

Jerry the Mousebot

Geoff Hahn

December 9, 2002

University of Florida

Department of Electrical and Computer Engineering

EEL5666

Intelligent Machines Design Laboratory

 2

Table of Contents

Abstract . 3

Executive Summary . 3

Introduction . 4

Integrated System . 4

Mobile Platform . 4-5

Actuation . 5

Sensors . 5-9

Behaviors . 9

Conclusion .9-10

Appendix . 11-25

 3

Abstract

 My robot is modeled after a mouse. Its main purpose is to play with a cat. It does
this by trying to taunt and then evade the cat. After Jerry is played with for a certain
period of time, he goes into a sleep mode to wait until the cat wants to play some more.

Executive Summary

Jerry works as planned initially except for a few modifications. For the taunting

behavior, his tail does not spin. Instead, he moves rapidly left and right to shake his tail

at the cat and taunt it. When his tail is tugged or the bump sensors along the top are

touched, he will begin to evade the cat.

Jerry uses a pyroelectric sensor, IR detectors and bump whiskers to avoid the cat

and other obstacles. The combination of these three sets of sensors makes his movements

seem erratic and random, so that the cat will remain interested in playing with Jerry.

After a certain amount of time, Jerry will go back to sleep, to help conserve

battery power. Upon waking, he will begin again to taunt the cat.

 4

Introduction

 Cats are naturally curious and playful animals. Domestication of them does not

rid them of these traits. Many people do not have time to play with their cats all the time,

due to work, school, and all the normal run-around of everyday life. This leads a curious

cat to pursue other things to play with, which usually results in torn furniture and broken

lamps. This is where Jerry will be useful. The robot will give the cat something to play

with so that its hunting urges can be directed in a non-destructive direction.

Integrated System

 Jerry is controlled by an Atmel ATMEGA163 microcontroller board from

Progressive Resources. There will be 2 IR detectors for obstacle avoidance, some bump

switches on the top to sense when the cat is playing, some whiskers in front to determine

if he bumps into something, and a pyroelectric sensor to detect when the cat is nearby.

There will also be a tug sensor to indicate when the tail is being pulled. The actuation

system will consist of 2 servos that will power the wheels. An 8 pack of NiCd batteries

will power the whole thing.

Mobile Platform

The platform is a rectangular shaped box with a wheel on each side. There is an opening

in the back for the tail. The “nose” is pyramid-shaped with the top cut off so that there is

an opening for the pyroelectric sensor that is mounted inside. On either side of the nose

 5

are mounted whiskers for sensing if Jerry is bumping into an object. At the top of the

platform are mounted two ears, each with a Sharp GP2D12 IR sensor mounted on it. The

top is a door that opens upward so that the electronics can be accessed. It is closed when

the robot is running so that all the components are safe from the cat. Mounted on top are

3 bump switches that sense if the cat is touching them. There is a latch mounted near the

front of the door so that it can be locked shut from the cat. At the back on the bottom of

Jerry is mounted a plastic low-friction furniture mover so that he will slide easily along

the floor. Inside there is a compartment for the battery pack and the microcontroller. The

microcontroller is mounted inside via Velcro glued on the bottom of it.

Actuation

The two wheels are controlled by hacked MPI MX-400 servos from Acroname. Black

injection molded plastic wheels from MarkIII are mounted onto each of the servos. The

wheels are threaded to fit onto the servo shaft and a screw is used to hold them on. The

servos are run by a PWM, which is a feature that is integrated into the Atmel board.

Sensors

Bump Sensors

Jerry has bump sensors mounted along the top of the robot to sense when the cat is

playing. They are push reset switches from Radio Shack with a piece of wood glued to

the top of each one so that there is a wider area that it will detect where the cat is hitting.

 6

Each one of the switches is connected to a voltage divider circuit as shown below in

Figure 1.

