University of Florida
Department of Electrical and Computer Engineering
EEL 5666
Intelligent Machines Design Lab

FLAME and SMURF
An Autonomous Fire Rescue System

12/04/2001
Patrick McGinley
Richard L. Phillips Il

Table of Contents

Abstract
Executive Summary
Introduction . . .
Integrated System. . . .
Figure 1. Robot Operation Flowchart.
Mobile Platform
Figure 2. FLAME with Power Trailer.
Figure 3. FLAME Component Locations
Figure4. FLAME Electrical Schematic Diagram
Figure5 SMURF. . . .
Figure 6. SMURF Without Outer Shell. .
Figure 7. Underside of SMURF With Skidplate.
Actuation
Figure 8. Pump isolation and control circuit.
Sensors
Figure9. UDT Silicon Photodetector.
Figure 10. Flame Sensor Amplifier. .
Figure 11. Smulink Block Diagram.
Figure 12. Experimental Data for Flame Sensor.
Figure 13. Experimental Data for Flame Sensor
Figure 14. Experimental Data for Flame Sensor.
Figure 15. Experimental Data for Flame Sensor
Figure 16. Pixera Camera. .
Figure 17. Bright Color Recognition.
Tablel. Color Criteria by RGB Components.
Figure 18. 320x240 Resolution, Multiple Targets.
Figure 19. 174x144 Resolution.
Figure 20. 80x60 Resolution. .
Figure21. Single Target with Low Light.
Figure 22. Original Picture.
Figure 23. Yellowin Normal Mode.
Figure24. Yellowin Low Light Mode.
Figure 25. Red Target Mode.
Figure26. Original Picture.
Figure 27. Yellow in Normal Mode.
Figure 28. Yellow in Low Light Mode.
Figure 29. Red Target Mode.
Behaviors

Figure 30. Image Processing of Theoretical Target into RGB components.

Table 2. Switch Position Chart
Experimental Setup and System Results
Figure31. SMURF in Arena.
Conclusion . .
Documentation
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6

13

Abstract

In this report, the detailed designs for two autonomous robots are presented. The
robots were designed to perform a coordinated firefighting operation on the second-story
of a modd building. While the entire objective was not completed, the fire extinguishing
robot is fully functiond, and the other has a working machine vison sysem. Design gods
and specifications for congdruction and operation are discussed. A summary of completed
work is preseted, a wdl a indght into possble future deveopments.

Executive Summary

The SMUREF is a fully operationd firefighting robot, which serves as a proof of
concept of the origind idear It is tasked with locating multiple smdl fires within a
confined area and extinguish them, and is quite rdiable. The obstacle avoidance, fire
locating, and fire extinguishing behaviors have al been implemented. Testing has shown
that the SMURF can conggently extinguish 2 smdl candles within a closed 4%x8 arena in
under 3 minutes A posshble gpplication of this robot done would be in environment
containing hazardous materials. A large flat, enclosed area, such as a factory floor, would
be most suitable.

The FLAME meets mos of the origind project gods. The levd of qudity
achieved with the redtime mechine vison sysem was a mgor accomplishment, and it is
capable of detecting yelow or red objects from their surroundings, and even yelow
objects in relativey low light. The vison sysem even includes the option to switch target
colors in redtime via hardware switches. Due to time congdraints, the lifting arm intended
to place the SMURF into its arena was never actuaized, but the mgority of the FLAME

was completed successfully.

Introduction

Hrefighting and victim rescue usudly involves serious danger to the rescuer. To
help reduce this threat, this paper detals a robotic system for autonomoudy extinguishing
fires. The project entaills desgn and development of a pair of cooperative autonomous
vehicles to target a location where fires have been reported, and to find and extinguish any

fires.

Integrated System
The heart of the FLAME robot is an AMD K6/2-550 processor running on an Epox

MVP3-G5 motherboard. Windows Millennium Edition will be used as the operdaing
system. The pardld and serid ports will serve as the interface for the mgority of the
sensors through the ADC subsystem. One or more 12V high current lead-acid batteries
will power the FLAME, depending on the configuration sdected. Due to the demands
placed on the drive and arm motors on the FLAME, a secondary 12V power supply may
run the motors to prevent draining the computer's supply during high-activity periods.

The SMUREF is based on a Motorola 68HC11 microprocessor on a Mekatronix
MRC11 board. The MRC11 will be pared with the Mekaronix MRSX01 sensor
expanson board. SMURF will use a random wander until it finds a fire, assesses the find

viaafire sensor comparison, then responds by pumping if necessary.

Mobile Platform
The current FLAME mechanical platform is made chiefly of a 1/16" ded frame partialy

congtructed from an savaged computer case and auminum pands. However, the FLAME
must be of adequate weight to handle lifting another robot without significantly changing

its own pogtion, and the batteries and dructure will ad in baancing by acting as a

counterweight during locomotion.

FLAME Uszer Input Uszer Input SMURF
Color IR Thresholds] IR
coo Acguire Selection A Fire Sensor
Image i
4 Marrrowebard £ Wideband e —
Timeout | Fire
o
| Frocess Image \l
bt Locate Target
Fire :
Sensar Ak
s
: R Extinguish
Fire Sensaor Atternpt
hotors IR S ADC Fail Succ@
Actuate
kotors

Fail Count=5

_>I4__|

Insertion £ Extraction £
I Raise Arm I ;I Lot A I

KEY:
Behavior Projected Behaviors
{Short of Completion)
Most Critical
Sensors / Actuators Hardware Input

Figure 1. Robot Operation Flowchart.
The main power trailer (see Figure 2) includes the EverStart 9Ah lead-acid battery,

the Solar 175W DC-AC Power Inverter, and the option to add the Pixera power supply as
wel. (The Pixera supply is extremdy wdl regulated, and produces far less picture
interference than tapping the ATX power supply to he camera). One or two additiond
Yuasa 12V 2Ah gd-cdls can be attached to the top of the FLAME as a direct motor driver

DC supply, or dternate leads can be run directly to the EverStart.

e e :
(il - i T
] - &,
L p = '] . J
e tH

e i L v
Figure 2. FLAME with Power Trail

er.

The layout of the main components of the FLAME sysem are shown in Figure 3. As
marked in the Figure, they are (1) LED Object Tracking Display, (2) CCD Camera, (3)
Motor Driver Box / Display, (4) Motor Driver Relays, (5) Padld Port Output Buffer /
Inverter, (6) DC-AC Power Inverter, (7) EverStart 9Ah Main Battery, (8) Pixera AC-DC
supply, (9) ADC Package. Adjacent to the ADC Package but covered by the top shroud in
the Figure is the additiona 2Ah motor battery. All mgor circuit connections are displayed

in the overal dectrica schematic diagram, Figure 4.

F gure 3. FLAME Component Locations.
In contrast, the SMURF, as seen in Figures 56, will be kept to minimum physcd

gze possble This will enable it to better navigate in tight areas indde the room, and
reduce power consumption while active, as less energy is required to move less mass.

(Such a condraint will dso benefit the FLAME by reducing the the weight it would be

required to transport if the lifting am had been completed). The man housng is a
4.75x4.75x2.1" waterproof aduminum eectrical box. An aduminum shell was constructed
to protect the fire sensors, pump, and outboard eectronics boxes (pump isolator circuit,

sensor amplifiers), and a smooth plate was fashioned for the undersde to protect the

servos and wiring, aswell as hold the battery.

Figure.5‘. URF. Figure 6. SMURF Witht outer shell.
The pump and water tank were attached to the rear of the unit, outsde of the main housing

but insde the outer shell.

! e
R

Figure 7. Underside of SMURF withskidplate.
The power supply for the microprocessor is a pack of 7 AAA NiCd cdls, rated a 250

mAh, which can be mounted insde the waterproof computer housng. The servo/pump
power supply congsts of 6XxAA NiCd, 1100mAh, mounted undernesth the man housing

and secued by the lower skid plaee a shown in Fgure 7.

BLANK PAGE

Actuation

The FLAME will be propelled by two Mabuchi RS-540SH heavy duty 12V motors. These
will be connected to the main drive wheds via double-reduction planetary gearboxes,
extracted from HandiWorks HWO72 cordless screwdrivers, providing the necessary output
torque to drive the 20+ Ib. robot, tow the power supply traler, and several pounds of
additiond weight, which would more than encompass carrying the SMURF.

The SMURF possesses two main classes of actuators, a drivetran and a pumping
system. The wheds were designed in AutoCAD 14 and prototyped with the T-Tech
milling machine. The wheds were cut from the 1/8" thick duminum-backed particle
board, enabling them to withstand the potentidly wet environment they will be subjected
to. The drivetran will condst of two smdl, independently operated hacked Tower
Hobbies T53 servos. These two servo motors will drive the main whedls, enabling both
forward and reverse motion as well as turns in ether direction. The torque reting for esch
sevo is 42 in.-oz., with a maximum rotational speed of 272°/s (45 rpm). With 25"
diameter wheds, this trandates to a maximum linear speed of 494 ft/s (337 mph, .15
m/s). The pumping system conssts of three man components the pump, tank, and
nozzle. The 12V centrifugd pump was removed from a 1992 Pontiac Trans Am, the tank
was a modified modd arplane fud tank, cut down to a capacity of approximately 8 fl.oz.
(6 fl.oz. usable by te pump), and the nozzle was taken from a 1991 Buick Skylark. The
pump was able to operate at much less than its rated voltage, down as far as 4.5 volts, o it
was powered from the SMURF unregulated servo battery supply. It had more than
adequate pumping volume, as it was able to empty the tank in under 5 seconds with no

nozzle redricting the flow. The nozzle was not the optimd desgn, as it employed a fla,

10

triangular spray pattern roughly 30° wide. While the horizonta profile was excdlent, the
lack of verticad digtribution meant that without external actuation, it had a limited linear
range from the target in which it was effective. In the later designs, a choice was made to
focus the spray at a distance of 3-6", in order to coordinate it with the range of the fire
sensors when locating small candle flames,

Multiple modes of travd were possble for the SMURF. Rotation was farly
accurate, at approximatey 3° per millisecond of turn a the midpoint of the pulse width
range ("50% speed’). In addition to forward and backward motion, both gentle turning

and spinsin place were implemented in software.

J;I:. +y
;:m;p; ICDntru:uI ‘j |I_1.
’ [3 - &1 3500 E]
RE AL TIPS Yo
T 4

Figure 8. Pump isolation and control circuit.

The pumping function condsted of two man components. The fird was a prime
delay, and the second was a dight rotationa twisting to provide better spray coverage than
firing while 4ill. Since the pump was powered through the Servo battery pack but
triggered by a digitd output pin of the processor, an isolaion circuit, depicted in Figure 8,
was used to separate the two power sysems. It was dso equipped with a manud

arm/disarm switch, to force the pump off while downloading code or troubleshooting.

