
1

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Lab

FLAME and SMURF
An Autonomous Fire Rescue System

12/04/2001
Patrick McGinley
Richard L. Phillips II

2

Table of Contents

Abstract 3
Executive Summary 4
Introduction 5
Integrated System. 5
 Figure 1. Robot Operation Flowchart. 6
Mobile Platform 5
 Figure 2. FLAME with Power Trailer. 7
 Figure 3. FLAME Component Locations. 7
 Figure 4. FLAME Electrical Schematic Diagram. 9
 Figure 5 SMURF. 8
 Figure 6. SMURF Without Outer Shell. 8
 Figure 7. Underside of SMURF With Skidplate. 8
Actuation 10
 Figure 8. Pump isolation and control circuit. 11
Sensors 12
 Figure 9. UDT Silicon Photodetector. 12
 Figure 10. Flame Sensor Amplifier. 13
 Figure 11. Simulink Block Diagram. 14
 Figure 12. Experimental Data for Flame Sensor. 14
 Figure 13. Experimental Data for Flame Sensor 15
 Figure 14. Experimental Data for Flame Sensor. 15
 Figure 15. Experimental Data for Flame Sensor 16
 Figure 16. Pixera Camera. 17
 Figure 17. Bright Color Recognition. 19
 Table 1. Color Criteria by RGB Components. 20
 Figure 18. 320x240 Resolution, Multiple Targets. 21
 Figure 19. 174x144 Resolution. 21
 Figure 20. 80x60 Resolution. 22
 Figure 21. Single Target with Low Light. 22
 Figure 22. Original Picture. 23
 Figure 23. Yellow in Normal Mode. 23
 Figure 24. Yellow in Low Light Mode. 23
 Figure 25. Red Target Mode. 23
 Figure 26. Original Picture. 23
 Figure 27. Yellow in Normal Mode. 23
 Figure 28. Yellow in Low Light Mode. 23
 Figure 29. Red Target Mode. 23
Behaviors 24
 Figure 30. Image Processing of Theoretical Target into RGB components. . 24
 Table 2. Switch Position Chart 27
Experimental Setup and System Results 27
 Figure 31. SMURF in Arena. 28
Conclusion 29
Documentation 31
Appendix 1 32
Appendix 2 38
Appendix 3 45
Appendix 4 46
Appendix 5 47
Appendix 6 48

3

Abstract
 In this report, the detailed designs for two autonomous robots are presented. The
robots were designed to perform a coordinated firefighting operation on the second-story
of a model building. While the entire objective was not completed, the fire extinguishing
robot is fully functional, and the other has a working machine vision system. Design goals
and specifications for construction and operation are discussed. A summary of completed
work is presented, as well as insight into possible future developments.

4

Executive Summary

 The SMURF is a fully operational firefighting robot, which serves as a proof of

concept of the original idea. It is tasked with locating multiple small fires within a

confined area and extinguish them, and is quite reliable. The obstacle avoidance, fire

locating, and fire extinguishing behaviors have all been implemented. Testing has shown

that the SMURF can consistently extinguish 2 small candles within a closed 4'x8' arena in

under 3 minutes. A possible application of this robot alone would be in environment

containing hazardous materials. A large flat, enclosed area, such as a factory floor, would

be most suitable.

 The FLAME meets most of the original project goals. The level of quality

achieved with the realtime machine vision system was a major accomplishment, and it is

capable of detecting yellow or red objects from their surroundings, and even yellow

objects in relatively low light. The vision system even includes the option to switch target

colors in realtime via hardware switches. Due to time constraints, the lifting arm intended

to place the SMURF into its arena was never actualized, but the majority of the FLAME

was completed successfully.

5

Introduction

 Firefighting and victim rescue usually involves serious danger to the rescuer. To

help reduce this threat, this paper details a robotic system for autonomously extinguishing

fires. The project entails design and development of a pair of cooperative autonomous

vehicles to target a location where fires have been reported, and to find and extinguish any

fires.

Integrated System
 The heart of the FLAME robot is an AMD K6/2-550 processor running on an Epox

MVP3-G5 motherboard. Windows Millennium Edition will be used as the operating

system. The parallel and serial ports will serve as the interface for the majority of the

sensors through the ADC subsystem. One or more 12V high current lead-acid batteries

will power the FLAME, depending on the configuration selected. Due to the demands

placed on the drive and arm motors on the FLAME, a secondary 12V power supply may

run the motors to prevent draining the computer's supply during high-activity periods.

 The SMURF is based on a Motorola 68HC11 microprocessor on a Mekatronix

MRC11 board. The MRC11 will be paired with the Mekatronix MRSX01 sensor

expansion board. SMURF will use a random wander until it finds a fire, assesses the find

via a fire sensor comparison, then responds by pumping if necessary.

Mobile Platform
The current FLAME mechanical platform is made chiefly of a 1/16" steel frame partially

constructed from an salvaged computer case and aluminum panels. However, the FLAME

must be of adequate weight to handle lifting another robot without significantly changing

its own position, and the batteries and structure will aid in balancing by acting as a

6

counterweight during locomotion.

Figure 1. Robot Operation Flowchart.
 The main power trailer (see Figure 2) includes the EverStart 9Ah lead-acid battery,

the Solar 175W DC-AC Power Inverter, and the option to add the Pixera power supply as

well. (The Pixera supply is extremely well regulated, and produces far less picture

interference than tapping the ATX power supply to he camera). One or two additional

Yuasa 12V 2Ah gel-cells can be attached to the top of the FLAME as a direct motor driver

DC supply, or alternate leads can be run directly to the EverStart.

7

Figure 2. FLAME with Power Trailer.
The layout of the main components of the FLAME system are shown in Figure 3. As

marked in the Figure, they are: (1) LED Object Tracking Display, (2) CCD Camera, (3)

Motor Driver Box / Display, (4) Motor Driver Relays, (5) Parallel Port Output Buffer /

Inverter, (6) DC-AC Power Inverter, (7) EverStart 9Ah Main Battery, (8) Pixera AC-DC

supply, (9) ADC Package. Adjacent to the ADC Package but covered by the top shroud in

the Figure is the additional 2Ah motor battery. All major circuit connections are displayed

in the overall electrical schematic diagram, Figure 4.

Figure 3. FLAME Component Locations.
 In contrast, the SMURF, as seen in Figures 5-6, will be kept to minimum physical

size possible. This will enable it to better navigate in tight areas inside the room, and

reduce power consumption while active, as less energy is required to move less mass.

(Such a constraint will also benefit the FLAME by reducing the the weight it would be

8

required to transport if the lifting arm had been completed). The main housing is a

4.75.x4.75x2.1" waterproof aluminum electrical box. An aluminum shell was constructed

to protect the fire sensors, pump, and outboard electronics boxes (pump isolator circuit,

sensor amplifiers), and a smooth plate was fashioned for the underside to protect the

servos and wiring, as well as hold the battery.

 Figure 5. SMURF. Figure 6. SMURF without outer shell.
The pump and water tank were attached to the rear of the unit, outside of the main housing

but inside the outer shell.

Figure 7. Underside of SMURF with skidplate.
The power supply for the microprocessor is a pack of 7 AAA NiCd cells, rated at 250

mAh, which can be mounted inside the waterproof computer housing. The servo/pump

power supply consists of 6xAA NiCd, 1100mAh, mounted underneath the main housing

and secured by the lower skid plate, as shown in Figure 7.

9

BLANK PAGE

10

Actuation

The FLAME will be propelled by two Mabuchi RS-540SH heavy duty 12V motors. These

will be connected to the main drive wheels via double-reduction planetary gearboxes,

extracted from HandiWorks HW072 cordless screwdrivers, providing the necessary output

torque to drive the 20+ lb. robot, tow the power supply trailer, and several pounds of

additional weight, which would more than encompass carrying the SMURF.

 The SMURF possesses two main classes of actuators, a drivetrain and a pumping

system. The wheels were designed in AutoCAD 14 and prototyped with the T-Tech

milling machine. The wheels were cut from the 1/8" thick aluminum-backed particle

board, enabling them to withstand the potentially wet environment they will be subjected

to. The drivetrain will consist of two small, independently operated hacked Tower

Hobbies T53 servos. These two servo motors will drive the main wheels, enabling both

forward and reverse motion as well as turns in either direction. The torque rating for each

servo is 42 in.-oz., with a maximum rotational speed of 272°/s (45 rpm). With 2.5"

diameter wheels, this translates to a maximum linear speed of .494 ft/s (.337 mph, .15

m/s). The pumping system consists of three main components: the pump, tank, and

nozzle. The 12V centrifugal pump was removed from a 1992 Pontiac Trans Am, the tank

was a modified model airplane fuel tank, cut down to a capacity of approximately 8 fl.oz.

(6 fl.oz. usable by the pump), and the nozzle was taken from a 1991 Buick Skylark. The

pump was able to operate at much less than its rated voltage, down as far as 4.5 volts, so it

was powered from the SMURF unregulated servo battery supply. It had more than

adequate pumping volume, as it was able to empty the tank in under 5 seconds with no

nozzle restricting the flow. The nozzle was not the optimal design, as it employed a flat,

11

triangular spray pattern roughly 30° wide. While the horizontal profile was excellent, the

lack of vertical distribution meant that without external actuation, it had a limited linear

range from the target in which it was effective. In the later designs, a choice was made to

focus the spray at a distance of 3-6", in order to coordinate it with the range of the fire

sensors when locating small candle flames.

 Multiple modes of travel were possible for the SMURF. Rotation was fairly

accurate, at approximately 3° per millisecond of turn at the midpoint of the pulse width

range ("50% speed"). In addition to forward and backward motion, both gentle turning

and spins in place were implemented in software.

Figure 8. Pump isolation and control circuit.

 The pumping function consisted of two main components. The first was a prime

delay, and the second was a slight rotational twisting to provide better spray coverage than

firing while still. Since the pump was powered through the Servo battery pack but

triggered by a digital output pin of the processor, an isolation circuit, depicted in Figure 8,

was used to separate the two power systems. It was also equipped with a manual

arm/disarm switch, to force the pump off while downloading code or troubleshooting.

12

Sensors

Scope / Objectives - SMURF
 The unique function within the SMURF sensor subsystem is fire detection. The

sensor chosen for this purpose is the United Detector Technologies Precision Silicon

Photodetector (P/N 14-00-003, PIN #10AP). The sensor, shown in Figure 9, claims to

match the CIE response curve within ±2%, giving the robot an element of 'human' type

perception. It reacts to both color and brightness changes, which can be exploited for a

wide range of applications. However, the current focus is only on the detection of a flame

and differentiation of the flame from other classes of objects.