Figure 1

Whiskers

Mounted on the each side of Jerry’s nose is a whisker. I purchased a bumper switch kit

from Lynxmotion (part # BMP-01). This consisted of two switches, two pieces of PVC

tubing, and two rounded rubber end pieces to fit over the hollow pieces of PVC. The

switch is pressed when the whisker bumps into an object head on. Both of the whiskers

are connected to the voltage divider circuit in Figure 2 below so that Jerry knows which

whisker is being touched. One of the problems that I’ve had with the whiskers is that if

Jerry backs up too close to an object, the whiskers will sometimes get caught and pulled

on. These bump sensors were designed to be mounted with both pieces of the PVC

tubing curving towards the center. I did not mount them that way, however, because I

 7

wanted them to look more like mouse whiskers and it would also have been more

difficult to mount it that way.

Figure 2

IR sensors

There are IR sensors for obstacle avoidance mounted on the ears on top of Jerry. They

are both pointed slightly outward from each other. The IR sensors that I used are Sharp

GP2D12 sensors that send an analog voltage to the A/D converter that is proportional to

the distance that an object is from the sensor. The greater the value, the closer an object

is. The range of values versus the distance (in inches) of an object away from the sensor

is shown in Figure 3.

Pyroelectric sensor

I mounted an Eltec 442-3 pyroelectric sensor in Jerry’s nose so that he can “smell” where

the cat is. It gives an analog voltage to the A/D converter based on the movement of heat

 8

sources. Since people and animals are heat sources, it can detect them. It will have a

value of greater than 134 when the cat is moving left and a value less than 122 when the

cat is moving right. The value will be about 128 (which corresponds to about 2.5V)

when there is no heat source in view.

Distance vs IR value

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

distance

va
lu

e

value

Figure 3

Flex Sensor

My special sensor is a flex sensor that is mounted to the tail. The tail is made from a toy

rubber snake that is naturally bent. I taped a flex sensor (Jameco part # 150551) to the

tail. The flex sensor is a variable resistor that changes its resistance based on how much

it is bent. It has an optimal resistance of about 10 k-ohms and a maximum resistance of

 9

about 30-40 k-ohms. The tail is connected to a voltage divider circuit. When the tail is

tugged on by the cat, the flex sensor is straightened and the resistance changes, which

changes the value measured by the A/D converter.

Behaviors

The first behavior Jerry will have is playing with the cat. He will move away

from the direction that the pyroelectric sensor determines the cat is in and at the same

time avoid other obstacles with his IR sensors and whiskers.

After a certain amount of time of the playing behavior, he will enter a sleep

behavior. Upon waking, Jerry will taunt the cat and if the cat either pulls on his tail or

hits one of the bump switches on top, he will enter into his playing behavior. In the

taunting behavior, Jerry moves rapidly left and right to shake his tail at the cat.

Conclusion

 Jerry does everything that he was created to do. I had a few problems while

building him, however. I had a lot of trouble designing the platform in Autocad before I

knew exactly what I was doing. I made a few mistakes in that area, the biggest of which

was a put the hole for the serial port to plug into too close to one of the wheels, so I had

to take off that wheel whenever I was downloading the program to it, which was quite

often. I also made Jerry too big because it was the only way I could fit everything inside.

 10

I’m not really sure how to make it smaller, but there must be a better way. It’s the same

size as a cat, which would probably scare a lot of them. With better servos, I could have

made Jerry faster, so that a cat would be even more interested in playing with him. I

originally wanted to make the tail spin by mounting it onto a servo. Unfortunately, I

hacked that servo and didn’t think about the cord that is attached to the tail. If it were to

spin, the cord would get wrapped up and probably damage something in the process.