11

Sensors

Scope / Objectives - SMURF
The unique function within the SMURF sensor subsystem is fire detection. The

sensor chosen for this purpose is the United Detector Technologies Precison Slicon
Photodetector /N 14-00-003, PIN #10AP). The sensor, shown in Figure 9, clams to
match the CIE response curve within +2%, giving the robot an eemert of 'human' type
perception. It reacts to both color and brightness changes, which can be exploited for a
wide range of gpplications. However, the current focus is only on the detection of a flame

and differentiation of the flame from other classes of objects.

Figure9. UDT S'Ii:on Photodetector.

Electricdly, the sensor is best used as a voltage source, functioning in a smilar
fashion as a photo-trangstor. It's output voltage range is gpproximately 0.1-(-0.5) VDC,
with light sources occupying the -0.15V to -0.5V range, and non light-emitting objects are
generdly between 0.1V and -0.15V. An inverting amplifier was designed to create an
appropriate input voltage range to interface with the 68HC11 processor and MRSX-01
expansion board.

The photodetector has an active light reception area of 1 cf. The rise time of this
sensor s typicaly 1ns, which is far superior to the lag time experienced with CdS cells.
The operating temperature range is from 0°C to 70°C. The data sheets for this sensor are
included in Appendix 6.

Experimental Layout and Results - SMURF

The initid invedtigation into the response of the glicon photodetector was done by

measuring the output voltage when aming the detector a a light source. It was most

12

reponsve to fluorescent lights, followed by haogen and then incandescent bulbs. For
amall flames and poorly lit objects, very low output voltages (on the order of -.02 V) were

observed. Since the ADC on the robot is only 8bit 0-5V, yidding .02V resolution, it was
insufficient to dmply sample directly from the sensor. An inveting amplifier was
designed to expand the useful range of the sensor. The circuit is shown in Figure 10. It
employs a gan of K= -10, and by usng the +5V regulated supply from the MRC-11,

limits the maximum vaueto a+5V output.

LookQ

Quantitative tests | 1 were peformed usng the

10k
dSPACE data acquisition LW'I'W

Loy

ouT sysem. The block diagram

is shown as Figure 11. The | | 15+ tes involved the UDT

photodetector mounted on the SMURF and the

amplifier circuit. Four sets of experiments were
performed, usng both high and low fluorescent background light levels in combination
with both tal (44%) and short (~¥4) flames from a butane lighter. The flame was moved
linerly away from the sensor darting & a distance of 1" and ending a a distance of
goproximately 18" over the course of 20s. Each set of tria conditions was repeated three
or more times, and the results are plotted in Figures 12-15.

Figure 12 displays a test in which a large flame was placed in front of the flame
sensor and moved from directly in front to 18 inches away from the front of the robot.
The test was repeated severa times and Figure 12 shows a representative selection of
those tests. The trids show a very high degree of repeatability. This graph shows that a
threshold of 1.75 volts can be used to diminate a high amount ambient light and dill

detect aflame a 6 inches.

13

C N

Clock

Drisplay

dSPACE +{ .| o [0

DS1103MUX_ADC_COMY Fain Zaint Lizplay1

Figure11. Simulink Block Diagram
In the next test, Figure 13, the fluorescent lights that were directly overhead were

shut off, which reduced the amount of ambient light. This reduced the ambient reading off
the photodetector to approximately 0.7 volts. This dlows for the threshold to be lowered
to 1 volt and 4ill be able to detect flames at 68 inches. These trids once again show the

repeatability of the sensor.

Large Flame with Direct Fluorescent Light

T T T T I I
: ' : j — Trial 1
: ' : j — Trial 2
----- S N
' | | | Trial 4
- W bsssslensndusslpnn b b
3 A
o
= .
o -k -----r----1----- R e T e e [REEtE
5 ' | | | ' |
n 1 | | | 1 |
= 1 1 1 1 1 1
u"' 1 1 1 1 1 1
LS | S iy, 1--=-- tm-mmH- - - - [- === -
o 1 1 1 1 1 1
) 1 1 1 1 1 1
= 1 | | | 1 |
= \ | | \ |
= S S S U U S S
=L Ir 1 1 1 1 1 1
)III‘W' ' 1 1 1 ' 1
LN N VT T AU B
R __TI'I__L gk W“’\‘Aﬁl‘“‘f’\ﬂw ______
8 10 12 14 16 18 20

Distance From Fobaot (in)

Figure 12. Experimental Data for Flame Sensor.

For the next st of experiments the flame was reduced to a smdl flame. Figure 14
shows the test run with overhead fluorescent lights on. The flame is Hill detectable a 6

inches with the threshold st a 1.5 volts. This shows that the detector should be able to

14

— , X i i
ET T i i i j
I R R R AR
4 = A
m MJ 1 1 1 1 1
| 1 1 1 1 1
= - Rk it et et
o 2 ! " "] "
a 1 1 1 | 1
& - SN S — S0
Q ic ‘ i | | |
= o : " " " :
| I Fmmm e - - - — = == = — = - =d
® s A B
> = A
B e Dt CERER
z _ _ j j
® = : ; i "
L) 1 1 1 1
BE - - - L -=-=-=- t-=-=--
= ; _ ; j
Py 1 1 1 1
M =] i i i
T - ik ikt bt Shch
= Bl A TR T e A T
™ ; : j i ; ;
w _..Ql - Ll oy L (| Loy Lo L
- - pc i = S
D) nding Josuas papdury
=
®
©
S
]
b=
o]
8

Distance From Robot (in)

Figure 13. Experimental Data for Flame Sensor.

Small Flame with Direct Fluorescent Light

— Trial 1
— Trial 2

Trial 3 []

14

Distance From Robot (in)

Figure 14. Experimental Data for Flame Sensor.

In the next experiment, a smdl flame was offsst by 10° from the sraight forward

line, Fgure 15. When the sensor is offset the response fdls a a greater rate than the direct

line trids. However the flame can Hill be picked up a 4 inches. Because of this data, two
15

photodetectors will be used together to increase the data gathering capabilities of the robot.
There was an exponentia relaionship between flame distance and output voltage,

but it seems quite reasonable to goply a linear etimation. One potentid linear mode

chosen to gpproximate the longer-distance section of the curve, which would be used in

noticing the flame while searching. A second linear modd that would be more appropriate

for close-range targeting after the flame has been seen.

Small Flarne with Indirect Fluorescent Light & 10° Off-Center

Armplified Sensor Output (V)

] 2 4 2] g 10 12 14 16 13
Distance From Robot (in)

Figure 15. Experimental Data for Flame Sensor.
The use of the amplifier greatly increases perceived sendtivity, and dlows high-

intengty light sources such as fluorescent, halogen, and incandescent bulbs (that are much
brighter than the target flame) to reach a saturation vadue. By not preserving the full range
of the detector, more accurate differentistion can be done within the lower, more linear
range condging of non light-emitting objects and low-intengty light sources such as
candles or LEDs.

Scope/Objectives - FLAME

The primary task of the FLAME robot is to locate the building and place the

16

SMUREF robot insgde. However, locaing the building is a nontrivid &sk. The robot will
underteke this misson with the ad of a machine vison sysem, cgpable of discerning
objects of specific colors from the remainder of the room. The man components of the
gysem are the Pixera PXG-150N-PH CCD NTSC video camera (Figure 16), and the
Cybertainment CybermallAV PCl video capture board, based on the Brooktree BT878

capture chip.

q“"
Figure 16. P;xera Camera.

The Pixera CCD camera is a ¥ pinhole lens 512x492 dement CCD sensor and
has a dated horizontd resolution of >330 TV lines. The resolution clam seems to be
accurate, but the effective resolution is somewhat hampered by visud noise in the sgnd.
The color depth is decent compared to other mini CCD cameras. Since color saturation
and brightness can be adjusted through the software drivers of the BT878, repeatability of
color shades is more important than their absolute appearance. The camera requires no
more than 200mA a approximately 5VDC, and its video output is a standard NTSC
composte sgnd.

The CybermailAV is a very basc BT878 video cgpture card, condsting of little
more than the capture chip, the PCI interface, and three anadlog video inputs (2x composite
video, 1x S-Video). It interfaces to the motherboard via the PCI bus. Its drivers are
essentialy the Brooktree reference drivers, so the performance was solid and stable though
ungpectacular. Drivers were only available for the Microsoft operating systems based on

the Win9x kernd.

17

The second uncommon sensor packege dement on the FLAME is the ADC
subsystem. It is based on the Maxim MAX118 1Msps, 8-channd, 8-bit pardld ADC
chip. The purpose of the device is to dlow andog input to the FLAME's PC via the
padld port. The MAX118 is essentidly a complete solution in a sngle chip (The only
externd part necessary is a .1nF capacitor across the power supply).. It uses the pardld
port's STATUS regigter for input, and the CONTORL and STATUS regigters for control.
Since it requires only one initidize input, three address inputs, and one output to control
sampling and return the acknowledge sgnd, ~C; and ~S; were used. The STATUS
register only returns the 5 MSB's to the PC, so that only the 4 MSB's of the converson are
available to when usng a sngle pardld port. The ADC's D7-D4 are connected to $-Ss.
To initidize a converson, the address was placed on the CONTROL regiger's C3C1Co
lines. The ~C; hit is assarted (low) to initidize a sample, and the ~ACK sgnd is received
on ~S;. By averaging the data over 100 or more samples, it was found to be quite stable

and repeatable. Code for the ADC sampling isincluded in Appendix 4.

Experimental Layout and Results - FLAME

The teding of the FLAME vison sysem was somewhat subjective, due to its
implementation, and the range of varidbles involved in such a complex problem. The
output of the sysem is dso more difficult to measure than jus a smple voltage or
resstance. However, since the purpose of the vison system on the robot is for navigation
more than for object identification, locating the object is of primary importance. Thus, by
placing various targets in different Stuaions and comparing their location as determined
by the dgorithm to what a human would choose were they asked to find the object, the

agorithm can be eva uated.

18

The fird iterations of the vison dgorithm were based on separating the red, blue,
and green color planes, and andyzing them separatdly to find certain objects. But it was
found through experimentation that the camera was most responsve to bright colors,
particularly yelow and orange, and farly responsive to blue, then green and red to a lesser
extent. An example of the bright-color response is shown in Figure 17, a picture captured

and then dl colors below an average brightness threshold of 65% are changed to black.

III|1L.._.._.

i Vit

2 Loial Uy pmp

Figure 17. Bright Color Recognition.

The following image processing dgorithm was devel oped

olnput the imagefile

©Remove pixels not meeting the criteriafor ‘'yellowness

©Create a 2-D array representing 'yellow'=1 or 'not yellow' =0 dementsin the image
©Perform aweighted average of this array with its 4 nearest neighbors

oFind the weighted area-averaged center point of the 'yellow' pixels

©Return the center point's coordinates

Currently, there are two different criteria for 'yellowness that were determined
experimentdly to yidd useful results They are based on the 24-bit RGB color
representations, in which each color is redized as a combination of Red, Green, and Blue

components with values ranging from 0-255.