Figure 9. UDT Silicon Photodetector.
 Electrically, the sensor is best used as a voltage source, functioning in a similar

fashion as a photo-transistor. It's output voltage range is approximately 0.1-(-0.5) VDC,

with light sources occupying the -0.15V to -0.5V range, and non light-emitting objects are

generally between 0.1V and -0.15V. An inverting amplifier was designed to create an

appropriate input voltage range to interface with the 68HC11 processor and MRSX-01

expansion board.

 The photodetector has an active light reception area of 1 cm2. The rise time of this

sensor is typically 1µs, which is far superior to the lag time experienced with CdS cells.

The operating temperature range is from 0°C to 70°C. The data sheets for this sensor are

included in Appendix 6.

Experimental Layout and Results - SMURF

 The initial investigation into the response of the silicon photodetector was done by

measuring the output voltage when aiming the detector at a light source. It was most

13

responsive to fluorescent lights, followed by halogen and then incandescent bulbs. For

small flames and poorly lit objects, very low output voltages (on the order of -.02 V) were

observed. Since the ADC on the robot is only 8-bit 0-5V, yielding .02V resolution, it was

insufficient to simply sample directly from the sensor. An inverting amplifier was

designed to expand the useful range of the sensor. The circuit is shown in Figure 10. It

employs a gain of K= -10, and by using the +5V regulated supply from the MRC-11,

limits the maximum value to a +5V output.

 Quantitative tests were performed using the

dSPACE data acquisition system. The block diagram

is shown as Figure 11. The test involved the UDT

photodetector mounted on the SMURF and the

amplifier circuit. Four sets of experiments were

performed, using both high and low fluorescent background light levels in combination

with both tall (½-¾") and short (~¼") flames from a butane lighter. The flame was moved

linearly away from the sensor starting at a distance of 1" and ending at a distance of

approximately 18" over the course of 20s. Each set of trial conditions was repeated three

or more times, and the results are plotted in Figures 12-15.

 Figure 12 displays a test in which a large flame was placed in front of the flame

sensor and moved from directly in front to 18 inches away from the front of the robot.

The test was repeated several times and Figure 12 shows a representative selection of

those tests. The trials show a very high degree of repeatability. This graph shows that a

threshold of 1.75 volts can be used to eliminate a high amount ambient light and still

detect a flame at 6 inches.

Figure 10. Flame Sensor Amplifier. Figure 10. Flame Sensor Amplifier.

14

Figure 11. Simulink Block Diagram

 In the next test, Figure 13, the fluorescent lights that were directly overhead were

shut off, which reduced the amount of ambient light. This reduced the ambient reading off

the photodetector to approximately 0.7 volts. This allows for the threshold to be lowered

to 1 volt and still be able to detect flames at 6-8 inches. These trials once again show the

repeatability of the sensor.

Figure 12. Experimental Data for Flame Sensor.

 For the next set of experiments the flame was reduced to a small flame. Figure 14

shows the test run with overhead fluorescent lights on. The flame is still detectable at 6

inches with the threshold set at 1.5 volts. This shows that the detector should be able to

15

pick out a relatively small flame almost as easily as the larger flames.

Figure 13. Experimental Data for Flame Sensor.

Figure 14. Experimental Data for Flame Sensor.

 In the next experiment, a small flame was offset by 10° from the straight forward

line, Figure 15. When the sensor is offset the response falls at a greater rate than the direct

line trials. However the flame can still be picked up at 4 inches. Because of this data, two

16

photodetectors will be used together to increase the data gathering capabilities of the robot.

 There was an exponential relationship between flame distance and output voltage,

but it seems quite reasonable to apply a linear estimation. One potential linear model

chosen to approximate the longer-distance section of the curve, which would be used in

noticing the flame while searching. A second linear model that would be more appropriate

for close-range targeting after the flame has been seen.

Figure 15. Experimental Data for Flame Sensor.
 The use of the amplifier greatly increases perceived sensitivity, and allows high-

intensity light sources such as fluorescent, halogen, and incandescent bulbs (that are much

brighter than the target flame) to reach a saturation value. By not preserving the full range

of the detector, more accurate differentiation can be done within the lower, more linear

range consisting of non light-emitting objects and low-intensity light sources such as

candles or LEDs.

Scope/Objectives - FLAME

 The primary task of the FLAME robot is to locate the building and place the

17

SMURF robot inside. However, locating the building is a nontrivial task. The robot will

undertake this mission with the aid of a machine vision system, capable of discerning

objects of specific colors from the remainder of the room. The main components of the

system are the Pixera PXG-150N-PH CCD NTSC video camera (Figure 16), and the

Cybertainment CybermailAV PCI video capture board, based on the Brooktree BT878

capture chip.

Figure 16. Pixera Camera.

 The Pixera CCD camera is a ¼" pinhole lens 512x492 element CCD sensor and

has a stated horizontal resolution of >330 TV lines. The resolution claim seems to be

accurate, but the effective resolution is somewhat hampered by visual noise in the signal.

The color depth is decent compared to other mini CCD cameras. Since color saturation

and brightness can be adjusted through the software drivers of the BT878, repeatability of

color shades is more important than their absolute appearance. The camera requires no

more than 200mA at approximately 5VDC, and its video output is a standard NTSC

composite signal.

 The CybermailAV is a very basic BT878 video capture card, consisting of little

more than the capture chip, the PCI interface, and three analog video inputs (2x composite

video, 1x S-Video). It interfaces to the motherboard via the PCI bus. Its drivers are

essentially the Brooktree reference drivers, so the performance was solid and stable though

unspectacular. Drivers were only available for the Microsoft operating systems based on

the Win9x kernel.

18

 The second uncommon sensor package element on the FLAME is the ADC

subsystem. It is based on the Maxim MAX118 1Msps, 8-channel, 8-bit parallel ADC

chip. The purpose of the device is to allow analog input to the FLAME's PC via the

parallel port. The MAX118 is essentially a complete solution in a single chip (The only

external part necessary is a .1µF capacitor across the power supply).. It uses the parallel

port's STATUS register for input, and the CONTORL and STATUS registers for control.

Since it requires only one initialize input, three address inputs, and one output to control

sampling and return the acknowledge signal, ~C2 and ~S7 were used. The STATUS

register only returns the 5 MSB's to the PC, so that only the 4 MSB's of the conversion are

available to when using a single parallel port. The ADC's D7-D4 are connected to S6-S3.

To initialize a conversion, the address was placed on the CONTROL register's C3C1C0

lines. The ~C2 bit is asserted (low) to initialize a sample, and the ~ACK signal is received

on ~S7.. By averaging the data over 100 or more samples, it was found to be quite stable

and repeatable. Code for the ADC sampling is included in Appendix 4.

Experimental Layout and Results - FLAME

 The testing of the FLAME vision system was somewhat subjective, due to its

implementation, and the range of variables involved in such a complex problem. The

output of the system is also more difficult to measure than just a simple voltage or

resistance. However, since the purpose of the vision system on the robot is for navigation

more than for object identification, locating the object is of primary importance. Thus, by

placing various targets in different situations and comparing their location as determined

by the algorithm to what a human would choose were they asked to find the object, the

algorithm can be evaluated.

19

 The first iterations of the vision algorithm were based on separating the red, blue,

and green color planes, and analyzing them separately to find certain objects. But it was

found through experimentation that the camera was most responsive to bright colors,

particularly yellow and orange, and fairly responsive to blue, then green and red to a lesser

extent. An example of the bright-color response is shown in Figure 17, a picture captured

and then all colors below an average brightness threshold of 65% are changed to black.

Figure 17. Bright Color Recognition.

 The following image processing algorithm was developed

�Input the image file
�Remove pixels not meeting the criteria for 'yellowness'
�Create a 2-D array representing 'yellow'=1 or 'not yellow' =0 elements in the image
�Perform a weighted average of this array with its 4 nearest neighbors
�Find the weighted area-averaged center point of the 'yellow' pixels
�Return the center point's coordinates

 Currently, there are two different criteria for 'yellowness' that were determined

experimentally to yield useful results. They are based on the 24-bit RGB color

representations, in which each color is realized as a combination of Red, Green, and Blue

components with values ranging from 0-255.

Table 1. Color Criteria by RGB Components.

Color Red Green Blue

20

>200 >200 <170 Yellow
>120 >120 <90
>120 >120 <90 Low Light Yellow
>100 >100 <60
>135 <85 <100 Red
>180 <140 <150
<140 >145 >180 Blue/Green
<170 >180 >150

 Any pixels not meeting either criterion, Table 1, are ignored in finding the center

point of the targets. For every pixel that does comply with either definition of yellow, a

value of 1 is entered into the 2-D array. Each pixel in the interior of the array (excluding

the edge pixels, where camera noise often makes the data unusable) is redefined as the

weighted average of R times itself and each of its vertical and horizontal neighbors.

 Ai,j= (R*Ai,j + Ai-1,i + Ai+1,j + Ai,j-1 + Ai,j+1)

 (R+4)

Then, an weighted area-average is calculated. Each Aij term is squared, so that the <0,1>

range is preserved, but points close to other yellow points retain high coefficients, and the

effect of isolated points is minimized. Then, the x- and y-coordinates are multiplied by

these weighting coefficients, summed, and divided by the total number of nonzero points

used. The resulting average (x,y) is then the center of concentration of yellowness.

 The current algorithm, which is being developed in MATLABTM, is fairly slow. It

can completely process a 176x144 (QCIF PAL size) image in approximately 8-12 seconds,

and an 80x60 image in roughly 3-4 seconds. There is some improvement in accuracy of

the concentration center coordinates using the larger picture, but it may not be justified by

the processing time required. Additional accuracy was also gained by blurring the points

in the original image before applying the yellowness criteria, which helped further reduce

isolated point noise problems, but it increased overall processing time by almost 35%, so it

21

was not considered worthwhile.

Figure 18. 320x240 Resolution, Multiple Targets. Figure 19. 174x144 Resolution.

 Figures 18 through 21 show some representative results from various color, light,

and resolution combinations.

22

 Figure 20. 80x60 Resolution Figure 21. Single Target with Low Light.
 The previous figures showed results obtained from the code written in

MATLABTM. This program provided the framework for the final algorithm code that was

written in C++ (attached in Appendix 2). The actual video capture portion of the FLAME

software was derived from a program written by Vadim Gorbatenko, and the original first

order edge detector portion of his program was replaced by the FLAME image processing

and control routines. This increased the capture and processing rate from approximately

35 seconds per frame in MATLABTM to 1/10 of a second per frame in C++. Figure 22

through 25 display the results obtained from the C++ version of the program under normal

lighting conditions.

 Figure 22. Original Picture . Figure 23. Yellow in Normal Mode

 Figure 24. Yellow in Low Light Mode. Figure 25. Red Target Mode.
 Experiments were then conducted to test the algorithm in a very low light situation.

