printf("%d", intDifference);
 if (intDifference >= 165){
 printf("\n******* GOL!!! *******\n");
 state = 7;
 }
 }
 if (rb == BUMP_STOP){
 state=5 ;
 }// end rb
 } // end state 6

/******** FLASH "GOAL" SIGN ***********/

 else if (state == 7){
 int i = 0;
 for(i=0; i<5; i++){
 IRE_OUT=GOAL_ON;

 18

 wait(500);
 IRE_OUT=GOAL_OFF;
 wait(500);
 }
 state = 5;
 } //end state 7

}