Table 1. Color Criteria by RGB Components.
Color | Red | Green| Blue |

19

>200 | >200 <170

>120 | >120 <90
>120 | >120 <90

>100 >100 <60
Red >135 <85 <100

>180 | <140 <150
<140 | >145 >180

<170 | >180 >150

Ydlow

Low Light Yelow

Blue/Green

Any pixds not meeting ether criterion, Table 1, are ignored in finding the center
point of the targets. For every pixd tha does comply with ether definition of ydlow, a
value of 1 is entered into the 2D aray. Each pixd in the interior of the array (excluding
the edge pixds, where camera noise often makes the data unusgble) is redefined as the
weighted average of R timesitsdf and each of its vertica and horizontal neighbors.

A= (REA + Aigj + Aivaj + Ajjoa + Aije1)
(R+4)

Then, an weighted area-average is calculated. Each A; term is squared, so that the <0,1>
range is preserved, but points close to other yellow points retain high coefficients, and the
effect of isolaed points is minimized. Then, the x- and y-coordinates are multiplied by
these weighting coefficients, summed, and divided by the totd number of nonzero points
used. Theresulting average (X,y) isthen the center of concentration of yellowness.

The current dgorithm, which is being devdoped in MATLAB™, is farly dow. It
can completely process a 176x144 (QCIF PAL size) image in approximately 812 seconds,
and an 80x60 image in roughly 3-4 seconds. There is some improvement in accuracy of
the concentration center coordinates using the larger picture, but it may not ke judtified by
the processing time required. Additiond accuracy was adso gained by blurring the points
in the origind image before gpplying the yedlowness criteria, which helped further reduce

isolated point noise problems, but it increased overal processng time by dmost 35%, o it

20

was not consdered worthwhile.

T T T — o I T T e—
P Victary Land Geasy, EU' j _‘ ..i:..'ﬁ..-....-.._urm.._

Rl i sl s] A el e

Figure 18. 320x240 Resolution, Multiple Targets. Figure 19. 174x144 Resolution.

Houres 18 through 21 show some represertative results from various color, light,

P R SRR - Iy
ar

Figure 20. 80x60 Resolution Figure21. Single Target with Low Light.
The previous figures showed results obtaned from the code written in

MATLAB™. This program provided the framework for the fina agorithm code that was
written in C++ (attached in Appendix 2). The actua video cepture portion of the FLAME
software was derived from a program written by Vadim Gorbatenko, and the origind first
order edge detector portion of hs program was replaced by the FLAME image processing
and control routines. This increased the cepture and processing rate from approximately
35 seconds per frame in MATLAB™ to 1/10 of a second per frame in C++. Figure 22
through 25 display the results obtained from the C++ verson of the program under norma

lighting conditions

Figure 24. Yellowin Low Light Mode. Figure 25. Red Target Mode.
Experiments were then conducted to test the dgorithm in a very low light Stuation.

Figures

Figure26. Original Picture.

Figure27. Yellowin Normal Mode

Figure 28. Yellowin Low Light Mode. Figure 29. Red Target Mode.
Behaviors

The primary objective of the FLAME robot is to correctly place the SMURF robot
correctly into the second story window and remove it after it has completed its misson. In
order to accomplish this god, it is imperative that the FLAME can accurately locate the
window and pogtion itsdf. The fird gep is to find the building. The robot will spin
counter-clockwise until it detects alarge amount of yellow viaits onboard CCD camera.

Once FLAME's vison sysem detects the generd direction of the building, it enters
a more precise targeting mode, where it atempts to properly dign itsdf in front of the
window. The color contrast between the yellow facade and the background room colors
provides the necessary amount of information to locate the window. The image is then
processed onboard and the image is separated into RGB components. The color

components of each pixd is analyzed individudly.

23

H B 8 B 8B 8B 8 8 o858

- e . " i b .
A A0 Bl B il 13 14 ke = A b 40 - - TR | o R . R T [R [. |

XMo@ W W @ W @ W ®m R M @ omo@mom @ @

Figure 30. Image Processing of Theoretical Target into RGB components.
The vison program performs a comparison of the three color components of each pixd,
and if the vaues are within a certain threshold, indicating a shade of black, white, or gray,
al three components are set to zero so that neutrd colors will not be mistaken for the
target area. Examples using both an actud picture from the CCD camera and a 16-color
theoretical representation of the building are shown in Figures 26 and 30. IR ranging is
aso be used in conjunction with the vison system to help position the robot in front of the
target. Collison avoidance and bump sensing are included in the postioning and ranging
behavior.

Usng the image processng agorithm previoudy discussed in the sensors section,
the fidd of view is broken up into a three by three grid. Where the area average is in the
grid determines the movement that FLAME should execute. An LED box, with four
LED's in a square, is ds0 included with this sysem to visudly display the average

location. The two LED's in any one direction indicate the grid direction that the average is

24

located in. When the average fdls into one of the upper three sections, top two LED's,
FLAME backs away from the target and when the average is indde one of the lower three
sections, bottom two LED's, FLAME proceeds forward toward the target. If the average is
ingde one of the left three grid sections, left two LED's, a left turn is commanded and a
right turn is commanded for the three right sections, right two LED's. When the average is
in the center section, dl four LED's, this indicates that FLAME is lined up and commands
a stop in motion. When two of the conditions are met at the same time both sets of LED's
light and FLAME executes the corresponding two direction commands.

The initid god of FLAME was to insert and extract SMURF from a building. Due
to time condrants, the lifting am part of the chasis was not completed. The following
describes the proposed assembly and its characteristics. The lifting arm will be equipped
with sensors enabling it to accuratdy determine if a safe insartion of the SMURF can be
accomplished. The god is to ensure the safety of the SMURF by preventing the arm from
being extended into the facade of the building or by dlowing the SMURF to deploy
prematurdy, potentidly resulting in a catastrophic fall.

Triggered by the directionad switch on the platform aop the am, the FLAME will
begin to extract the SMURF from the building, and return to search mode. Some direct
communication between the robots may be necessary in addition to the switch.

The purpose of the SMURF robot is to seek and extinguish fires. Once a flame is
targeted SMURF extinguishes the fire usng an onboard water cannon. This cannon
condsts of a smple relay-operated windshield-washer pump, which will draw from the
onboard water reservoir, and pump it through the fixed nozzle,

Ingtead of using the wait function included with Tdrik library, the observe function

was written. The observe command includes the wait command but also reads sensors and

25

can trigger collison avoidance and firefighting modes. Essentidly the wait command is
broken up into 25ms segments with sensor reading in between the segments.

Two direction changing commands are included in program code for SMURF, spin
and turn. In the spin command one whed rotates forward and the other whed rotates
backward. This dlows SMURF to maneuver in tight areas and to rotate in place to avoid
close obstacles. The turn command keeps both wheds rotating in the forward direction
but dows one whed down to dlow SMURF to travel in an arc ingtead of draight lines.
This helps to avoid obstacles that are at a greater distance and do not require an immediate
and drastic change in direction.

Three switches, Table 2, are included as user interface to change certain program
vaiables. The fird switch a narowband versus wideband (default) flame detection
threshold setting. The narrowband setting moves the upper and lower bounds closer
together to hdp diminate extraneous fire detections. The second switch controlled the
number of fires SMMURF looked for. In one position SMURF looks for four fires (default)
and in the second pogtion 14 fires The third switch controls the IR levels for collison
avoidance. The default pogtion is a high IR threshold which helps in collison avoidance.
The second postion is a reduced IR threshold which dlows for navigation in smaler
areas.

Table 2. Switch Position Chart.

Switch Position 1 Position 2
1 Wideband Flame Detection Narrowband Flame Detection
2 4 Fires 14 Fires
3 Far IR Threshold Near IR Threshold

The following is the desred behaviors of SMURF for when the lifting am
assembly is completed. If a period of time passes were SMURF finds no fire and no
victims, then SMURF will be programmed to return to FLAME and dat the extraction

process. The SMURF would have the capability to load itsdf onto the lifting am of

26

FLAME and sgnd FLAME to initiate the retrieval process. The FLAME will then extract

SMUREF from building, thus completing their missons.

Experimental Layout and System Results

After ingdling the hardware on the SMURF platform a flat obstacle was placed at
various distances from the IR emitters/detectors. From these readings, prdiminary IR
threshold values were obtained for collison avoidance routines. For testing purposes, a
temporary 4x8' arena was set up, Smilar to that shown in Figure 31. SMURF was placed
in the arena, and those values were tested under rea conditions and crrected as necessary.
The same procedure was followed to setup the UDT photodetectors to detect various
flanes. The sensors respond more willingly to large, bright flames but for safety
purposes, small candles were used to simulate fires.

After sensor cdibration was completed, a preiminary obstacle avoidance and
firefighting program was written, and two candles were placed a random locations in the
aena. After severd test runs, it was determined that SMURF can regularly extinguish one
candle in one minute and two in gpproximately three minutes. It was dso noted tha
SMURF had difficulty navigaing passages less than twice its mgor dimenson, or

approximately 18 inches.

Figure31. SMURF in Arena.
Using quick charged battery packs, (Servos. 6XAA NiCd, 1100 mAh, charged 12V

@ 2A for 4 min, and nP. 7xAAA NiCd, 250 mAh, charged 12V @ 1A for 3 min) runtimes
of over 30 minutes were routindy observed. This dso induded a minimum of 25
pumping cycles (though water tank refills were required after gpproximately 8-12).

As previoudy mentioned, the FLAME vison sysem was tested in severd lighting
conditions - incandescent, naturd, and fluorescent, as well as bright and dark levels of
eech. The color differentiation criteria listed in Table 1 were dso adjusted dightly from
the origina gpproximations based on feedback from these experiments.

The ydlow targets were the most obvious to the camera, even in low light. The red
was not as reedily recognizable as ydlow, but the image processor was ill able to
successfully detect it under most conditions. The poorest of the color choices used was
blue/green, in part due to the color response of the particular camera used. In lower light,
the automatic gamma and hue adjustment tended to make the entire picture bluish, and

bright blue and green were rarely seen.

Overdl, the SMURF / FLAME project has been fairly successful. A pair of robots
that can be used for firefighting were designed and prototyped. Both met the mgority of
gods origindly st forth in the origind proposd, with the exception of the communication
aspects. The SMURF can be started by closing a switch (or relay), which was part of the
origina concept, but the insertion and extraction from the building were not compl eted.

The SMURF is adle to detect and extinguish smal fires in a relatively short period
of time using a random search. Once the fire is found, the targeting procedure to pinpoint

the fire is generdly accurate, the only exception being when a fire is detected just on the

28

outsde edge of the field of view of one flame sensor, when it is possble that the SMURF
will tun away from the fire rather than toward it. The successve gpproximation
procedure that is used before the water is pumped, adong with the wiggling action while
pumping, usudly results in an effective and efficent spray profile The SMURF can
navigate a andl (4x8) arena and extinguish multiple fires within it in jus a few minutes,
and was not observed to become trapped in any limit cycles.