Figures 26 through 29 display the results from those tests.

23

 Figure 26. Original Picture. Figure 27. Yellow in Normal Mode

Figure 28. Yellow in Low Light Mode. Figure 29. Red Target Mode.

Behaviors

 The primary objective of the FLAME robot is to correctly place the SMURF robot

correctly into the second story window and remove it after it has completed its mission. In

order to accomplish this goal, it is imperative that the FLAME can accurately locate the

window and position itself. The first step is to find the building. The robot will spin

counter-clockwise until it detects a large amount of yellow via its onboard CCD camera.

 Once FLAME's vision system detects the general direction of the building, it enters

a more precise targeting mode, where it attempts to properly align itself in front of the

window. The color contrast between the yellow facade and the background room colors

provides the necessary amount of information to locate the window. The image is then

processed onboard and the image is separated into RGB components. The color

components of each pixel is analyzed individually.

24

Figure 30. Image Processing of Theoretical Target into RGB components.
The vision program performs a comparison of the three color components of each pixel,

and if the values are within a certain threshold, indicating a shade of black, white, or gray,

all three components are set to zero so that neutral colors will not be mistaken for the

target area. Examples using both an actual picture from the CCD camera and a 16-color

theoretical representation of the building are shown in Figures 26 and 30. IR ranging is

also be used in conjunction with the vision system to help position the robot in front of the

target. Collision avoidance and bump sensing are included in the positioning and ranging

behavior.

 Using the image processing algorithm previously discussed in the sensors section,

the field of view is broken up into a three by three grid. Where the area average is in the

grid determines the movement that FLAME should execute. An LED box, with four

LED's in a square, is also included with this system to visually display the average

location. The two LED's in any one direction indicate the grid direction that the average is

25

located in. When the average falls into one of the upper three sections, top two LED's,

FLAME backs away from the target and when the average is inside one of the lower three

sections, bottom two LED's, FLAME proceeds forward toward the target. If the average is

inside one of the left three grid sections, left two LED's, a left turn is commanded and a

right turn is commanded for the three right sections, right two LED's. When the average is

in the center section, all four LED's, this indicates that FLAME is lined up and commands

a stop in motion. When two of the conditions are met at the same time both sets of LED's

light and FLAME executes the corresponding two direction commands.

 The initial goal of FLAME was to insert and extract SMURF from a building. Due

to time constraints, the lifting arm part of the chassis was not completed. The following

describes the proposed assembly and its characteristics. The lifting arm will be equipped

with sensors enabling it to accurately determine if a safe insertion of the SMURF can be

accomplished. The goal is to ensure the safety of the SMURF by preventing the arm from

being extended into the facade of the building or by allowing the SMURF to deploy

prematurely, potentially resulting in a catastrophic fall.

 Triggered by the directional switch on the platform atop the arm, the FLAME will

begin to extract the SMURF from the building, and return to search mode. Some direct

communication between the robots may be necessary in addition to the switch.

 The purpose of the SMURF robot is to seek and extinguish fires. Once a flame is

targeted SMURF extinguishes the fire using an onboard water cannon. This cannon

consists of a simple relay-operated windshield-washer pump, which will draw from the

onboard water reservoir, and pump it through the fixed nozzle.

 Instead of using the wait function included with Talrik library, the observe function

was written. The observe command includes the wait command but also reads sensors and

26

can trigger collision avoidance and firefighting modes. Essentially the wait command is

broken up into 25ms segments with sensor reading in between the segments.

 Two direction changing commands are included in program code for SMURF, spin

and turn. In the spin command one wheel rotates forward and the other wheel rotates

backward. This allows SMURF to maneuver in tight areas and to rotate in place to avoid

close obstacles. The turn command keeps both wheels rotating in the forward direction

but slows one wheel down to allow SMURF to travel in an arc instead of straight lines.

This helps to avoid obstacles that are at a greater distance and do not require an immediate

and drastic change in direction.

 Three switches, Table 2, are included as user interface to change certain program

variables. The first switch a narrowband versus wideband (default) flame detection

threshold setting. The narrowband setting moves the upper and lower bounds closer

together to help eliminate extraneous fire detections. The second switch controlled the

number of fires SMURF looked for. In one position SMURF looks for four fires (default)

and in the second position 14 fires. The third switch controls the IR levels for collision

avoidance. The default position is a high IR threshold which helps in collision avoidance.

The second position is a reduced IR threshold which allows for navigation in smaller

areas.

Table 2. Switch Position Chart.
Switch Position 1 Position 2

1 Wideband Flame Detection Narrowband Flame Detection
2 4 Fires 14 Fires
3 Far IR Threshold Near IR Threshold

 The following is the desired behaviors of SMURF for when the lifting arm

assembly is completed. If a period of time passes were SMURF finds no fire and no

victims, then SMURF will be programmed to return to FLAME and start the extraction

process. The SMURF would have the capability to load itself onto the lifting arm of

27

FLAME and signal FLAME to initiate the retrieval process. The FLAME will then extract

SMURF from building, thus completing their missions.

Experimental Layout and System Results

 After installing the hardware on the SMURF platform a flat obstacle was placed at

various distances from the IR emitters/detectors. From these readings, preliminary IR

threshold values were obtained for collision avoidance routines. For testing purposes, a

temporary 4'x8' arena was set up, similar to that shown in Figure 31. SMURF was placed

in the arena, and those values were tested under real conditions and corrected as necessary.

The same procedure was followed to setup the UDT photodetectors to detect various

flames. The sensors respond more willingly to large, bright flames, but for safety

purposes, small candles were used to simulate fires.

 After sensor calibration was completed, a preliminary obstacle avoidance and

firefighting program was written, and two candles were placed at random locations in the

arena. After several test runs, it was determined that SMURF can regularly extinguish one

candle in one minute and two in approximately three minutes. It was also noted that

SMURF had difficulty navigating passages less than twice its major dimension, or

approximately 18 inches.

28

Figure 31. SMURF in Arena.
 Using quick charged battery packs, (Servos: 6xAA NiCd, 1100 mAh, charged 12V

@ 2A for 4 min, and µP: 7xAAA NiCd, 250 mAh, charged 12V @ 1A for 3 min) runtimes

of over 30 minutes were routinely observed. This also included a minimum of 25

pumping cycles (though water tank refills were required after approximately 8-12).

 As previously mentioned, the FLAME vision system was tested in several lighting

conditions - incandescent, natural, and fluorescent, as well as bright and dark levels of

each. The color differentiation criteria listed in Table 1 were also adjusted slightly from

the original approximations based on feedback from these experiments.

 The yellow targets were the most obvious to the camera, even in low light. The red

was not as readily recognizable as yellow, but the image processor was still able to

successfully detect it under most conditions. The poorest of the color choices used was

blue/green, in part due to the color response of the particular camera used. In lower light,

the automatic gamma and hue adjustment tended to make the entire picture bluish, and

bright blue and green were rarely seen.

Conclusion

 Overall, the SMURF / FLAME project has been fairly successful. A pair of robots

that can be used for firefighting were designed and prototyped. Both met the majority of

goals originally set forth in the original proposal, with the exception of the communication

aspects. The SMURF can be started by closing a switch (or relay), which was part of the

original concept, but the insertion and extraction from the building were not completed.

 The SMURF is able to detect and extinguish small fires in a relatively short period

of time using a random search. Once the fire is found, the targeting procedure to pinpoint

the fire is generally accurate, the only exception being when a fire is detected just on the

29

outside edge of the field of view of one flame sensor, when it is possible that the SMURF

will turn away from the fire rather than toward it. The successive approximation

procedure that is used before the water is pumped, along with the wiggling action while

pumping, usually results in an effective and efficient spray profile. The SMURF can

navigate a small (4'x8') arena and extinguish multiple fires within it in just a few minutes,

and was not observed to become trapped in any limit cycles.

 The chief drawbacks of SMURF are the limited field of view of the fire sensors,

(about 10°), the lack of a wall following behavior, and accuracy of the nozzle. Adding

more fire sensors aimed in different directions would help remedy the field-of-view

problems. Wall following could be implemented in software, pending the addition of side-

facing IR detectors. The nozzle should be articulated, and possibly replaced by one with a

circular spray pattern instead of a wide horizontal one. Vertical aiming would likely be

enough, as the horizontal aiming could be achieved by turning the robot itself.

 The FLAME was a mobile AMD K6/2-500 (a Pentium II class) computer, with

onboard video capture and realtime processing capability at >10fps. It was able to track

and follow yellow objects in greatly varying lighting conditions, and red objects in most

normally lit situations, and could be switched between these modes in realtime as well.

The vision system far exceeded expectations, especially in poor lighting, and its speed was

also quite impressive.

 The FLAME also has a few notable limitations. First, with its power consumption,

it needs fairly large batteries. The current configuration requires that the 9Ah lead acid

battery be trailered behind the robot due to weight concerns. A DC-DC converter would

also benefit power conversion efficiency greatly. The current system uses a 175W DC-AC

inverter serving the ATX power supply. (While not efficient, it was a cost effective

30

solution). A faster processor would allow for an increased frame rate for the vision

algorithm, which would smooth out turns and benefit object following performance.

Mounting of the planetary gears from the cordless screwdrivers was difficult, as there is

only a pin holding them in their normal application. A capture card with Linux or

Windows 2000 driver support would be a great benefit, in terms of overall system

stability.

31

Documentation

Engdahl, Tomi. "Parallel Port Output." 1996-2000.
http://www.hut.fi/Misc/Electronics/circuits/parallel_output.html

ePanoram.net (ELH Communications, Ltd.) "PC hardware projects page." 2001.
http://www.epanorama.net/project_pc.html#pc_parallel

Gorbatenko, Vadim. "CFrameGrabberClass for C++ Source Code."
www.codeproject.com

Harries, Ian. "Interfacing to the IBM-PC Parallel Printer Port." 01-26-1998.
http://www.doc.ic.ac.uk/~ih/doc/par/

Hauppauge Inc. "Hauppauge WINTV PCI Frequently Asked Questions." 2001.
http://www.hauppauge.com/html/faq.htm#MOMLIST

Acknowledgements

The SMURF / FLAME project team would like to thank the following individuals for their
contributions to the project-

Prof. A. Antonio Arroyo, Scott Nortman, and Aamir Qaiyumi:

 For help and guidance throughout the semester...

Jonathan Gamoneda:

 For help troubleshooting the OC pins on the defective processor, since mechanical
 engineers and assembly language do not work together very well...

Dr. Carl Crane III, Mechanical Engineering Dept:

 For lending us a more than adequate 486 DX50 laptop to use as a programming /
 debugging station for SMURF...

The Phillips and Bratton Families:

 For nearly endless supplies of scrap aluminum and old computer parts...