Appendix

/*
Title: bigOne.c
Purpose: alternate between taunting the cat, running from the cat,
and going to sleep

 11

A/D interface and servo control modified from
code originally written by Kristen Allen
*/

#include <io.h>
#include <math.h>
#include "bigOne2.h"

int twoFeetLeft, twoFeetRight, oneFootRight, oneFootLeft;
int oldLeftValue = 102;
int newLeftValue;
int oldRightValue = 102;
int newRightValue;
int wait, count, start, stop, x, z;

unsigned short servoSpeed; //variable that holds the servo speed

void motorInit(void) {

 outp(servoStop, OCR1AL); //set PWM to 10% duty cycle on channel A
 outp(servoStop, OCR1BL); //set PWM to 10% duty cycle on channel B
 sbi(TCCR1A, COM1A1);
 sbi(TCCR1A, COM1B1);
 sbi(TCCR1A, PWM10);
 sbi(TCCR1A, PWM11);

 sbi(TCCR1B, CS11);
 sbi(TCCR1B, CS10);
 sbi(DDRD, PD4);
 sbi(DDRD, PD5);

}

void calibrate(void) {

 ADCset(bump); //set ad system to bump

 start = runADC(bump); //get ad reading

 int p, wait3;

 while(start < 22) { //wait till button is pressed

 wait3 = 0;

 start = runADC(bump);

 for(p = 0; p < 100; p++) {

 wait3 = wait3 + 1;

 }//end for

 }//end while

 12

 ADCset(leftIR);

 oneFootLeft = runADC(leftIR);

 ADCset(rightIR);

 oneFootRight = runADC(rightIR);

 sbi(PORTB,PC6); //turn on IR led to indicate that it has that reading

 while(start >= 20) { //wait until button is released

 wait3 = 0;

 ADCset(bump);

 start = runADC(bump);

 for(p = 0; p < 100; p++) {

 wait3 = wait3 + 1;

 }

 }

 cbi(PORTB, PC6); //turn off IR led

 start = 0;

 while(start < 22) { //wait till button is pressed again

 wait3 = 0;

 ADCset(bump);

 start = runADC(bump);

 for(p = 0; p < 100; p++) {

 wait3 = wait3 + 1;

 }

 }

 ADCset(leftIR);

 twoFeetLeft = runADC(leftIR);

 ADCset(rightIR);

 twoFeetRight = runADC(rightIR);

 sbi(PORTB, PC6); //turn on IR led to indicate that it has that reading

 13

 while(start >= 20) { //wait until button is released

 wait3 = 0;

 ADCset(bump);

 start = runADC(bump);

 for(p = 0; p < 100; p++) {

 wait3 = wait3 + 1;

 } //end for

 } //end while

 cbi(PORTB, PC6);

 while(start < 22) { //wait till button is pressed final time

 wait3 = 0;

 ADCset(bump);

 start = runADC(bump);

 for(p = 0; p < 100; p++) {

 wait3 = wait3 + 1;

 }

 }

} //end calibrate method

void init_ADC(void) {

 sbi(ADCSR, ADEN); //enable ADC
 sbi(ADMUX, ADLAR); //set ADC to left -adjusted to make ADC 8-bit
 //set the clock divider by 16
 sbi(ADCSR, ADPS2); //ADPS2 set to 1
 cbi(ADCSR, ADPS1); //ADPS1 set to 0
 cbi(ADCSR, ADPS0); //ADPS0 set to 0
 sbi(ADMUX, REFS0); //set to 2.56V reference voltage
}

void ADCset(int port) {

 if(port == 0) {

 cbi(ADMUX, MUX2); //set to channel 0
 cbi(ADMUX, MUX1);
 cbi(ADMUX, MUX0);

 14

 }else if(port == 1) {

 cbi(ADMUX, MUX2); //set to channel 1
 cbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);

 }else if(port == 2) {

 cbi(ADMUX, MUX2); //set to channel 2
 sbi(ADMUX, MUX1);
 cbi(ADMUX, MUX0);

 }else if(port == 3) {

 cbi(ADMUX, MUX2); //set to channel 3
 sbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);

 }else if(port == 4) {

 sbi(ADMUX, MUX2); //set to channel 4
 cbi(ADMUX, MUX1);
 cbi(ADMUX, MUX0);

 }else if(port == 5) {

 sbi(ADMUX, MUX2); //set to channel 5
 cbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);

 }else if(port == 6) {

 sbi(ADMUX, MUX2); //set to channel 6
 sbi(ADMUX, MUX1);
 cbi(ADMUX, MUX0);

 }else if(port == 7) {

 sbi(ADMUX, MUX2); //set to channel 7
 sbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);