The chief drawbacks of SMURF are the limited fild of view of the fire sensors,
(about 10°), the lack of a wal following behavior, and accuracy of the nozzle. Adding
more fire sensors amed in different directions would help remedy the field-of-view
problems. Wal following could be implemented in software, pending the addition of Sde-
facing IR detectors. The nozzle should be articulated, and possibly replaced by one with a
circular soray paitern instead of a wide horizontd one. Verticd aming would likdy be
enough, as the horizontal aiming could be achieved by turning the robot itsdlf.

The FLAME was a mobile AMD K6/2-500 (a Pentium Il class) computer, with
onboard video capture and redtime processng capability a >10fps. It was able to track
and follow yelow objects in gregtly varying lighting conditions, and red objects in most
normdly lit Stuations, and could be switched between these modes in redtime as wdll.
The vison sysem far exceeded expectations, especidly in poor Ighting, and its speed was
aso quiteimpressve.

The FLAME dso has a few notable limitations. First, with its power consumption,
it needs farly large bateries. The current configuration requires that the 9Ah lead acid
battery be traillered behind te robot due to weight concerns. A DC-DC converter would
aso benefit power converson efficiency greatly. The current system uses a 175W DC-AC

inverter sarving the ATX power supply. (While not efficient, it was a cost effective

29

solution). A faster processor would alow for an increased frame rate for the vison
agorithm, which would smooth out tuns and benefit object following performance.
Mounting of the planetary gears from the cordiess screwdrivers was difficult, as there is
only a pin hading them in ther norma application. A capture card with Linux or
Windows 2000 driver support would be a great benefit, in terms of overal system

sability.

30

Documentation

Engdahl, Tomi. "Pardld Port Output." 1996-2000.
http://Amww.hut.fi/Misc/Electronics/circuits/pardld output.html

ePanoram.net (ELH Communications, Ltd.) "PC hardware projects page.” 2001.
http://www.epanorama.net/project pc.html#pc paralle

Gorbatenko, Vadim. "CFrameGrabberClass for C++ Source Code."
www.codeproject.com

Harries, lan. "Interfacing to the IBM-PC Pardld Printer Port." 01-26-1998.
http://www.doc.ic.ac.uk/~ih/doc/par/

Hauppauge Inc. "Hauppauge WINTV PCI Frequently Asked Questions." 2001.
http://Aww.hauppauge.comvhtml/fag.htm#M OMLIST

Acknowledgements

The SMURF / FLAME project team would like to thank the following individuas for their
contributions to the project-

Prof. A. Antonio Arroyo, Scott Nortman, and Aamir Qailyumi:
For help and guidance throughout the semester....
Jonathan Gamoneda:

For help troubleshooting the OC pins on the defective processor, Since mechanica
engineers and assembly language do not work together very well...

Dr. Cal Cranelll, Mechanical Engineering Degpt:

For lending us a more than adequate 486 DX50 |gptop to use as a programming /
debugging station for SMURF-...

The Phillips and Braiton Families
For nearly endless supplies of scrgp duminum and old computer parts...
Anthony Hinson:

Whose semi-portable briefcase computer inspired the basic FLAME entire-K 6/2-
in-a-gmdl-box design...

31

Appendix 1

SMURF

- Program Code

#include <stdio.h>

#include <tkbase.h>

#define PUMP_ADDRESS 0x01

#define PRIME 220 /I pump prime delay time to add to pumping duration **edimated**
#define PLUGGED_IN 0x00 /INOT USED

#defineIR_LEFT IRDT[3]

#define IR_RIGHT IRDT[6]

#define FLAME_SENSOR_1 IRDT[0]

#define FLAME_SENSOR_2 IRDT[2]

#define FLAME_SENSOR_3 IRDT[10]
#define FIRE_TOL 8

#define RAND TCNT&0x01

#define DIG_OUT *(unsigned char *)(0xffb9)

/IGlobals for sensors/ control

int empty=0;

int speed=100; /I set speed in main or in functions
const int turnconst=3; /I degrees per milisecond of turning, **estimated**
int iri=0;

intirl[10];

intirr[10];

intir_left=80, ir_right=80;

int firefind=0; /1 if firefound' =1, no fire =0

int firesout=0; /I number of fires extinguished

int count1=0;

int count2=0;

int RBUMPER=0;

int FBUMPER=0;

int FLAME_OLD=0;

int FAIL_COUNT=0;

int FIRE1=0;

int FIRE2=0;

int FIRE_NUMBER=7; /I number of firesto find
int MED_THRESH=115; I/ ir thresholds

int NEAR_THRESH=124; // ir near

int FLAME_THRESH=57; // fire sensor 'detect’ threshold

int FLAME_THRESH_HI=255;// fire sensor 'no detect' threshold

I
I
I
I Prototypes
I
I

void observe(int);
int pump(int, int);
void straight(int);
void stop();

void turn(int , int , int);
void spin(int);
void blindspin();
void irsample();
int search();
intir(int);

void fireavg();

n
n
n
I Functions
n
n

"

] I
/'] OBSERVE - Wait with sampling command |
/A |

void observe(int duration){
int n=1;
while (duration>25){
duration=duration-25;
read_|R();
RBUM PER=rear_bumper();
FBUMPER=front_bumper();
wait(25);
IInew entry
if (firesout<FIRE_NUMBER){ n=1;}
if (((FLAME_SENSOR_1 > FLAME_THRESH)& & (FLAME_SENSOR_1 < FLAME_THRESH_HI))|| (FLAME_SENSOR_3 >
FLAME_THRESH)& & (FLAME_SENSOR_3 < FLAME_THRESH_HI))|| (FLAME_SENSOR_2 > FLAME_THRESH)& & (FLAME_SENSOR_2 < FLAME_THRESH_HI)) }{
while ((n==1) && (FAIL_COUNT < 5)){

32

fireavg();
n=fire();
if (n==0){

}
i (n==1){
FAIL_COUNT++;

firesout++;

/lend new entry
JIsimple avoid code here ----------------------

}

wait(duration);

read_|R();
RBUMPER=rear_bumper();
FBUMPER=front_bumper();

return;
}
"
/A |
/I'| PUMP- Pumps water for specified time period |
| |
int pump(int duration, int range){
" if (lempty){ return empty;}
I else{
DIG_OUT=0xf3;
duration=duration* 10+PRIME;
/I PRIME s to prime + duration in hundreths of seconds
/lwait(duration);
while (duration>750){
wait(250);
blindspin(11);
wait(80);
blindspin(-20);
wait(80);
blindspin(15);
wait(80);
blindspin(-10);
wait(80);
blindspin(5);
wait(80);
duration=duration-750;
}
if (duration>0){
wait(duration);
}
DIG_OUT=0x03;
/lcheck if empty....
return 0;
n }
}
"
/A |
/I'| STRAIGHT - Drivesrobot 'straight' at given speed |
1| |

void straight(int newsp){
speed=newsp;
servo(0, 3000-20* speed);
servo(1, 3000+20* speed);
/1* could add correction factor to speed of onein reverseif not straight.....

return;
}
"
A |
| STOP- Stops robot |
1| |
void stop(){

speed=0;

servo(0, 0);

servo(1, 0);

return;
}
"
/a |
/I | TURN - Turns robot while travelling, can change speed |
' |

void turn(int dir, int turnmag, int newspeed){ // dir O=left, 1=right, amount =0 to 100

int turnsp=0, regsp=0, x=0;

speed=newspeed;

if (dir==0){
turnsp=3000 - 20* speed* .01* turnmag;
regsp=3000 + 20* speed;
servo(0, turnsp);
servo(1, regsp);
printf(“turn speed %4d \tit normal speed %4d \t\n",turnsp, regsp);

33

if (dir==1){

turnsp=3000+20* speed* .01* turnmag;

regsp=3000-20* speed;

servo(0, regsp);

servo(1, turnsp);

printf("turn speed %4d \tit normal speed %4d \t\n",turnsp, regsp);

/1* could add correction factor to speed for the one in reverse if not straight enough.

}
return;
}
I
i

/I'| SPIN - Turnsrobot in place, then stops |

|

void spin(int amount){ // amount =-360 to 360
int turntime=amount* turnconst;

speed=50;

1/ set const turn speed, 50, 100, whatever

if (turntime>0){

servo(0, 3000+20* speed);
servo(1, 3000+20* speed);
printf("\tW\t turntime= %d ", turntime);
if (turntime>100){
wait(100);
turntime=turntime-100;
while (turntime>100){
observe(100);
turntime=turntime-100;

wait(turntime);

}
else{ wait(turntime);}

}
if (turntime<0){

servo(0, 3000-20* speed);
servo(1, 3000-20* speed);
turntime=-1*turntime;
printf ("\\\t turntime= %d ", turntime);
if (turntime>100){
wait(100);
turntime=turntime-100;
while (turntime>100){
observe(100);
turntime=turntime-100;

wait(turntime);

}
else{ wait(turntime);}

}
stop();
return;

}

I

A

/'] BLINDSPIN - Turnsrobot in place without looking |

/

void blindspin(int amount){ // amount =-360 to 360
int turntime=amount* turnconst;

speed=50;

/1 set const turn speed, 50, 100, whatever

if (turntime>0){

servo(0, 3000+20* speed);

servo(1, 3000+20* speed);

printf (“\W\\t turntime= %d ", turntime);
wait(turntime);

}
if (turntime<0){

}

stop();
return;

}

servo(0, 3000-20* speed);

servo(1, 3000-20* speed);
turntime=-1*turntime;

printf("\t\t turntime= %d ", turntime);
wait(turntime);

void slowblindspin(int amount){ // amount =-360 to 360
int turntime=amount* turnconst* 2;

speed=15;

/1 set const turn speed, 50, 100, whatever

if (turntime>0){

servo(0, 3000+20* speed);

servo(1, 3000+20* speed);

printf("\t\t turntime= %d ", turntime);
wait(turntime);

if (turntime<0){

stop();

servo(0, 3000-20* speed);

servo(1, 3000-20* speed);
turntime=-1*turntime;

printf("\t\t turntime= %d ", turntime);
wait(turntime);

return;

}

I

I\ I
/I | '\RSAMPLE - Samples IR detectors, results into arrays |
/A |

void irsample(){
irl[iri]=IR_LEFT;
irr[ir]=IR_RIGHT;
iri=(iri+1)%10;
return;

}

I

/a |
/'] FIREAVG - Averages last 10 fire sensor values |
/A |

void fireavg(){
int firelsum=0,fire2sum=0, g=0;
for (g=0;9<10;q++){
read_|R();
firelsum=firelsum+FLAME_SENSOR_1;
fire2sum=fire2sum+FLAME_SENSOR_2;

}
FIRE1=.1*firelsum;
FIRE2=.1*fire2sum;

return;
}
"
| |
/'l IR- Averageslast 10 ir sample values |
| |
intir(int Ir){
int avg=80, sum=0, g=0;
if (Ir==0){
for (g=0;a<10;q++){
sum=sum-+irl[q];
}
avg=.1*sum;
}
else{
for (q=0;a<10;q++){
sum=sum-+irr[q];
}
avg=.1*sum;
}
return avg;
}