Anthony Hinson:

 Whose semi-portable briefcase computer inspired the basic FLAME entire-K6/2-
 in-a-small-box design...

32

Appendix 1

SMURF
• • Program Code

#include <stdio.h>
#include <tkbase.h>

#define PUMP_ADDRESS 0x01
#define PRIME 220 // pump prime delay time to add to pumping duration **estimated**
#define PLUGGED_IN 0x00 //NOT USED
#define IR_LEFT IRDT[3]
#define IR_RIGHT IRDT[6]
#define FLAME_SENSOR_1 IRDT[0]
#define FLAME_SENSOR_2 IRDT[2]
#define FLAME_SENSOR_3 IRDT[10]
#define FIRE_TOL 8
#define RAND TCNT&0x01
#define DIG_OUT *(unsigned char *)(0xffb9)

//Globals for sensors / control

int empty=0;
int speed=100; // set speed in main or in functions
const int turnconst=3; // degrees per milisecond of turning, **estimated**
int iri=0;
int irl[10];
int irr[10];
int ir_left=80, ir_right=80;
int firefind=0; // 'if fire found' =1, no fire =0
int firesout=0; // number of fires extinguished
int count1=0;
int count2=0;
int RBUMPER=0;
int FBUMPER=0;
int FLAME_OLD=0;
int FAIL_COUNT=0;
int FIRE1=0;
int FIRE2=0;

int FIRE_NUMBER=7; // number of fires to find
int MED_THRESH=115; // ir thresholds
int NEAR_THRESH=124; // ir near
int FLAME_THRESH=57; // fire sensor 'detect' threshold
int FLAME_THRESH_HI=255;// fire sensor 'no detect' threshold

// _________________________
// _________________________
//
// Prototypes
// _________________________
// _________________________

void observe(int);
int pump(int, int);
void straight(int);
void stop();
void turn(int , int , int);
void spin(int);
void blindspin();
void irsample();
int search();
int ir(int);
void fireavg();

// _________________________
// _________________________
//
// Functions
// _________________________
// _________________________

// ___
// | |
// | OBSERVE - Wait with sampling command |
// |___|

void observe(int duration){
 int n=1;
 while (duration>25){
 duration=duration-25;
 read_IR();
 RBUMPER=rear_bumper();
 FBUMPER=front_bumper();
 wait(25);
//new entry
 if (firesout<FIRE_NUMBER){n=1;}
 if (((FLAME_SENSOR_1 > FLAME_THRESH)&&(FLAME_SENSOR_1 < FLAME_THRESH_HI))|| ((FLAME_SE NSOR_3 >
FLAME_THRESH)&&(FLAME_SENSOR_3 < FLAME_THRESH_HI))|| ((FLAME_SENSOR_2 > FLAME_THRESH)&&(FLAME_SENSOR_2 < FLAME_THRESH_HI))){
 while ((n == 1) && (FAIL_COUNT < 5)){

33

 printf("\t FIRE...FIRE...FIRE!!!!!\n");
 fireavg();
 n=fire();
 if (n == 0){
 firesout++;
 }
 if (n == 1){
 FAIL_COUNT++;
 }
 }
 }
//end new entry

 //simple avoid code here ----------------------
 }
 wait(duration);
 read_IR();
 RBUMPER=rear_bumper();
 FBUMPER=front_bumper();
 return;
}

// ___
// | |
// | PUMP - Pumps water for specified time period |
// |___|

int pump(int duration, int range){
// if (!empty){ return empty;}
// else{
 DIG_OUT=0xf3;
 duration=duration*10+PRIME;
 // PRIME s to prime + duration in hundreths of seconds
 //wait(duration);
 while (duration>750){
 wait(250);
 blindspin(11);
 wait(80);
 blindspin(-20);
 wait(80);
 blindspin(15);
 wait(80);
 blindspin(-10);
 wait(80);
 blindspin(5);
 wait(80);
 duration=duration-750;
 }
 if (duration>0){
 wait(duration);
 }
 DIG_OUT=0x03;
 //check if empty....
 return 0;
// }
}

// __
// | |
// | STRAIGHT - Drives robot 'straight' at given speed |
// |__|

void straight(int newsp){
 speed=newsp;
 servo(0, 3000-20*speed);
 servo(1, 3000+20*speed);
 // * could add correction factor to speed of one in reverse if not straight.....
 return;
}

// __
// | |
// | STOP - Stops robot |
// |__|

void stop(){
 speed=0;
 servo(0, 0);
 servo(1, 0);
 return;
}
// ___
// | |
// | TURN - Turns robot while travelling, can change speed |
// |___|

void turn(int dir, int turnmag, int newspeed){ // dir 0=left, 1=right, amount =0 to 100
 int turnsp=0, regsp=0, x=0;
 speed=newspeed;
 if (dir==0){
 turnsp=3000 - 20*speed*.01*turnmag;
 regsp=3000 + 20*speed;
 servo(0, turnsp);
 servo(1, regsp);
 printf("turn speed %4d \t\t normal speed %4d \t\n",turnsp, regsp);
 }

34

 if (dir==1){
 turnsp=3000+20*speed*.01*turnmag;
 regsp=3000-20*speed;
 servo(0, regsp);
 servo(1, turnsp);
 printf("turn speed %4d \t\t normal speed %4d \t\n",turnsp, regsp);
 }
 // * could add correction factor to speed for the one in reverse if not straight enough.....
 return;
}

// __
// | |
// | SPIN - Turns robot in place, then stops |
// |__|

void spin(int amount){ // amount =-360 to 360
 int turntime=amount*turnconst;
 speed=50; // set const turn speed, 50, 100, whatever
 if (turntime>0){
 servo(0, 3000+20*speed);
 servo(1, 3000+20*speed);
 printf("\t\t\t turntime= %d ", turntime);
 if (turntime>100){
 wait(100);
 turntime=turntime-100;
 while (turntime>100){
 observe(100);
 turntime=turntime-100;
 }
 wait(turntime);
 }
 else{wait(turntime);}

 }
 if (turntime<0){
 servo(0, 3000-20*speed);
 servo(1, 3000-20*speed);
 turntime=-1*turntime;
 printf ("\t\t\t turntime= %d ", turntime);
 if (turntime>100){
 wait(100);
 turntime=turntime-100;
 while (turntime>100){
 observe(100);
 turntime=turntime-100;
 }
 wait(turntime);
 }
 else{wait(turntime);}
 }
 stop();
 return;
}

// __
// | |
// | BLINDSPIN - Turns robot in place without looking |
// |__|

void blindspin(int amount){ // amount =-360 to 360
 int turntime=amount*turnconst;
 speed=50; // set const turn speed, 50, 100, whatever
 if (turntime>0){
 servo(0, 3000+20*speed);
 servo(1, 3000+20*speed);
 printf ("\t\t\t turntime= %d ", turntime);
 wait(turntime);
 }
 if (turntime<0){
 servo(0, 3000-20*speed);
 servo(1, 3000-20*speed);
 turntime=-1*turntime;
 printf("\t\t\t turntime= %d ", turntime);
 wait(turntime);
 }
 stop();
 return;
}

void slowblindspin(int amount){ // amount =-360 to 360
 int turntime=amount*turnconst*2;
 speed=15; // set const turn speed, 50, 100, whatever
 if (turntime>0){
 servo(0, 3000+20*speed);
 servo(1, 3000+20*speed);
 printf("\t\t\t turntime= %d ", turntime);
 wait(turntime);
 }
 if (turntime<0){
 servo(0, 3000-20*speed);
 servo(1, 3000-20*speed);
 turntime=-1*turntime;
 printf("\t\t\t turntime= %d ", turntime);
 wait(turntime);
 }
 stop();

35

 return;
}

// __
// | |
// | IRSAMPLE - Samples IR detectors, results into arrays |
// |__|

void irsample(){
 irl[iri]=IR_LEFT;
 irr[iri]=IR_RIGHT;
 iri=(iri+1)%10;
 return;
}

// ___
// | |
// | FIREAVG - Averages last 10 fire sensor values |
// |___|

void fireavg(){
 int fire1sum=0,fire2sum=0, q=0;
 for (q=0;q<10;q++){
 read_IR();
 fire1sum=fire1sum+FLAME_SENSOR_1;
 fire2sum=fire2sum+FLAME_SENSOR_2;
 }
 FIRE1=.1*fire1sum;
 FIRE2=.1*fire2sum;
 return;
}

// __
// | |
// | IR - Averages last 10 ir sample values |
// |__|

int ir(int lr){
 int avg=80, sum=0, q=0;
 if (lr==0){
 for (q=0;q<10;q++){
 sum=sum+irl[q];
 }
 avg=.1*sum;
 }
 else{
 for (q=0;q<10;q++){
 sum=sum+irr[q];
 }
 avg=.1*sum;
 }
 return avg;
}

// ___
// | |
// | SEARCH - Normal collision avoid & look for fires |
// |___|

int search(void){
 int x=0;
 int n=1;
printf("into search\n");

 straight(100);
 while(1){
 read_IR();
// while((IR_LEFT<MED_THRESH) && (IR_RIGHT<MED_THRESH) && (FIRE<FLAME_THRESH)) {
 RBUMPER=rear_bumper();
 FBUMPER=front_bumper();
 x++;
 if ((x%5)==1){ printf("read bumpers\nIRL= %3d \tIRR= %3d\n", IR_LEFT,IR_RIGHT);}

 //if FLAME_SENSOR
 if (firesout<7){n=1;}
 if (((FLAME_SENSOR_1 > FLAME_THRESH)&&(FLAME_SENSOR_1 < FLAME_THRESH_HI))||((FLAME_SENSOR_3 > FLAME_THRESH)
&&(FLAME_SENSOR_3 < FLAME_THRESH_HI))|| ((FLAME_SENSOR_2 > FLAME_THRESH)&&(FLAME_SENSOR_2 < FLAME_THRESH_HI))){
 while ((n == 1) && (FAIL_COUNT < 5)){
 printf("\t FIRE...FIRE...FIRE!!!!!\n");
 fireavg();
 n=fire();
 if (n == 0){
 firesout++;
 }
 if (n == 1){
 FAIL_COUNT++;
 }
 }
 }

 //if IR
 if ((IR_LEFT > NEAR_THRESH) && (IR_RIGHT > NEAR_THRESH)){
 printf("TOO CLOSE....TOO CLOSE...AHHH!!!!!!\n");
 printf("\t\t backing up\n");
 stop();
 wait(250);
 straight(-50);