"

i |
/I | SEARCH - Normal collision avoid & look for fires |
/A |

int search(void){

int x=0;
intn=1;
printf("into search\n");
straight(100);
while(1){
read_IR();
I while((IR_LEFT<MED_THRESH) && (IR_RIGHT<MED_THRESH) && (FIRE<FLAME_THRESH)) {

RBUMPER=rear_bumper();

FBUMPER=front_bumper();

X++;

if ((x%5)==1){ printf("read bumpers\nlRL= %3d \tIRR= %3d\n", IR_LEFT,IR_RIGHT);}

/lif FLAME_SENSOR
if (firesout<7){n=1;}
if (((FLAME_SENSOR_1> FLAME_THRESH)& & (FLAME_SENSOR_1 < FLAME_THRESH_HI))[|((FLAME_SENSOR_3 > FLAME_THRESH)
&& (FLAME_SENSOR_3 < FLAME_THRESH_HI))|| (FLAME_SENSOR_2 > FLAME_THRESH)&& (FLAME_SENSOR_2 < FLAME_THRESH_HI))){
while ((n==1) && (FAIL_COUNT < 5)){

fireavg();
n=fire();
if (n==0){

}

if (n==1){
FAIL_COUNT++;
}

firesout++;

IIif IR
if (IR_LEFT > NEAR_THRESH) && (IR_RIGHT > NEAR_THRESH)){
printf("TOO CLOSE....TOO CLOSE... AHHH!!!!I\n");
printf("\tit backing up\n");
stop();
wait(250);
straight(-50);

35

observe(300);
stop();
spin(60);
if ((TCNT&0x01)==0){
spin(23* (TCNT& 0x03)+24);

}
if (TCNT&0x01)==1){
Spin(-31% (TCNT& 0x03)-21);

}
straight(20);

}
if (IR_LEFT > NEAR_THRESH) && (IR_RIGHT < NEAR_THRESH)&& (IR_RIGHT > MED_THRESH)){
printf("\tt SPIN RIGHT\n");
spin(20+(TCNT&0x03)*5);
stop();
straight(20);
observe(250);

}
if (IR_LEFT < NEAR_THRESH) && (IR_LEFT > MED_THRESH)&& (IR_RIGHT > NEAR_THRESH)){
printf("\tt SPIN LEFT\n");
spin(-27* (TCNT&0x03)-20);
stop();
straight(20);
observe(250);

}
if (IR_LEFT > MED_THRESH)&& (IR_LEFT < NEAR_THRESH) && (IR_RIGHT > MED_THRESH)&& (IR_RIGHT < NEAR_THRESH)){
printf("\t\t backing up\n");
stop();
wait(250);
straight(-10);
observe(500);
if ((TCNT&0x01)==0){
spin(23* (TCNT&0x03)+27);

if (TCNT&0x01)==1){
Spin(-25% (TCNT&0x03)-23);
}

}

if (IR_LEFT > MED_THRESH) && (IR_LEFT < NEAR_THRESH) && (IR_RIGHT < MED_THRESH)){
printf("/t/t turning RIGHT\n");
turn(1, 35, 100);
observe(700);

}

if (IR_LEFT < MED_THRESH) && (IR_RIGHT > MED_THRESH)&& (IR_RIGHT < NEAR_THRESH))}{
printf("\t\t turning LEFT\n");
turn(0, 45, 80);
observe(500);

}

if (FBUMPER < 14){
printf("\t\t going straight\n");
straight(100);
observe(500);
I read_IR();

Ilif BUMP

}

if (FBUMPER>15)& & (FBUMPER<25)){
straight(-50);
observe(300);
spin(-70);printf("* spin LEFT\n");
stop();
straight(100);

" read_|R();

}

if (FBUMPER>25)& & (FBUMPER<50)){
straight(-50);
observe(300);
spin(70);printf(" spin RIGHT\n");
stop();
straight(100);

" read_|R();

}

return 0;
}

I

| |
/l'| FIRE - Firefighting behavior function |
| |

int fire(){
/lturn, approach slowly, stop, check/turn, pump, check
inti=1, dir=1, spinamount=0, dirold=1, FLAME_OLD_AVG=(FIRE1+FIRE2)/2;
fireavg();
/it ((FIRE1I<FLAME_THRESH)& & (FIRE2<FLAME_THRESH)){ return} //no bogus fires
for(i=1;i<7;i++){
FLAME_OLD_AVG=(FIRE1+FIRE2)/2;
dirold=dir;
if ((i==1)& & (FIRE1>FIRE2)){ blindspin(10);dir=1;}
if ((i==1)& & (FIRE1<FIRE2)){ blindspin(-10);dir=-1;}

fireavg();

if (((FIRE1-FLAME_OLD_AVG)<FIRE_TOL) && ((FLAME_OLD_AVG-FIRE1)<FIRE_TOL)){
spinamount=0;

36

}

if (FIREL-FLAME_OLD_AVG>FIRE_TOL){
if (dir==1){ spinamount=10/i;}
if (dir==-1){ spinamount=20/i;}
dir=1;

}
if (FIRE2-FLAME_OLD_AVG>FIRE_TOL){

if (dir==-1){ spinamount=-10/i;}
if (dir== 1){ spinamount=-20/i;}
dir=-1;
}
blindspin(spinamount);
}
pump(130,0);
fireavg();
11if fail
if (FLAME_SENSOR_1 > FLAME_THRESH) |(FLAME_SENSOR_3 > 2*FLAME_THRESH) |(FLAME_SENSOR_2 > FLAME_THRESH)){
return 1;
}
/Ireturn O on success

/Ireturn 1 on fail

[P *x% NOT CHANGED* *****
return O;

I

A |
I MAIN |
I |

int main(){
int k=0, i=0, j=0, n=0, f=0, t=0, temp1=0, temp2=0, control=0;
/lir on, sample 10x to start with correct avg before moving away
DIG_OUT=0x03;
init_analog();
init_clocktk();
init_serial();
init_servos();

/I do nothing until triggered
while (!((FBUMPER<43)"(RBUMPER<126))) {
FBUMPER=front_bumper();
RBUMPER=rear_bumper();

}

/I then begin firefigthing
printf("starfin”);
straight(100);
wait(400);
FBUMPER=front_bumper();
RBUMPER=rear_bumper();

if (RBUMPER<21){ FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=4; MED_THRESH=113; NEAR_THRESH=118;} //default

if (RBUMPER>22)& (RBUMPER<40)) { FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=4; MED_THRESH=117,
NEAR_THRESH=124;} // only IR hi

if (RBUMPER>40)& (RBUMPER<46)) { FLAME_THRESH= 57, FLAME_THRESH_HI=255; FIRE_NUMBER=14; MED_THRESH=113;
NEAR_THRESH=118;} // #fireshi only

if (RBUMPER>47)& (RBUMPER<62)) { FLAME_THRESH=57; FLAME_THRESH_HI=255; FIRE_NUMBER=14; MED_THRESH=117;
NEAR_THRESH=124;} //fireshi, IR hi

if (RBUMPER>63)& (RBUMPER<81)) { FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=4; MED_THRESH=113,
NEAR_THRESH=118;} //flame hi only

if (RBUMPER>82)& (RBUMPER<92)) { FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=4; MED_THRESH=117,;
NEAR_THRESH=124;} // flamehi, IR hi

if (RBUMPER>93)& (RBUMPER<103)){ FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=14; MED_THRESH=113;
NEAR_THRESH=118;} // flame hi, #fireshi

if (RBUMPER>104)& (RBUMPER<111)){ FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=14; MED_THRESH=117;
NEAR_THRESH=124;} // al high

if (RBUMPER>112)& (RBUMPER<126)){ FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=7; MED_THRESH=117;
NEAR_THRESH=120;} //old default

search();

control=search();

I1'if firesout=0.... then search again, because there's at least 1.
if (control==0){
if (firesout==0) { search();}
return O;

}
if (control==1){
straight(-40);

observe(200);
spin(-90);
return O;

}

if (control==2){
fire();
return 0;

}

return O;

37

Appendix 2

FLAME
- Program Code

/I FrameGrabberTestDoc.cpp : implementation of the CFrameGrabberTestDoc class
n

1/ (c) Vadim Gorbatenko, 1999

/I gyv@mail.tomsknet.ru

/I All rights reserved

/I Original code by Gorbatenko in normal font

/I Modified codein Bold font

#include "stdafx.h"

#include "math.h"

#include "FrameGrabberTest.h"
#include "FrameGrabberTestDoc.h"
#include <stdio.h>

#include <io.h>

#include <dosh>

#include <conio.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] =__FILE_;

#endif

#define PROCESSOR_PAUSED 0
#define PROCESSOR_SIMPLE_VIEWER 1
#define PROCESSOR_IMAGE_FILTER 2
#define PROCESSOR_MOTION_DETECTOR 3

#define LPT1 0x0278

#define STATUSLLPT1+1

#define CONTROL 1 LPT1+2

Ilproto

Jpexxrrrrx ADC Command?t***

int adc(int);

/IEND PROTO

Ifforward definition for motion detector

LONG summ_rect_arena32(LPBY TE data, int dx, int dy, int ptX, int ptY, int rx, int ry);
LONG summ_rect_arena24(LPBY TE data, int dx, int dy, int ptX, int ptY, int rx, int ry);
I T T T

int y=0,x=0,dir=0x0;

double coeff[720][720];

double horz=0,vert=0,Z=0,ver tavg=20,hor zavg=50;

double t0=0,t1=0;

double horz1=0,hor z2=0,hor z3=0,hor z4=0,hor z5=0,hor zavg3=0;

double vert1=0,vert2=0,vert3=0,vert4=0,vert5=0,vertavg3=0;

int ¢=0, i=0, j=0, k=0, g=0, rb=0, N=400;

int sensavg[8],sum([8], sensor [8];

unsigned int a=_inp(STATUSL),data=0;

int acquired=0;

int RED1=200, RED2=120, GREEN1=200, GREEN2=120, BL UE1=170, BL UE2=90;
int color=0;

int pausel=0, pause2=0, pause3=0;

int sw11=0, sw12=0, sw13=0, sw21=0, sw22=0, sw23=0;

int bigT=1000000;

/I CFrameGrabberTestDoc

IMPLEMENT_DYNCREATE(CFrameGrabberTestDoc, CDocument)

BEGIN_MESSAGE_MAP(CFrameGrabber TestDoc, CDocument)
I{{AFX_MSG_MAP(CFrameGrabberTestDoc)
ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
ON_UPDATE_COMMAND_UI(ID_SIMPLE_FILTER, OnUpdateSimpleFilter)
ON_UPDATE_COMMAND_UI(ID_SIMPLE_VIEWER, OnUpdateSimpleViewer)
ON_UPDATE_COMMAND_UI(ID_DETECTOR, OnUpdateDetector)
ON_COMMAND(ID_DETECTOR, OnDetector)
ON_COMMAND(ID_SIMPLE_FILTER, OnSimpleFilter)
ON_COMMAND(ID_SIMPLE_VIEWER, OnSimpleViewer)
ON_COMMAND(ID_FILE_SAVE_AS, OnFileSaveAs)
ON_UPDATE_COMMAND_UI(ID_FILE_SAVE_AS, OnUpdateFileSaveAs)
ON_COMMAND(ID_PAUSE, OnPause)
ON_UPDATE_COMMAND_UI(ID_PAUSE, OnUpdatePause)
IRYAFX_MSG_MAP

END_MESSAGE_MAP()

IR T
/I CFrameGrabberTestDoc construction/destruction

CframeGrabberTestDoc::CFrameGrabberTestDoc(){ }
CFrameGrabberTestDoc::~CFrameGrabber TestDoc(){ }
BOOL CFrameGrabberTestDoc::OnNewDocument(){
if ('CDocument::OnNewDocument())
return FALSE;

m_ProcessorMode = PROCESSOR_IMAGE_FILTER;
return TRUE;

38

I T T T
/I CFrameGrabberTestDoc diagnostics

#ifdef _DEBUG
void CFrameGrabberTestDoc::AssertValid() const{
CDocument::AssertValid();

}
void CFrameGrabberTestDoc::Dump(CDumpContext& dc) const{
CDocument::Dump(dc);

}
#endif //_DEBUG

I T T
/I CFrameGrabberTestDoc commands

void CFrameGrabberTestDoc::OnEditCopy() {
if(m_ImageBitmap.GetSafeHandle() & &
AfxGetMainWnd()->OpenClipboard()){
EmptyClipboard();
SetClipboardData(CF_DIB, m_ImageBitmap.DibFromBitmap());
CloseClipboard();
}

}

void CFrameGrabberTestDoc:: OnUpdateEditCopy(CCmdUI* pCmduUl) {
pCmdUI->Enable((BOOL)m_ImageBitmap.GetSafeHandle());

}
#define IMAGEWIDTH(Ipd) ((LPBITMAPINFOHEADER)Ipd)->biWidth
#define IMAGEHEIGHT(Ipd) ((LPBITMAPINFOHEADER)Ipd)->biHeight
#define IMAGEBITS(Ipd) ((LPBITMAPINFOHEADER)Ipd)->biBitCount
#define IMAGEDATA(Ipd) (((LPBYTE)Ipd) + (((LPBITMAPINFOHEADER)Ipd)->hiSize))
/I This method called by CFrameGrabberTestView
void CFrameGrabberTestDoc::Processimage(L PBITMAPINFO IpBi){
static BOOL bRunNow = FALSE;
if(!1pBi || bRunNow) return;
bRunNow = TRUE;
switch(m_ProcessorM ode){
case PROCESSOR_SIMPLE_VIEWER:
m_ImageBitmap.CreateFromDib(IpBi);
UpdateAllViews(NULL); break;
case PROCESSOR_IMAGE_FILTER:
ifIMAGEBITS(IpBi)!=32& &
IMAGEBITS(IpBi)!=24)
{
AfxMessageBox("Can't run filter: unsupported color resolution!",MB_ICONWARNING);
m_ProcessorMode =PRO CESSOR_SIMPLE_VIEWER;
break;
}
if(ApplyFilter(IpBi))
{ m_ImageBitmap.CreateFromDib(IpBi);
UpdateAllViews(NULL);} break;
case PROCESSOR_MOTION_DETECTOR:
ifIMAGEBITS(IpBi)!=32& &
IMAGEBITS(IpBi)!=24)
{
AfxMessageBox("Can't run motion detector: unsupported color resolution!”,MB_ICONWARNING);
m_ProcessorMode =PROCESSOR_SIMPLE_VIEWER;
break;
}
if(RunDetector(IpBi))
{ m_ImageBitmap.CreateFromDib(IpBi);
UpdateAllViews(NULL);} bresk;
default:
break;
}
bRunNow = FALSE;
}

void CFrameGrabber TestDoc:: OnUpdateSimpleFilter(CCmdUl* pCmdUl)
pCmdUI->SetCheck(m_ProcessorM ode==PROCESSOR_IMAGE_FILTER);}

void CFrameGrabber TestDoc::OnUpdateSimpleViewer(CCmdUI* pCmdUl) {
pCmdul->SetCheck(m_ProcessorM ode==PROCESSOR_SIMPLE_VIEWER);}

void CFrameGrabberTestDoc::OnUpdateDetector(CCmdUl* pCmdUl) {
pCmdUI->SetCheck(m_ProcessorM ode==PROCESSOR_MOTION_DETECTOR);}

void CFrameGrabberTestDoc::OnDetector() {
m_ProcessorM ode=PROCESSOR_MOTION_DETECTOR;}

void CFrameGrabberTestDoc::OnSimpleFilter() {
m_ProcessorMode=PROCESSOR_IMAGE_FILTER;}

void CFrameGrabberTestDoc::OnSimpleViewer() {
m_ProcessorMode=PROCESSOR_SIMPLE_VIEWER;}

void CFrameGrabberTestDoc::OnFileSaveAs() {

UINT oldp=m_ProcessorMode;

m_ProcessorMode=PROCESSOR_PAUSED;

CDC *pDC=m_ImageBitmap.BegingModify();
pDGC->SetTextColor(196);
pDGC->SetBkMode(TRANSPARENT);
CSize sz=m_|mageBitmap.GetSize();
char str[32];

39

char str2[32];
CString title;
title.Format("REC %s %s", _strtime(str),_strdate(str2));;
pDC->TextOut(16,sz.cy - 16, title);
m_ImageBitmap.EndModify();
m_lmageBitmap.Save(NULL);
m_ProcessorMode=oldp;}

void CFrameGrabberTestDoc::OnUpdateFileSaveAs(CCmdUI* pCmdUl) {
pCmdul->Enable((BOOL)m_ImageBitmap.GetSafeHandle());}

void CFrameGrabberTestDoc::OnPause() {
m_ProcessorM ode=PROCESSOR_PAUSED;}

void CFrameGrabberTestDoc::OnUpdatePause(CCmdUl* pCmdUl) {
pCmdUI->SetCheck(m_ProcessorM ode==PROCESSOR_PAUSED);}

IR T

/I Processor stuff

BOOL CFrameGrabberTestDoc::ApplyFilter(LPBITMAPINFO IpBi){
ASSERT(IpBi);
int arena_dx = IMAGEWIDTH(IpBi);
int arena_dy = IMAGEHEIGHT(IpBi);
I

/I Thisisthe simplest Edge detector

/1 Pixel(x0,y0)= (abs(Pixel (x0,y0)-Pixel (x+1,y+1)) + abs(Pixel (x+1,y0)-Pixel (x0,y+1)))/2

I
switch(MAGEBITS(IpBi)) {
case 32:

{

LONG * ptr =(LONG *)IMAGEDATA(IpBi);
LONG * tmpLine = new LONG[arena_dx];
for(int y=0; y<arena_dy-1;y++)

{

for(int x=0; x<arena_dx-1;x++)

int xlyl=x+arena dx+1;

int x1y0 =x+1;

int xOy1=x-+arena_dx;

LONG r_diagl = abs(ptr[x] & Oxff -ptr[x1y1] & Oxff);

LONG g_diagl = abs((ptr[x]>>8)& Oxff - (ptr[x1y1]>>8)& Oxff);
LONG b_diagl = abs((ptr[x]>>16)& Oxff -(ptr[x1y1]>>16)& 0xff);
LONG r_diag2 = abs(ptr[x1y0] & Oxff -ptr[x0y1] & Oxff);

LONG g_diag2 = abs((ptr[x1y0]>>8)& Oxff -(ptr[x0y1]>>8)& Oxff);
LONG b_diag2 = abs((ptr[x1y0]>>16)& Oxff -(ptr[x0y1]>>16)& Oxff);

tmpLine[x] = ((r_diagl+r_diag2)>>1) |

(((g_diagl+g_diag2)>>1)<<8) |
(((b_diagl+b_diag2)>>1)<<16);

memcpy/(ptr,tmpLine, (arena_dx-1)*sizeof(DWORD));
ptr+=arena_dx;

}
delete tmpLine;
}
break;
case 24:
{

BYTE * ptr =(BYTE *)IMAGEDATA(IpBi);
BYTE * tmpLine = new BY TE[arena_dx*3];

sensor [3]=adc(3);
while(sensor [3]>5){
k=0;

while(k<1000){k++;}
pausel=adc(3);

k=0;

while(k<1000){k++;}
pause2=adc(3);

k=0;

while(k<1000){k++;}
pause3=adc(3);
sensor [3]=(pausel+pause2+pause3)/3;

}
k=0;
for (9=0;q<50;q++){

sensor [0]=adc(0);

sensor [5]=adc(5);

if (q==0){sum[0]=0;sum[5]=0;}
sum[0]=sum[0]+sensor [0];
sum[5]=sum[5]+sensor[5];

}

sensavg[0]=.015* sum[0];
sensavg[5]=.015* sum[5];
sensor [0]=sensavg[0];
sensor [5]=sensavg[5];
k=0;

g=0;

color=0;

1Y ellow (Default)

if ((sensor[0]<10)& & (sensor[5]<10)){

RED1=120;
RED2=200;
color=0;

}
/IYellow Low Light

GREEN1=120;
GREEN2=200;

BLUE1=90;
BLUE2=170;

if ((sensor[0]>10)& & (sensor[5]>10)){

40

RED1=120; GREEN1=120; BLUE1=90;
RED2=100; GREEN2=100; BLUE2=60;
color=0;

}

/IRed

if ((sensor[0]>10)& & (sensor [5]<10)){
RED1=135; GREEN1=85; BLUE1=100;
RED2=180; GREEN2=140; BLUE2=150;
color=1;

}

/IBlue/Green

if ((sensor[0]<10)& & (sensor[5]>10){
R

ED1=140; GREEN1=145; BLUE1=180;
RED2=170; GREEN2=180; BLUE2=150;
color=2;

}
for (y=0; y< arena_dy-1;y++)
{
for (x=0; x<arena_dx-1; x++)
int xOy0 = x*3;
int x1y1 = xOyO+arena_dx*3+3;
int x1y0 = x0y0+3;
int xOy1 = xOyO+arena_dx*3;
if(color==0){
if(((ptr[x0y0+2]>RED1)& & (ptr [x0y0+1]>GREEN1)& & (ptr [x0y0+0]<BL UE1))||((ptr [x0y0+2]>RED2)& & (ptr [x0y0+1]>GREEN2)& & (ptr [x0y0+0]<BL UE2)
coeffly][x]=1;
}
else{
}

}
if(color==1){

coeff[y][x]=0;

if(((ptr[xOy0+2]>RED1)& & (ptr [x0y0+1]<GREEN1)& & (ptr [x0y0+0]<BL UE1))||((ptr [xOy0+2]>RED2)&. & (ptr [x0y0+1]<GREEN2)& & (ptr [x0y0+0]<BL UE2)
coeffly][x]=1;
Llse{
}