36

 observe(300);
 stop();
 spin(60);
 if ((TCNT&0x01)==0){
 spin(23*(TCNT&0x03)+24);
 }
 if ((TCNT&0x01)==1){
 spin(-31*(TCNT&0x03)-21);
 }
 straight(20);
 }
 if ((IR_LEFT > NEAR_THRESH) && (IR_RIGHT < NEAR_THRESH)&& (IR_RIGHT > MED_THRESH)){
 printf("\t\t SPIN RIGHT\n");
 spin(20+(TCNT&0x03)*5);
 stop();
 straight(20);
 observe(250);
 }
 if ((IR_LEFT < NEAR_THRESH) && (IR_LEFT > MED_THRESH)&& (IR_RIGHT > NEAR_THRESH)){
 printf("\t\t SPIN LEFT\n");
 spin(-27*(TCNT&0x03)-20);
 stop();
 straight(20);
 observe(250);
 }
 if ((IR_LEFT > MED_THRESH)&& (IR_LEFT < NEAR_THRESH) && (IR_RIGHT > MED_THRESH)&& (IR_RIGHT < NEAR_THRESH)){
 printf("\t\t backing up\n");
 stop();
 wait(250);
 straight(-10);
 observe(500);
 if ((TCNT&0x01)==0){
 spin(23*(TCNT&0x03)+27);
 }
 if ((TCNT&0x01)==1){
 spin(-25*(TCNT&0x03)-23);
 }

 }
 if ((IR_LEFT > MED_THRESH) && (IR_LEFT < NEAR_THRESH) && (IR_RIGHT < MED_THRESH)){
 printf("/t/t turning RIGHT\n");
 turn(1, 35, 100);
 observe(700);
 }
 if ((IR_LEFT < MED_THRESH) && (IR_RIGHT > MED_THRESH)&& (IR_RIGHT < NEAR_THRESH)){
 printf("\t\t turning LEFT\n");
 turn(0, 45, 80);
 observe(500);
 }
 //if BUMP
 if (FBUMPER < 14){
 printf("\t\t going straight\n");
 straight(100);
 observe(500);
// read_IR();
 }
 if ((FBUMPER>15)&&(FBUMPER<25)){
 straight(-50);
 observe(300);
 spin(-70);printf(" spin LEFT\n");
 stop();
 straight(100);
// read_IR();
 }
 if ((FBUMPER>25)&&(FBUMPER<50)){
 straight(-50);
 observe(300);
 spin(70);printf(" spin RIGHT\n");
 stop();
 straight(100);
// read_IR();
 }

 }
 return 0;
}

// __
// | |
// | FIRE - Firefighting behavior function |
// |__|

int fire(){
//turn, approach slowly, stop, check/turn, pump, check
 int i=1, dir=1, spinamount=0, dirold=1, FLAME_OLD_AVG=(FIRE1+FIRE2)/2;
 fireavg();
 //if ((FIRE1<FLAME_THRESH)&&(FIRE2<FLAME_THRESH)){return} //no bogus fires
 for(i=1;i<7;i++){
 FLAME_OLD_AVG=(FIRE1+FIRE2)/2;
 dirold=dir;
 if ((i==1)&&(FIRE1>FIRE2)){blindspin(10);dir=1;}
 if ((i==1)&&(FIRE1<FIRE2)){blindspin(-10);dir=-1;}

 fireavg();

 if (((FIRE1-FLAME_OLD_AVG)<FIRE_TOL) && ((FLAME_OLD_AVG-FIRE1)<FIRE_TOL)){
 spinamount=0;

37

 }

 if (FIRE1-FLAME_OLD_AVG>FIRE_TOL){
 if (dir==1){spinamount=10/i;}
 if (dir==-1){spinamount=20/i;}
 dir=1;
 }
 if (FIRE2-FLAME_OLD_AVG>FIRE_TOL){
 if (dir==-1){spinamount= -10/i;}
 if (dir== 1){spinamount= -20/i;}
 dir=-1;
 }

 blindspin(spinamount);
 }
 pump(130,0);
 fireavg();
//if fail
 if ((FLAME_SENSOR_1 > FLAME_THRESH) ||(FLAME_SENSOR_3 > 2*FLAME_THRESH) ||(FLAME_SENSOR_2 > FLAME_THRESH)){
 return 1;
 }
//return 0 on success
//return 1 on fail

 //***** NOT CHANGED******
 return 0;
}

// __
// | |
// | MAIN |
// |__ |

int main(){
 int k=0, i=0, j=0, n=0, f=0, t=0, temp1=0, temp2=0, control=0;
 //ir on, sample 10x to start with correct avg before moving away
 DIG_OUT=0x03;
 init_analog();
 init_clocktk();
 init_serial();
 init_servos();

// do nothing until triggered
 while (!((FBUMPER<43)^(RBUMPER<126))) {
 FBUMPER=front_bumper();
 RBUMPER=rear_bumper();
 }
// then begin firefigthing
 printf("start\n");
 straight(100);
 wait(400);
 FBUMPER=front_bumper();
 RBUMPER=rear_bumper();

 if (RBUMPER<21){ FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=4; MED_THRESH=113; NEAR_THRESH=118;} //default
 if ((RBUMPER>22)&(RBUMPER<40)) { FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=4; MED_THRESH=117;
NEAR_THRESH=124;} // only IR hi
 if ((RBUMPER>40)&(RBUMPER<46)) { FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=14; MED_THRESH=113;
NEAR_THRESH=118;} // #fires hi only
 if ((RBUMPER>47)&(RBUMPER<62)) { FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=14; MED_THRESH=117;
NEAR_THRESH=124;} // fires hi, IR hi
 if ((RBUMPER>63)&(RBUMPER<81)) { FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=4; MED_THRESH=113;
NEAR_THRESH=118;} // flame hi only
 if ((RBUMPER>82)&(RBUMPER<92)) { FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=4; MED_THRESH=117;
NEAR_THRESH=124;} // flame hi, IR hi
 if ((RBUMPER>93)&(RBUMPER<103)){ FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=14; MED_THRESH=113;
NEAR_THRESH=118;} // flame hi, #fires hi
 if ((RBUMPER>104)&(RBUMPER<111)){ FLAME_THRESH= 70; FLAME_THRESH_HI=160; FIRE_NUMBER=14; MED_THRESH=117;
NEAR_THRESH=124;} // all high
 if ((RBUMPER>112)&(RBUMPER<126)){ FLAME_THRESH= 57; FLAME_THRESH_HI=255; FIRE_NUMBER=7; MED_THRESH=117;
NEAR_THRESH=120;} //old default
 search();
 control=search();

// if firesout=0.... then search again, because there's at least 1.
 if (control==0){
 if (firesout==0) {search();}
 return 0;
 }
 if (control==1){
 straight(-40);
 observe(200);
 spin(-90);
 return 0;
 }
 if (control==2){
 fire();
 return 0;
 }
 return 0;
}

38

Appendix 2

FLAME
• • Program Code

// FrameGrabberTestDoc.cpp : implementation of the CFrameGrabberTestDoc class
//
// (c) Vadim Gorbatenko, 1999
// gvv@mail.tomsknet.ru
// All rights reserved
// Original code by Gorbatenko in normal font
// Modified code in Bold font

#include "stdafx.h"
#include "math.h"
#include "FrameGrabberTest.h"
#include "FrameGrabberTestDoc.h"
#include <stdio.h>
#include <io.h>
#include <dos.h>
#include <conio.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

#define PROCESSOR_PAUSED 0
#define PROCESSOR_SIMPLE_VIEWER 1
#define PROCESSOR_IMAGE_FILTER 2
#define PROCESSOR_MOTION_DETECTOR 3
#define LPT1 0x0278
#define STATUS1 LPT1+1
#define CONTROL1 LPT1+2
//proto
//********ADC Command********
int adc(int);
//END PROTO
//forward definition for motion detector
LONG summ_rect_arena32(LPBYTE data, int dx, int dy, int ptX, int ptY, int rx, int ry);
LONG summ_rect_arena24(LPBYTE data, int dx, int dy, int ptX, int ptY, int rx, int ry);
///
int y=0,x=0,dir=0x0;
double coeff[720][720];
double horz=0,vert=0,Z=0,vertavg=20,horzavg=50;
double t0=0,t1=0;
double horz1=0,horz2=0,horz3=0,horz4=0,horz5=0,horzavg3=0;
double vert1=0,vert2=0,vert3=0,vert4=0,vert5=0,vertavg3=0;
int c=0, i=0, j=0, k=0, q=0, rb=0, N=400;
int sensavg[8],sum[8], sensor[8];
unsigned int a=_inp(STATUS1),data=0;
int acquired=0;
int RED1=200, RED2=120, GREEN1=200, GREEN2=120, BLUE1=170, BLUE2=90;
int color=0;
int pause1=0, pause2=0, pause3=0;
int sw11=0, sw12=0, sw13=0, sw21=0, sw22=0, sw23=0;
int bigT=1000000;
// CFrameGrabberTestDoc

IMPLEMENT_DYNCREATE(CFrameGrabberTestDoc, CDocument)

BEGIN_MESSAGE_MAP(CFrameGrabberTestDoc, CDocument)
 //{{AFX_MSG_MAP(CFrameGrabberTestDoc)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_UPDATE_COMMAND_UI(ID_SIMPLE_FILTER, OnUpdateSimpleFilter)
 ON_UPDATE_COMMAND_UI(ID_SIMPLE_VIEWER, OnUpdateSimpleViewer)
 ON_UPDATE_COMMAND_UI(ID_DETECTOR, OnUpdateDetector)
 ON_COMMAND(ID_DETECTOR, OnDetector)
 ON_COMMAND(ID_SIMPLE_FILTER, OnSimpleFilter)
 ON_COMMAND(ID_SIMPLE_VIEWER, OnSimpleViewer)
 ON_COMMAND(ID_FILE_SAVE_AS, OnFileSaveAs)
 ON_UPDATE_COMMAND_UI(ID_FILE_SAVE_AS, OnUpdateFileSaveAs)
 ON_COMMAND(ID_PAUSE, OnPause)
 ON_UPDATE_COMMAND_UI(ID_PAUSE, OnUpdatePause)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CFrameGrabberTestDoc construction/destruction

CframeGrabberTestDoc::CFrameGrabberTestDoc(){}

CFrameGrabberTestDoc::~CFrameGrabberTestDoc(){}

BOOL CFrameGrabberTestDoc::OnNewDocument(){
 if (!CDocument::OnNewDocument())
 return FALSE;
 m_ProcessorMode = PROCESSOR_IMAGE_FILTER;
 return TRUE;
}

39

///
// CFrameGrabberTestDoc diagnostics

#ifdef _DEBUG
void CFrameGrabberTestDoc::AssertValid() const{
 CDocument::AssertValid();
}
void CFrameGrabberTestDoc::Dump(CDumpContext& dc) const{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CFrameGrabberTestDoc commands

void CFrameGrabberTestDoc::OnEditCopy() {
 if(m_ImageBitmap.GetSafeHandle() &&
 AfxGetMainWnd()->OpenClipboard()){
 EmptyClipboard();
 SetClipboardData(CF_DIB, m_ImageBitmap.DibFromBitmap());
 CloseClipboard();
 }
}

void CFrameGrabberTestDoc::OnUpdateEditCopy(CCmdUI* pCmdUI) {
 pCmdUI->Enable((BOOL)m_ImageBitmap.GetSafeHandle());
}

#define IMAGEWIDTH(lpd) ((LPBITMAPINFOHEADER)lpd)->biWidth
#define IMAGEHEIGHT(lpd) ((LPBITMAPINFOHEADER)lpd)->biHeight
#define IMAGEBITS(lpd) ((LPBITMAPINFOHEADER)lpd)->biBitCount
#define IMAGEDATA(lpd) (((LPBYTE)lpd) + (((LPBITMAPINFOHEADER)lpd)->biSize))
// This method called by CFrameGrabberTestView
void CFrameGrabberTestDoc::ProcessImage(LPBITMAPINFO lpBi){
 static BOOL bRunNow = FALSE;
 if(!lpBi || bRunNow) return;
 bRunNow = TRUE;
 switch(m_ProcessorMode){
 case PROCESSOR_SIMPLE_VIEWER:
 m_ImageBitmap.CreateFromDib(lpBi);
 UpdateAllViews(NULL); break;
 case PROCESSOR_IMAGE_FILTER:
 if(IMAGEBITS(lpBi)!=32&&
 IMAGEBITS(lpBi)!=24)
 {
 AfxMessageBox("Can't run filter: unsupported color resolution!",MB_ICONWARNING);
 m_ProcessorMode =PRO CESSOR_SIMPLE_VIEWER;
 break;
 }

 if(ApplyFilter(lpBi))
 { m_ImageBitmap.CreateFromDib(lpBi);
 UpdateAllViews(NULL);} break;
 case PROCESSOR_MOTION_DETECTOR:
 if(IMAGEBITS(lpBi)!=32&&
 IMAGEBITS(lpBi)!=24)
 {
 AfxMessageBox("Can't run motion detector: unsupported color resolution!",MB_ICONWARNING);
 m_ProcessorMode =PROCESSOR_SIMPLE_VIEWER;
 break;
 }
 if(RunDetector(lpBi))
 { m_ImageBitmap.CreateFromDib(lpBi);
 UpdateAllViews(NULL);} break;
 default:
 break;
 }
 bRunNow = FALSE;
}

void CFrameGrabberTestDoc::OnUpdateSimpleFilter(CCmdUI* pCmdUI) {
 pCmdUI->SetCheck(m_ProcessorMode==PROCESSOR_IMAGE_FILTER);}

void CFrameGrabberTestDoc::OnUpdateSimpleViewer(CCmdUI* pCmdUI) {
 pCmdUI->SetCheck(m_ProcessorMode==PROCESSOR_SIMPLE_VIEWER);}

void CFrameGrabberTestDoc::OnUpdateDetector(CCmdUI* pCmdUI) {
 pCmdUI->SetCheck(m_ProcessorMode==PROCESSOR_MOTION_DETECTOR);}

void CFrameGrabberTestDoc::OnDetector() {
 m_ProcessorMode=PROCESSOR_MOTION_DETECTOR;}

void CFrameGrabberTestDoc::OnSimpleFilter() {
 m_ProcessorMode=PROCESSOR_IMAGE_FILTER;}

void CFrameGrabberTestDoc::OnSimpleViewer() {
 m_ProcessorMode=PROCESSOR_SIMPLE_VIEWER;}

void CFrameGrabberTestDoc::OnFileSaveAs() {
 UINT oldp=m_ProcessorMode;
 m_ProcessorMode=PROCESSOR_PAUSED;
 CDC *pDC=m_ImageBitmap.BegingModify();
 pDC->SetTextColor(196);
 pDC->SetBkMode(TRANSPARENT);
 CSize sz=m_ImageBitmap.GetSize();
 char str[32];

40

 char str2[32];
 CString title;
 title.Format("REC %s %s", _strtime(str),_strdate(str2));;
 pDC->TextOut(16,sz.cy -16, title);
 m_ImageBitmap.EndModify();
 m_ImageBitmap.Save(NULL);
 m_ProcessorMode=oldp;}

void CFrameGrabberTestDoc::OnUpdateFileSaveAs(CCmdUI* pCmdUI) {
 pCmdUI->Enable((BOOL)m_ImageBitmap.GetSafeHandle());}

void CFrameGrabberTestDoc::OnPause() {
 m_ProcessorMode=PROCESSOR_PAUSED;}

void CFrameGrabberTestDoc::OnUpdatePause(CCmdUI* pCmdUI) {
 pCmdUI->SetCheck(m_ProcessorMode==PROCESSOR_PAUSED);}

//
// Processor stuff
BOOL CFrameGrabberTestDoc::ApplyFilter(LPBITMAPINFO lpBi){
 ASSERT(lpBi);
 int arena_dx = IMAGEWIDTH(lpBi);
 int arena_dy = IMAGEHEIGHT(lpBi);
 //
 // This is the simplest Edge detector
 // Pixel(x0,y0)= (abs(Pixel(x0,y0)-Pixel(x+1,y+1)) + abs(Pixel(x+1,y0)-Pixel(x0,y+1)))/2
 //
 switch(IMAGEBITS(lpBi)) {
 case 32:
 {
 LONG * ptr =(LONG *)IMAGEDATA(lpBi);
 LONG * tmpLine = new LONG[arena_dx];
 for(int y=0; y<arena_dy -1;y++)
 {
 for(int x=0; x<arena_dx-1;x++)
 {
 int x1y1=x+arena_dx+1;
 int x1y0 =x+1;
 int x0y1=x+arena_dx;
 LONG r_diag1 = abs(ptr[x]&0xff -ptr[x1y1]&0xff);
 LONG g_diag1 = abs((ptr[x]>>8)&0xff - (ptr[x1y1]>>8)&0xff);
 LONG b_diag1 = abs((ptr[x]>>16)&0xff -(ptr[x1y1]>>16)&0xff);
 LONG r_diag2 = abs(ptr[x1y0]&0xff -ptr[x0y1]&0xff);
 LONG g_diag2 = abs((ptr[x1y0]>>8)&0xff -(ptr[x0y1]>>8)&0xff);
 LONG b_diag2 = abs((ptr[x1y0]>>16)&0xff -(ptr[x0y1]>>16)&0xff);
 tmpLine[x] = ((r_diag1+r_diag2)>>1) |
 (((g_diag1+g_diag2)>>1)<<8) |
 (((b_diag1+b_diag2)>>1)<<16);
 }
 memcpy(ptr,tmpLine, (arena_dx-1)*sizeof(DWORD));
 ptr+=arena_dx;
 }

 delete tmpLine;
 }
 break;
 case 24:
 {
 BYTE * ptr =(BYTE *)IMAGEDATA(lpBi);
 BYTE * tmpLine = new BYTE[arena_dx*3];
 sensor[3]=adc(3);
 while(sensor[3]>5){
 k=0;
 while(k<1000){k++;}
 pause1=adc(3);
 k=0;
 while(k<1000){k++;}
 pause2=adc(3);
 k=0;
 while(k<1000){k++;}
 pause3=adc(3);
 sensor[3]=(pause1+pause2+pause3)/3;
 }
 k=0;
 for (q=0;q<50;q++){
 sensor[0]=adc(0);
 sensor[5]=adc(5);
 if (q==0){sum[0]=0;sum[5]=0;}
 sum[0]=sum[0]+sensor[0];
 sum[5]=sum[5]+sensor[5];
 }

 sensavg[0]=.015*sum[0];
 sensavg[5]=.015*sum[5];
 sensor[0]=sensavg[0];
 sensor[5]=sensavg[5];
 k=0;
 q=0;
 color=0;
 //Yellow (Default)
 if ((sensor[0]<10)&&(sensor[5]<10)){
 RED1=120; GREEN1=120; BLUE1=90;
 RED2=200; GREEN2=200; BLUE2=170;
 color=0;
 }
 //Yellow Low Light
 if ((sensor[0]>10)&&(sensor[5]>10)){

41

 RED1=120; GREEN1=120; BLUE1=90;
 RED2=100; GREEN2=100; BLUE2=60;
 color=0;
 }
 //Red
 if ((sensor[0]>10)&&(sensor[5]<10)){
 RED1=135; GREEN1=85; BLUE1=100;
 RED2=180; GREEN2=140; BLUE2=150;
 color=1;
 }
 //Blue/Green
 if ((sensor[0]<10)&&(sensor[5]>10)){
 RED1=140; GREEN1=145; BLUE1=180;
 RED2=170; GREEN2=180; BLUE2=150;
 color=2;
 }

 for(y=0; y< arena_dy-1;y++)
 {
 for(x=0; x<arena_dx-1; x++)
 {
 int x0y0 = x*3;
 int x1y1 = x0y0+arena_dx*3+3;
 int x1y0 = x0y0+3;
 int x0y1 = x0y0+arena_dx*3;

 if(color==0){

 if(((ptr[x0y0+2]>RED1)&&(ptr[x0y0+1]>GREEN1)&&(ptr[x0y0+0]<BLUE1))||((ptr[x0y0+2]>RED2)&&(ptr[x0y0+1]>GREEN2)&&(ptr[x0y0+0]<BLUE2)
)){
 coeff[y][x]=1;
 }
 else{
 coeff[y][x]=0;
 }
 }
 if(color==1){

 if(((ptr[x0y0+2]>RED1)&&(ptr[x0y0+1]<GREEN1)&&(ptr[x0y0+0]<BLUE1))||((ptr[x0y0+2]>RED2)&&(ptr[x0y0+1]<GREEN2)&&(ptr[x0y0+0]<BLUE2)
)){
 coeff[y][x]=1;
 }
 else{
 coeff[y][x]=0;
 }
 }
 if(color==2){

 if(((ptr[x0y0+2]<RED1)&&(ptr[x0y0+1]>GREEN1)&&(ptr[x0y0+0]>BLUE1))||((ptr[x0y0+2]<RED2)&&(ptr[x0y0+1]>GREEN2)&&(ptr[x0y0+0]>BLUE2)
)){
 coeff[y][x]=1;
 }
 else{
 coeff[y][x]=0;
 }
 }