}
if(color==2){

coeff[y][x]=0;

if(((ptr[x0y0+2]<RED1)& & (ptr[x0y0+1]>GREEN1)& & (ptr[x0y0+0]>BL UE1L))||((ptr [xOy0+2]<RED2)& & (ptr [x0y0+1]>GREEN2)& & (ptr [x0y0+0]>BL UE2)
coeffly][x]=1;
}
else{

}

coeff[y][x]=0;

/ldraw overlay image

tmpLine[x0y0] = (BY TE)((coeff[y][x])*ptr[x0yQ]);

tmpLine[x0y0+1]= (BY TE)((coeff[y][x])* ptr [x0y0+1]);

tmpLine[x0y0+2]= (BY TE)((coeff[y][x])* ptr[x0y0+2]);

if(((arena_dx/3)>(x-1))& & ((arena_dx/3)<(x+1))){
tmpLine[x0y0] = (BYTE)(0);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(255);

}

if(((2*arena_dx/3)>(x-1))& & ((2*arena_dx/3)<(x+1))){
tmpLine[x0y0] = (BYTE)(0);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(255);

}

if(((arena_dy/3)>(y-1))& & ((arena_dy/3)<(y+1)){
tmpLine[x0y0] = (BYTE)(0);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(255);

}

if(((2xarena_dy/3)>(y-1))& & ((2*arena_dy/3)<(y+1))){
tmpLine[x0y0] = (BYTE)(0);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(255);

}

if((horzavg3>(x-1))& & (hor zavg3<(x+1))){
tmpLine[x0y0] = (BYTE)(255);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(0);

}

if((vertavg3>(y-1))& & (vertavg3<(y+1))){
tmpLine[x0y0] = (BYTE)(255);
tmpLine[x0y0+1]= (BYTE)(0);
tmpLine[x0y0+2]= (BYTE)(0);

}
memcpy(ptr,tmpLine, (arena_dx-1)*3);
ptr+=arena_dx*3;

41

deletetmpLine;

/I FIND COORDINATES of X, Y
for(y=1; y< arena_dy-2;y++){
for(x=1; x<arena_dx-2; x++){
coeff[y][x]=(5* coeff[y][x] +coeff[y-2][x]+coeff[y+2][x] +coeff[y][X-2]+coeffly][x+2])/9;
}
}
vert=0;
horz=0;
Z=0;
for(y=2; y< arena_dy-3;y++){
for (x=2; x<arena_dx-3; x++){
if(coeff[y][x]>.925){
vert=vert+(coeff[y][x])* (coeff[y][X])* X;
hor z=hor z+(coeff[y][x])* (coeff[y][x])*y;
Z=7+1;

}

if (Z>0){
vertavg=vert/Z;
horzavg=horz/Z;

}

if (Z==0){
vertavg=2*arena_dy/5;
hor zavg=arena_dx/3;

t0=hor zavg;

tl=vertavg;

vertavg=tO0;

horzavg=t1;

vert5=vert4;

vert4=vert3;

vert3=vert2;

vert2=vertl;

vertl=vertavg;

horz5=hor z4;

horz4=horz3;

horz3=horz2;

horz2=horz1,

horzl=hor zavg;

vertavg3=(23*vert1+17*vert2+11* ver t3+5* ver t4+ver t5)/56;
hor zavg3=(23*hor z1+17* hor z2+11* hor zZ3+5* hor z4+hor z5)/56;

I
1l

J[F*****Calculate dir ection******

dir=0x0;

acquired=0;

/[Top Left

if ((horzavg3<(arena_dx/3))& & (vertavg3>(2*arena_dy/3))){
dir=0xfd;

}

/ITop Mid
if ((horzavg3>(arena_dx/3))& & (horzavg3<(2*arena_dx/3))& & (vertavg3>(2*arena_dy/3))){
dir=0x7c;

}

/[Top Right

if ((horzavg3>(2*arena_dx/3))& & (vertavg3>(2*arena_dy/3))){
dir=0x5e;

}

/IMid Left

if ((horzavg3<(arena_dx/3))& & (vertavg3>(arena_dy/3))& & (vertavg3<(2*arena_dy/3))){
dir=0xf5;

}
/IMid Mid
if((hor zavg3<(2*arena_dx/3))& & (horzavg3>(arena_dx/3))& & (vertavg3>(arena_dy/3))& & (vertavg3<(2*arena_dy/3))){
dir=0x0f;
acquired=1;

}

/IMid Right

if ((hor zavg3>(2*arena_dx/3))& & (vertavg3>(arena_dy/3))& & (vertavg3<(2*arena_dy/3))){
dir=0x5a;

}

//Bottom L eft

if ((horzavg3<(arena_dx/3))& & (vertavg3<(arena_dy/3))){
dir=0xf7;

}

//Bottom Mid
if ((hor zavg3<(2*arena_dx/3))& & (horzavg3>(arena_dx/3))& & (vertavg3<(arena_dy/3)){
dir=0xd3;

}

//Bottom Right

if ((horzavg3>(2*arena_dx/3))& & (vertavg3<(arena_dy/3))){
dir=0x5b;

}

i
/I end of direction section
I

1l
[loutputs
1l

/] setsavgto O

42

for (j=0;j<8;j++){sensavg[j]=0;sum[j]=0;}
Ilavg
for (j=0;j<N;j++){
for (i=0;i<8;i++){
sensor [i]=adc(i);
if (1==0){
sum[0]=0;sum[1]=0; sum[2]=0; sum[3]=0; sum[4]=0; sum[5]=0; sum[6]=0;sum[7]=0;

sum[i]=sum[i]+sensor [i];
}
}
for (j=0;j<8;j++){
sensavg[j]=.0025* sum[j];
}

IP¥***Sensor Override Direction

/IRbmp

if ((sensavg[1]<15) & & (sensavg[2]>15)) {
_outp(L PT1,0xf5);
k=0;
while(k<bigT)}{k++;}
_outp(L PT1,0xf5);

}

/ILbmp

if ((sensavg[1]>15) & & (sensavg[2]<15)) {
_outp(LPT1,0x5a);

while(k<bigT){k++;}
_outp(LPT1,0x5a);

}
/IClose and NOT Lined Up //(sensavg[1]>15)& & (sensavg[2]>15)& &
if ((sensavg[4]>130)& & (sensavg[6]>130)& & (acquired==0)){
_outp(LPT1,0x73);
k=0;
while(k<bigT)}{k++;}
_outp(LPT1,0x73);

I/'left hi, right lo & & (acquired==0)
if ((sensavg[4]<135)& & (sensavg[6]>135)){
_outp(LPT1,0x5a);
k=0;
while(k<bigT){k++;}
_outp(LPT1,0x5a);

Ieft lo, right hi
if ((sensavg[4]>135)& & (sensavg[6]<135)& & (acquired==0)){
_outp(L PT1,0xf5);
k=0;
while(k<2*bigT){k++;}
_outp(L PT1,0xf5);

/ICloseand Lined Up
if ((sensavg[1]>15)& & (sensavg[2]>15)& & (sensavg[4]>135)& & (sensavg[6]>135)& & (acquired==1)){
k=0;

_outp(L PT1,0x00);
while(k<bigT){
K+

}

+

JJFxxx5% M ove Direction ****++*

if ((sensavg[1]>15)& & (sensavg[2]>15)& & (sensavg[4]<135)& & (sensavg[6]<135)){
_outp(LPT1,dir);

}

Ilthen back up
if (dir==0xfd){_outp(L PT1,0x7d);}
if (dir==0x7c){_outp(L PT1,0x7c);}
if (dir==0x5e){_outp(L PT1,0x7e);}
[lthen sit till
if (dir==0x5a){_outp(L PT1,0x0a);}
if (dir==0x0f){_outp(L PT1,0x0f);}
if (dir==0xf5){_outp(L PT1,0x05);}
Ilthen go fwd
if (dir==0xf7){_outp(LPT1,0xd7);}
if (dir==0xd3){_outp(L PT1,0xd3);}
if (dir==0x5b){_outp(L PT1,0xdb);}

}
default: break;
}
return TRUE;

//Simplest Motion detector
BOOL CFrameGrabberTestDoc::RunDetector(LPBITMAPINFO IpBi){

/lconstants definitions for motion detector
#define ZONESX 4
#define ZONESY 4
#define ZONES ZONESX*ZONESY
#define DETECTION_LEVEL 0.05f

static LONG lastIntensity[ZONES];
static BOOL init = TRUE;
LONG newlIntensity[ZONES];
int rx = IMAGEWIDTH(IpBi)/ZONESX;
int ry = IMAGEHEIGHT(IpBi)/ZONESY;
for(inty = 0; y<ZONESY ; y++)
for(int x = 0; X<ZONESX; x++)
if(IMAGEBITS(IpBi)==32)
newlntensity[y*ZONESX+x] = summ_rect_arena32(IMAGEDATA(IpBi),
IMAGEWIDTH(IpBi),
IMAGEHEIGHT(IpBi),
X*IX, y*ry, rx, ry);

dse
if(IMAGEBITS(IpBi)==24)
newlntensity[y*ZONESX+x] = summ_rect_arena24(|MAGEDATA(IpBi),
IMAGEWIDTH(IpBi),
IMAGEHEIGHT(IpBi),
X*rX, y*ry, rx, ry);
elsereturn FALSE;
BOOL ret=FALSE;
if(tinit){
FLOAT lastRel[ZONES 1];
FLOAT newRel[ZONES1];
for(int i=0; i<ZONES1; i++)
lastRel[i] = (float)lastIntensity[i]/(float)(lastI ntensity[i+1]+1);
for(i=0; i< ZONES1; i++)
newRel[i]= (float)new!ntensity[i]/(float)(newIntensity[i+1] +1);
float alarm = (float)fabs(lastRel[i] -newRel[i])/newRel[i];
if(alarm >DETECTION_LEVEL)
{ret=TRUE; break;}

) }
memcpy(lastintensity,newlntensity, ZONES* sizeof (LONG));
init = FALSE;
return ret;
/Isome detectors stuff
LONG summ_rect_arena32(LPBY TE data, int dx, int dy, int ptX, int ptY, int rx, int ry){

LONG summ = 0;

int lineBytes = dx*4;

datat+= (lineBytes*ptY + ptX*4);//offset

for(inty = 0; y<ry; y++, data+=lineBytes)

for(int x = 0; X< rx*4; x+=4){

summ+= data[x+1];
summ+= data[x+2];
summ+= data[x+3];

}
summ/=3;
return summ;}

LONG summ_rect_arena24(LPBY TE data, int dx, int dy, int ptX, int ptY, int rx, int ry)

LONG summ = 0;
int lineBytes = dx*3;

data+= (lineBytes*ptY + ptX*3);//offset

for(inty = 0; y<ry; y++, data+=lineBytes)
for(int x = 0; x< rx*3; x+=3)
{
summ+= data[x+0];
summ+= datax+1];
summ-+= data[x+2];}
summ/=3;
return summ;

}

int in1=0, in2=0, out1=0, a0=0x0278;

int adc(int addr){
a0=addr,
/lread registers
in1=_inp(STATUSL);
in2=_inp(CONTROL 1);
Ilpreserve old control data, resend ADDRESS
outl= ((in2)& (0xf0))+addr+0x08;
_outp(CONTROL1, (out1” 0x0b));
/lsend SAMPLE COMMAND to ADC,
outl=out1-8;
_outp(CONTROL1, (out1” 0x0b));

while((Linp(STATUSL)) < 0x81){}
Ihwait for ~ACK
in1=_inp(STATUSL);

return ((inl & 0x78)*2);

Appendix 3

FLAME
- Original Program MATLAB Code: vison10.m

function visionlO(file)
%VACHI NE VISION 1.0

t 0=cl ock;

war ni ng of f

VI SI ON=i nTead(file);

t ol =50;

m d=100;

vi si on=doubl e(VI SION) ;

vi si on_ori g=vi sion;

si zes=si ze(vi sion);

M=10; % constant wei ght of middle pixel
RED=120; % M N

GREEN=120; % M N

BLUE=90; % MAX

for a=1:sizes(1),
for b=1:sizes(2),

if (~(...
(((vision_orig(a,b,1)>RED)&(vision_orig(a,b,2)>GREEN)&(vision_orig(a,b,3)<BLUE))...
| ((vision_orig(a,b,1)>200)&(vision_orig(a,b,2)>200)& vision_orig(a,b,3)<170)))...
)i
vision(a, b, :)=0;
end
end

end
% ilter out white brown dark, etc....