 //draw overlay image
 tmpLine[x0y0] = (BYTE)((coeff[y][x])*ptr[x0y0]);
 tmpLine[x0y0+1]= (BYTE)((coeff[y][x])*ptr[x0y0+1]);
 tmpLine[x0y0+2]= (BYTE)((coeff[y][x])*ptr[x0y0+2]);
 if(((arena_dx/3)>(x-1))&&((arena_dx/3)<(x+1))){
 tmpLine[x0y0] = (BYTE)(0);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(255);
 }
 if(((2*arena_dx/3)>(x-1))&&((2*arena_dx/3)<(x+1))){
 tmpLine[x0y0] = (BYTE)(0);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(255);
 }
 if(((arena_dy/3)>(y-1))&&((arena_dy/3)<(y+1))){
 tmpLine[x0y0] = (BYTE)(0);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(255);
 }
 if(((2*arena_dy/3)>(y-1))&&((2*arena_dy/3)<(y+1))){
 tmpLine[x0y0] = (BYTE)(0);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(255);
 }
 if((horzavg3>(x-1))&&(horzavg3<(x+1))){
 tmpLine[x0y0] = (BYTE)(255);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(0);
 }
 if((vertavg3>(y-1))&&(vertavg3<(y+1))){
 tmpLine[x0y0] = (BYTE)(255);
 tmpLine[x0y0+1]= (BYTE)(0);
 tmpLine[x0y0+2]= (BYTE)(0);
 }

 }
 memcpy(ptr,tmpLine, (arena_dx-1)*3);
 ptr+=arena_dx*3;
 }

42

 delete tmpLine;

 // FIND COORDINATES of X, Y
 for(y=1; y< arena_dy-2;y++){
 for(x=1; x<arena_dx-2; x++){
 coeff[y][x]=(5*coeff[y][x]+coeff[y-2][x]+coeff[y+2][x]+coeff[y][x-2]+coeff[y][x+2])/9;
 }
 }
 vert=0;
 horz=0;
 Z=0;
 for(y=2; y< arena_dy-3;y++){
 for(x=2; x<arena_dx-3; x++){
 if(coeff[y][x]>.925){
 vert=vert+(coeff[y][x])*(coeff[y][x])*x;
 horz=horz+(coeff[y][x])*(coeff[y][x])*y;
 Z=Z+1;
 }
 }
 }
 if (Z>0){
 vertavg=vert/Z;
 horzavg=horz/Z;
 }
 if (Z==0){
 vertavg=2*arena_dy/5;
 horzavg=arena_dx/3;
 }
 t0=horzavg;
 t1=vertavg;
 vertavg=t0;
 horzavg=t1;
 vert5=vert4;
 vert4=vert3;
 vert3=vert2;
 vert2=vert1;
 vert1=vertavg;
 horz5=horz4;
 horz4=horz3;
 horz3=horz2;
 horz2=horz1;
 horz1=horzavg;
 vertavg3=(23*vert1+17*vert2+11*vert3+5*vert4+vert5)/56;
 horzavg3=(23*horz1+17*horz2+11*horz3+5*horz4+horz5)/56;
//__
//
//__

 //******Calculate direction******
 dir=0x0;
 acquired=0;
 //Top Left
 if ((horzavg3<(arena_dx/3))&&(vertavg3>(2*arena_dy/3))){
 dir=0xfd;
 }
 //Top Mid
 if ((horzavg3>(arena_dx/3))&&(horzavg3<(2*arena_dx/3))&&(vertavg3>(2*arena_dy/3))){
 dir=0x7c;
 }
 //Top Right
 if ((horzavg3>(2*arena_dx/3))&&(vertavg3>(2*arena_dy/3))){
 dir=0x5e;
 }
 //Mid Left
 if ((horzavg3<(arena_dx/3))&&(vertavg3>(arena_dy/3))&&(vertavg3<(2*arena_dy/3))){
 dir=0xf5;
 }
 //Mid Mid
 if((horzavg3<(2*arena_dx/3))&&(horzavg3>(arena_dx/3))&&(vertavg3>(arena_dy/3))&&(vertavg3<(2*arena_dy/3))){
 dir=0x0f;
 acquired=1;
 }
 //Mid Right
 if ((horzavg3>(2*arena_dx/3))&&(vertavg3>(arena_dy/3))&&(vertavg3<(2*arena_dy/3))){
 dir=0x5a;
 }
 //Bottom Left
 if ((horzavg3<(arena_dx/3))&&(vertavg3<(arena_dy/3))){
 dir=0xf7;
 }
 //Bottom Mid
 if ((horzavg3<(2*arena_dx/3))&&(horzavg3>(arena_dx/3))&&(vertavg3<(arena_dy/3))){
 dir=0xd3;
 }
 //Bottom Right
 if ((horzavg3>(2*arena_dx/3))&&(vertavg3<(arena_dy/3))){
 dir=0x5b;
 }
 //_______________________
 // end of direction section
 //________________________
//__
//outputs
//__
 // sets avg to 0

43

 for (j=0;j<8;j++){sensavg[j]=0;sum[j]=0;}
 //avg
 for (j=0;j<N;j++){
 for (i=0;i<8;i++){
 sensor[i]=adc(i);
 if (j==0){
 sum[0]=0;sum[1]=0;sum[2]=0;sum[3]=0;sum[4]=0;sum[5]=0;sum[6]=0;sum[7]=0;
 }
 sum[i]=sum[i]+sensor[i];
 }
 }
 for (j=0;j<8;j++){
 sensavg[j]=.0025*sum[j];
 }

 //****Sensor Override Direction

 //Rbmp
 if ((sensavg[1]<15) && (sensavg[2]>15)) {
 _outp(LPT1,0xf5);
 k=0;
 while(k<bigT){k++;}
 _outp(LPT1,0xf5);
 }
 //Lbmp
 if ((sensavg[1]>15) && (sensavg[2]<15)) {
 _outp(LPT1,0x5a);
 k=0;
 while(k<bigT){k++;}
 _outp(LPT1,0x5a);
 }
 //Close and NOT Lined Up //(sensavg[1]>15)&&(sensavg[2]>15)&&
 if ((sensavg[4]>130)&&(sensavg[6]>130)&&(acquired==0)){
 _outp(LPT1,0x73);
 k=0;
 while(k<bigT){k++;}
 _outp(LPT1,0x73);
 }

// left hi, right lo &&(acquired==0)
 if ((sensavg[4]<135)&&(sensavg[6]>135)){
 _outp(LPT1,0x5a);
 k=0;
 while(k<bigT){k++;}
 _outp(LPT1,0x5a);
 }

//left lo, right hi
 if ((sensavg[4]>135)&&(sensavg[6]<135)&&(acquired==0)){
 _outp(LPT1,0xf5);
 k=0;
 while(k<2*bigT){k++;}
 _outp(LPT1,0xf5);
 }

 //Close and Lined Up
 if ((sensavg[1]>15)&&(sensavg[2]>15)&&(sensavg[4]>135)&&(sensavg[6]>135)&&(acquired==1)){
 k=0;
 _outp(LPT1,0x00);
 while(k<bigT){
 k++;
 }
 }

 //******Move Direction********
 if ((sensavg[1]>15)&&(sensavg[2]>15)&&(sensavg[4]<135)&&(sensavg[6]<135)){
 _outp(LPT1,dir);
 }

//then back up
 if (dir==0xfd){_outp(LPT1,0x7d);}
 if (dir==0x7c){_outp(LPT1,0x7c);}
 if (dir==0x5e){_outp(LPT1,0x7e);}
//then sit still
 if (dir==0x5a){_outp(LPT1,0x0a);}
 if (dir==0x0f){_outp(LPT1,0x0f);}
 if (dir==0xf5){_outp(LPT1,0x05);}
//then go fwd
 if (dir==0xf7){_outp(LPT1,0xd7);}
 if (dir==0xd3){_outp(LPT1,0xd3);}
 if (dir==0x5b){_outp(LPT1,0xdb);}
 }
 default: break;
 }
 return TRUE;
}
//Simplest Motion detector
BOOL CFrameGrabberTestDoc::RunDetector(LPBITMAPINFO lpBi){

 //constants definitions for motion detector
#define ZONESX 4
#define ZONESY 4
#define ZONES ZONESX*ZONESY
#define DETECTION_LEVEL 0.05f

44

 static LONG lastIntensity[ZONES];
 static BOOL init = TRUE;
 LONG newIntensity[ZONES];
 int rx = IMAGEWIDTH(lpBi)/ZONESX;
 int ry = IMAGEHEIGHT(lpBi)/ZONESY;
 for(int y = 0; y<ZONESY; y++)
 for(int x = 0; x<ZONESX; x++)
 if(IMAGEBITS(lpBi)==32)
 newIntensity[y*ZONESX+x] = summ_rect_arena32(IMAGEDATA(lpBi),
 IMAGEWIDTH(lpBi),
 IMAGEHEIGHT(lpBi),
 x*rx, y*ry, rx, ry);
 else
 if(IMAGEBITS(lpBi)==24)
 newIntensity[y*ZONESX+x] = summ_rect_arena24(IMAGEDATA(lpBi),
 IMAGEWIDTH(lpBi),
 IMAGEHEIGHT(lpBi),
 x*rx, y*ry, rx, ry);
 else return FALSE;
 BOOL ret=FALSE;
 if(!init){
 FLOAT lastRel[ZONES-1];
 FLOAT newRel[ZONES-1];
 for(int i=0; i<ZONES-1; i++)
 lastRel[i] = (float)lastIntensity[i]/(float)(lastIntensity[i+1]+1);
 for(i=0; i< ZONES-1; i++) {
 newRel[i]= (float)newIntensity[i]/(float)(newIntensity[i+1]+1);
 float alarm = (float)fabs(lastRel[i] -newRel[i])/newRel[i];
 if(ala rm >DETECTION_LEVEL)
 {ret=TRUE; break;}
 }
 }
 memcpy(lastIntensity,newIntensity, ZONES*sizeof(LONG));
 init = FALSE;
 return ret;
}
//some detectors stuff
LONG summ_rect_arena32(LPBYTE data, int dx, int dy, int ptX, int ptY, int rx, int ry){
 LONG summ = 0;
 int lineBytes = dx*4;
 data+= (lineBytes*ptY + ptX*4);//offset
 for(int y = 0; y<ry; y++, data+=lineBytes)
 for(int x = 0; x< rx*4; x+=4){
 summ+= data[x+1];
 summ+= data[x+2];
 summ+= data[x+3];
 }
 summ/=3;
 return summ;}

LONG summ_rect_arena24(LPBYTE data, int dx, int dy, int ptX, int ptY, int rx, int ry)
{
 LONG summ = 0;
 int lineBytes = dx*3;

 data+= (lineBytes*ptY + ptX*3);//offset

 for(int y = 0; y<ry; y++, data+=lineBytes)
 for(int x = 0; x< rx*3; x+=3)
 {
 summ+= data[x+0];
 summ+= data[x+1];
 summ+= data[x+2];}
 summ/=3;
 return summ;
}
int in1=0, in2=0, out1=0, a0=0x0278;
int adc(int addr){
 a0=addr,
 //read registers
 in1=_inp(STATUS1);
 in2=_inp(CONTROL1);
 //preserve old control data, resend ADDRESS
 out1= ((in2)&(0xf0))+addr+0x08;
 _outp(CONTROL1, (out1 ^ 0x0b));
 //send SAMPLE COMMAND to ADC,
 out1=out1-8;
 _outp(CONTROL1, (out1 ^ 0x0b));

 while((_inp(STATUS1)) < 0x81){}
 //wait for ~ACK
 in1=_inp(STATUS1);
 return ((in1 & 0x78)*2);
}

45

Appendix 3

FLAME
• Ο• Ο riginal Program MATLAB Code: vision10.m

function vision10(file)
%MACHINE VISION 1.0
t0=clock;
warning off
VISION=imread(file);
tol=50;
mid=100;
vision=double(VISION);
vision_orig=vision;
sizes=size(vision);
M=10; % constant weight of middle pixel
RED=120; % MIN
GREEN=120; % MIN
BLUE=90; % MAX

for a=1:sizes(1),
 for b=1:sizes(2),
 if (~(...
 (((vision_orig(a,b,1)>RED)&(vision_orig(a,b,2)>GREEN)&(vision_orig(a,b,3)<BLUE))...
 | ((vision_orig(a,b,1)>200)&(vision_orig(a,b,2)>200)&(vision_orig(a,b,3)<170)))...
));
 vision(a,b,:)=0;
 end
 end
end
%filter out white brown dark, etc....

VISb=zeros(sizes(1),sizes(2));
for a=1:sizes(1),
 for b=1:sizes(2),
 if (((vision(a,b,1)>RED)&(vision(a,b,2)>GREEN)&(vision(a,b,3)<BLUE))...
 | ((vision(a,b,1)>200)&(vision(a,b,2)>200)&(vision(a,b,3)<170)));
 VISb(a,b)=1;

 else vision(a,b,:)=[0 0 0]';
 end
 end
end

R=5;
VISbin=zeros(sizes(1),sizes(2));
%blur it
for a=3:(sizes(1)-2),
 for b=3:(sizes(2)-2),
 VISbin(a,b)=(VISb(a+1,b-1)+VISb(a+1,b+1)+VISb(a-1,b+1)+VISb(a-1,b-1)+R*VISb(a,b))/(R+4);
 VISbin(a,b)=(VISb(a+1,b-1)+VISb(a+1,b+1)+VISb(a-1,b+1)+VISb(a-1,b-1)+R*VISb(a,b))/(R+4);
 VISbin(a,b)=(VISb(a+1,b-1)+VISb(a+1,b+1)+VISb(a-1,b+1)+VISb(a-1,b-1)+R*VISb(a,b))/(R+4);
 end
end
%the end blur

%calculate avg point
vert=0;horz=0;Z=0;
for a=3:sizes(1)-2,
 for b=3:sizes(2)-2,
 if (VISbin(a,b)>.9)
 vert=vert+(VISbin(a,b)^2)*a;
 horz=horz+(VISbin(a,b)^2)*b;
 Z=Z+1;
 end
 end
end

if (Z>0)
 vertavg=vert/Z;
 horzavg=horz/Z;
end

disp('Target Acquired....')
disp('X-coordinate ')
disp(horzavg)
disp('Y-Coordinate ')
disp(vertavg)
disp('')

VIS2=uint8(vision);
figure(1);subplot(2,1,1);image(VISION);
hold on;plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],'m*');plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],'m');
hold off
figure(1);subplot(2,1,2);image(VIS2)
hold on;plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],'m*');plot([.5*sizes(2) horzavg],[.5*sizes(1) vertavg],'m');
hold off
print -djpeg90 -r0 test
T=etime(clock,t0);
disp('Elapsed Time:');disp(T);

46

Appendix 4

ADC Test Code

#include <stdio.h>
#include <io.h>
#include <dos.h>
#include <conio.h>

#define LPT1 0x0278
#define STATUS1 LPT1+1
#define CONTROL1 LPT1+2

int adc(int addr){
 int a0=addr, in1=0, in2=0, out1=0;
 //read registers
 in1=_inp(STATUS1);
 in2=_inp(CONTROL1);
 //preserve old control data, resend ADDRESS
 out1= ((in2)&(0xf0))+addr+0x08;
 _outp(CONTROL1, (out1 ^ 0x0b));
 //send SAMPLE COMMAND to ADC,
 out1=out1-8;
 _outp(CONTROL1, (out1 ^ 0x0b));

 while((_inp(STATUS1)) < 0x81){}
 //wait for ~ACK
 in1=_inp(STATUS1);
 return ((in1 & 0x78)*2);
}

int main(){
 int c=0, i=0, j=0, b=0, N=500;
 int sensavg[8],sum[8], sensor[8];
 unsigned int a=_inp(STATUS1),data=0;

 for (j=0;j<8;j++){sensavg[j]=0;sum[j]=0;}

 while(b<300){

 for(j=0;j<N;j++){
 for (i=0;i<8;i++){
 sensor[i]=adc(i);
 if (j==0){sum[0]=0;sum[1]=0;sum[2]=0;sum[3]=0;sum[4]=0;sum[5]=0;sum[6]=0;sum[7]=0;}
 sum[i]=sum[i]+sensor[i];
 }
 }

 for (j=0;j<8;j++){
 sensavg[j]=.002*sum[j];
 }

 printf("Sen0 %3d Rbmp %3d Lbmp %3d Sen3 %3d Rir %3d Sen5 %3d Lir %3d
\n",sensavg[0],sensavg[1],sensavg[2],sensavg[3],sensavg[4],sensavg[5],sensavg[6]);
 // printf("Sen0 %3d Sen1 %3d Sen2 %3d Sen3 %3d Sen4 %3d Sen5 %3d Sen6 %3d
\n",sensavg[0],sensavg[1],sensavg[2],sensavg[3],sensavg[4],sensavg[5],sensavg[6]);

//1,4 green 05
 //2,8, red (0a

 if ((sensavg[1]<15) & (sensavg[2]>15)&(sensavg[4]<140) & (sensavg[6]<140)) {_outp(LPT1,0x01);}
 if ((sensavg[1]>15) & (sensavg[2]>15)&(sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x02);}
 if ((sensavg[1]<15) & (sensavg[2]>15)&(sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x03);}
 if ((sensavg[1]>15) & (sensavg[2]<15)&(sensavg[4]<140) & (sensavg[6]<140)) {_outp(LPT1,0x04);}
 if ((sensavg[1]<15) & (sensavg[2]<15)&(sensavg[4]<140) & (sensavg[6]<140)) {_outp(LPT1,0x05);}
 if ((sensavg[1]>15) & (sensavg[2]<15)&(sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x06);}
 if ((sensavg[1]<15) & (sensavg[2]<15)&(sensavg[4]>140) & (sensavg[6]<140)) {_outp(LPT1,0x07);}
 if ((sensavg[1]>15) & (sensavg[2]>15)&(sensavg[4]<140) & (sensavg[6]>140)) {_outp(LPT1,0x08);}
 if ((sensavg[1]<15) & (sensavg[2]>15)&(sensavg[4]<140) & (sensavg[6]>140)) {_outp(LPT1,0x09);}
 if ((sensavg[1]>15) & (sensavg[2]>15)&(sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0a);}
 if ((sensavg[1]<15) & (sensavg[2]>15)&(sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0b);}
 if ((sensavg[1]>15) & (sensavg[2]<15)&(sensavg[4]<140) & (sensavg[6]>140)) {_outp(LPT1,0x0c);}
 if ((sensavg[1]<15) & (sensavg[2]<15)&(sensavg[4]<140) & (sensavg[6]>140)) {_outp(LPT1,0x0d);}
 if ((sensavg[1]>15) & (sensavg[2]<15)&(sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0e);}
 if ((sensavg[1]<15) & (sensavg[2]<15)&(sensavg[4]>140) & (sensavg[6]>140)) {_outp(LPT1,0x0f);}

 if ((sensavg[1]>15) & (sensavg[2]>15)&(sensavg[4]<140) & (sensavg[6]<140)) {_outp(LPT1,0x00);}

 //for (c=0;c<1000;c++){ /////// }
 b++;
 }

 return 0;
}

47

Appendix 5

Table 3. SMURF Unique Components.

Part Name Part # Supplier Cost ($) Quantity
Silicon Photo Detector w/ Filter PD-4 All Electronics 6.00 2

T-53 STANDARD SERVOS LXUK84 Tower Hobbies 9.99 2
Dubro S12 12 oz. Square Fuel Tank LXD719 Tower Hobbies 3.79 1

AC Delco Windshield Washer Pump 22057650 Sun-State Recycling 3.00 1
8.4V NICAD Pack, 7 AAA Cells NCB-84 All Electronics 3.00 2

14.4V 1100 mA Pack, 12 AA Cells NCB-10 All Electronics 8.75 2
Duratrax KWIK-PIT 500 Fuel Bottle LMT033 Tower Hobbies 6.49 1

Light Duty Swivel Caster CST-4 All Electronics 1.00 2

Table 4. FLAME Unique Components.

Part Name Part # Supplier Cost ($) Quantity
2 ¾" Dubro Wheels (2 Pack) 275TL Hobbie Warehouse 7.09 1

Handi-works cordless screwdriver HW072 WalMart 8.88 2
3A, 55V H-Bridge motor drivers LMD18200 National Semiconductor Sample 2
Pixera color NTSC CCD camera PXG-150N-PH Computer Geeks 21.95 1
Solar 175W DC to AC inverter SBPI-175 Cummins Industrial Tools 20.00 1
8 bit, 8 channel, 10Msps ADC MAX118 Maxim Sample 1

S3 Virge DX 3375 2MB N/A Computer Geeks 13.75 1
Cybertainment CybermailAV PCI
video capture card BT878 Chipset

N/A Computer Geeks 14.50 1

12V Heavy Duty Mabuchi RS-540SH
Motor

G7851 Electronics Goldmine 1.00 2

Light Duty Swivel Caster CST-4 All Electronics 1.00 4
EverStart 12V 9Ah Battery ES12N94B1 Walmart 20.00 1

12V 2.6Ah Battery NP2.6-12 YUASA Sample 1

Suppliers:
All Electronics www.allelectronics.com
Computer Geeks www.compgeeks.com
Electronics Goldmine www.goldmine-elec.com
Maxim www.maximic.com FREE SAMPLES
National Semiconductor www.national.com FREE SAMPLES
Tower Hobbies www.towerhobbies.com
������� ωωω.ωαλµαρτ .χοµωωω.ωαλµαρτ .χοµ