VI Sh=zeros(si zes(1), sizes(2));
for a=1:sizes(1),
for b=1:sizes(2),
if (((vision(a,b,1)>RED)&(vision(a,b, 2)>GREEN)&(vision(a,b, 3)<BLUE))...
| ((vision(a,b,1)>200)&(vision(a,b,2)>200)&(vision(a,b,3)<170)));

VI Sb(a, b) =1;
el se vision(a,b,:)=[0 0 0]";
end
end

end
R=5;
VI Shi n=zer os(si zes(1), sizes(2));
Y%l ur it

for a=3:(sizes(1)-2),
for b=3:(sizes(2)-2),
VI Sbi n(a, b) =(VI Sb(a+1, b-1) +VI Sb(a+1, b+1) +VI Sb(a- 1, b+1) +VI Sb(a- 1, b- 1) +R*VI Sb(a, b))/ (R+4) ;
VI Sbi n(a, b) =(VI Sb(a+1, b-1) +VI Sb(a+1, b+1) +VI Sb(a- 1, b+1) +VI Sb(a- 1, b- 1) +R*VI Sb(a, b))/ (R+4) ;
VI Sbi n(a, b) =(VI Sb(a+1, b-1) +VI Sb(a+1, b+1) +VI Sb(a- 1, b+1) +VI Sb(a- 1, b- 1) +R*VI Sb(a, b))/ (R+4) ;
end
end
% he end bl ur

%al cul ate avg point
vert =0; hor z=0; Z=0;
for a=3:sizes(1)-2,
for b=3:sizes(2)-2,
if (VIShin(a,b)>.9)
vert=vert+(VI Shin(a, b)”"2)*a;
hor z=hor z+(VI Shi n(a, b)*2) *b;
Z=7+1;
end
end
end

if (Z>0)
vertavg=vert/Z
hor zavg=hor z/ Z;
end

di sp(' Target Acquired....")
di sp(' X-coordinate ')

di sp(horzavg)

di sp(' Y- Coordinate ")

di sp(vertavg)

disp('")

VI S2=ui nt 8(vi si on);

figure(1);subplot(2,1,1);imge(VISION);

hol d on;plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],'nt');plot([.5*sizes(2) horzavg],[.5*sizes(1l) vertavg],' ' nl);
hol d of f

figure(1);subplot(2,1,2);inmge(VlIS2)

hol d on; plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],' n*');plot([.5*sizes(2) horzavg],[.5*sizes(1l) vertavg],' ' m);
hol d of f

print -djpeg90 -r0 test

T=etinme(cl ock,t0);

di sp(' El apsed Tine:');disp(T);

Appendix 4

ADC Test Code

#include <stdio.h>
#include <io.h>
#include <dos.h>
#include <conio.h>

#define LPT1 0x0278
#define STATUSL LPT1+1
#define CONTROL1 LPT1+2

int adc(int addr){
int a0=addr, in1=0, in2=0, out1=0;
/Iread registers
inl=_inp(STATUSL);
in2=_inp(CONTROL1);
Ilpreserve old control data, resend ADDRESS
outl= ((in2)& (0xf0))+addr+0x08;
_outp(CONTROL1, (outl ~ 0x0b));
/Isend SAMPLE COMMAND to ADC,
outl=outl-8;
_outp(CONTROL 1, (outl ~ 0x0b));

while((_inp(STATUSL)) < 0x81){}
[lwait for ~ACK
inl=_inp(STATUSL);

return ((inl & Ox78)*2);

int main(){
int ¢c=0, i=0, j=0, b=0, N=500;
int sensavg[8],sum[8], sensor[8];
unsigned int a=_inp(STATUSL),data=0;

for (j=0;j<8;j++){ sensavg[j]=0;sum[j]=0;}
while(b<300){

for(j=0;j<N:j++){
for (i=0;i<8;i++){
sensor[i]=adc(i);
if (j==0){ sum[0]=0;sum[1]=0;sum[2]=0;sum[3]=0;sum[4]=0;sum[5]=0;sum[6]=0;sum[7]=0;}
sum[i]=sum[i]+sensor[i];

for (j=0;j<8;j++){
sensavg[j]=.002* sum[j];
}

printf(" Sen0 %3d Rbmp %3d Lbmp %3d Sen3 %3d Rir %3d Sen5 %3d Lir %3d
\n",sensavg[0] sensavg[1] sensavg[2] sensavg[3] sensavg[4] sensavg[5], sensavg[6]);
I printf("Sen0 %3d Senl %3d Sen2 %3d Sen3 %3d Sen4 %3d Sen5 %3d Sen6 %3d
\n",sensavg[0] ,sensavg[1] sensavg[2] ,sensavg| 3] ,sensavg[4] ,sensavg[5] ,sensavg[6]);

11,4 green 05
/12,8, red (0a

if ((sensavg[1]<15) & (sensavg[2]>15)& (sensavg[4]<140) & (sensavg[6]<140)) {_outp(LPT1,0x01);}
if ((sensavg[1]>15) & (sensavg[2]>15)& (sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x02);}
if ((sensavg[1]<15) & (sensavg[2]>15)& (sensavg[4]>140) & (sensavg[6]<140)) { _outp(LPT1,0x03);}
if ((sensavg[1]>15) & (sensavg[2]<15)& (sensavg[4]<140) & (sensavg[6]<140)) { _outp(LPT1,0x04);}
if ((sensavg[1]<15) & (sensavg[2]<15)& (sensavg[4]<140) & (sensavg[6]<140)) { _outp(LPT1,0x05);}
if ((sensavg[1]>15) & (sensavg[2]<15)& (sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x06);}
if ((sensavg[1]<15) & (sensavg[2]<15)& (sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x07);}
if ((sensavg[1]>15) & (sensavg[2]>15)& (sensavg[4]<140) & (sensavg[6]>140)) {_outp(L PT1,0x08);}
if ((sensavg[1]<15) & (sensavg[2]>15)& (sensavg[4]<140) & (sensavg[6]>140)) {_outp(L PT1,0x09);}
if ((sensavg[1]>15) & (sensavg[2]>15)& (sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0a);}
if ((sensavg[1]<15) & (sensavg[2]>15)& (sensavg[4]>140) & (sensavg[6]>140)) {_outp(L PT1,0x0b);}
if ((sensavg[1]>15) & (sensavg[2]<15)& (sensavg[4]<140) & (sensavg[6]>140)) {_outp(LPT1,0x0c);}
if ((sensavg[1]<15) & (sensavg[2]<15)& (sensavg[4]<140) & (sensavg[6]>140)) { _outp(L PT1,0x0d);}
if ((sensavg[1]>15) & (sensavg[2]<15)& (sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0e);}
if ((sensavg[1]<15) & (sensavg[2]<15)& (sensavg[4]>140) & (sensavg[6]>140)) { _outp(L PT1,0x0f);}

if ((sensavg[1]>15) & (sensavg[2]>15)& (sensavg[4]<140) & (sensavg[6]<140)) { _outp(LPT1,0x00);}
/lfor (c=0;c<1000;c++){ i }

b++;

}

return 0;

46

Appendix 5

Table 3. SMURF Unique Components.

Part Name Part # Supplier Cost ($) | Quantity
Silicon Photo Detector w/ Filter PD-4 All Electronics 6.00 2
T-53 STANDARD SERVOS LXUK8&4 Tower Hobbies 9.99 2
Dubro S12 12 oz. Square Fuel Tank LXD719 Tower Hobbies 3.79 1
AC Delco Windshield Washer Pump 22057650 Sun-State Recycling 3.00 1
8.4V NICAD Pack, 7 AAA Cdls NCB-84 All Electronics 3.00 2
14.4V 1100 mA Pack, 12 AA Cdls NCB-10 All Electronics 8.75 2
Duratrax KWIK-PIT 500 Fuel Bottle LMTO33 Tower Hobbies 6.49 1
Light Duty Swivel Caster CST-4 All Electronics 1.00 2
Table 4. FLAME Unigue Components.
Part Name Part # Supplier Cost ($) | Quantity
2 ¥ Dubro Wheels (2 Pack) 275TL Hobbie Warehouse 7.09 1
Handi-works cordless screwdriver HWOQ72 WaMart 8.88 2
3A, 55V H-Bridge motor drivers LMD18200 National Semiconductor Sample 2
Pixeracolor NTSC CCD camera PXG-150N-PH Computer Geeks 21.95 1
Solar 175W DC to AC inverter SBPI-175 Cummins Industrial Tools 20.00 1
8 hit, 8 channel, 10Msps ADC MAX118 Maxim Sample 1
S3VirgeDX 3375 2MB N/A Computer Geeks 13.75 1
Cybertainment Cybermail AV PCI
video capture card BT878 Chipset N/A Computer Geeks 1450 !
12V Heavy Du%l I;/It?)tr)ucm RS-5405H G7851 Electronics Goldmine 100 2
Light Duty Swivel Caster CST-4 All Electronics 1.00 4
EverStart 12V 9Ah Battery ES12N94B1 Wamart 20.00 1
12V 2.6Ah Battery NP2.6-12 YUASA Sample 1
Suppliers:
All Electronics www.dldectronics.com
Computer Geeks www.compgeeks.com
Electronics Goldmine www.goldmine-elec.com
Maxim WWW.maximic.com FREE SAMPLES
National Semiconductor www.hational.com FREE SAMPLES

Tower Hobbies
0o0ooooo

www.towerhobbies.com
www.wal mart.com

47