 }

}

//runs the AD conversion,
//returning the ADC value
int runADC(int portNum) {

 int i, value, n;

 sbi(ADCSR, ADSC); //start the conversion

 for (n=0; n<4000; n++) { //wait for the conversion to be complete
 i=i+1;

 15

 }

 value = inp(ADCH); //stores value measured by the ADC into value

 return value;

}

void servoStart(int motNum, int speed) {

 if(speed > fullRight) {
 speed = 100; //set speed to 100 if greater than 100

 }else if (speed < fullLeft) {
 speed = -100; //set speed to -100 if less than -100

 }

 if (motNum == 0) {

 speed = -speed;

 if (speed == 0) {
 servoSpeed = servoStop;

 }else if(speed >= fullRight) {
 servoSpeed = servoRight;

 }else if(speed <= fullLeft) {
 servoSpeed = servoLeft;

 }else {
 servoSpeed = servoStop - speed;

 }

 newLeftValue = servoSpeed;

 if(oldLeftValue > newLeftValue) { //if the speed is being decreased

 while(servoSpeed > newLeftValue) {

 wait = 0;

 servoSpeed = ((K * oldLeftValue) + newLeftValue) / (K + 1);

 outp(servoSpeed, OCR1AL);

 for(count = 0; count < 100; count++) {

 wait = wait + 1;

 }//end for

 }//end while

 16

 servoSpeed = newLeftValue;

 outp(servoSpeed, OCR1AL);

 }else if(oldLeftValue < newLeftValue) { //if speed is being increased

 while(servoSpeed < newLeftValue) {

 wait = 0;

 servoSpeed = ((K * oldLeftValue) + newLeftValue) / (K + 1);

 outp(servoSpeed, OCR1AL);

 for(count = 0; count < 100; count++) {

 wait = wait + 1;

 } //end for

 } //end while

 servoSpeed = newLeftValue;

 outp(servoSpeed, OCR1AL);

 }else if(oldLeftValue == newLeftValue) { //if speed is staying the same

 servoSpeed = newLeftValue;

 outp(servoSpeed, OCR1AL);

 }//end if-else

 oldLeftValue = servoSpeed;

 } else if(motNum == 1) {//if right motor

 if(speed == 0) {
 servoSpeed = servoStop;

 }else if(speed >= fullRight) {
 servoSpeed = servoRight;

 }else if(speed <= fullLeft) {
 servoSpeed = servoLeft;

 }else {
 servoSpeed = servoStop - speed - 5;

 }

 newRightValue = servoSpeed;

 if(oldRightValue > newRightValue) { //if the speed is being increased

 17

 while(servoSpeed > newRightValue) {

 wait = 0;

 servoSpeed = ((K * oldRightValue) + newRightValue) / (K + 1);

 outp(servoSpeed, OCR1BL);

 for(count = 0; count < 100; count++) {

 wait = wait + 1;

 } //end for loop

 } //end while loop

 servoSpeed = newRightValue;

 outp(servoSpeed, OCR1BL);

 }else if(oldRightVa lue < newRightValue) { //speed is being decreased (full right is 1)

 while(servoSpeed < newRightValue) {

 wait = 0;

 servoSpeed = ((K * oldRightValue) + newRightValue) / (K + 1);

 outp(servoSpeed, OCR1BL);

 for(count = 0; count < 100; count++) {

 wait = wait + 1;

 } //end for

 } //end while

 servoSpeed = newRightValue;

 outp(servoSpeed, OCR1BL);

 }else if(oldRightValue == newRightValue) {

 servoSpeed = newRightValue;

 outp(servoSpeed, OCR1BL);

 } //end if-else

 newRightValue = servoSpeed;

 } //end else if

 return;

 18

}//end servoStart
//turns around to the right
void turnAroundRight(void) {

 motorSpeed(0, 0);

 motorSpeed(100, 0);

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 10; x++) {

 wait = wait + 1;

 }

 }

 motorSpeed(0, 0);

}

//turns around to the left
void turnAroundLeft(void) {

 motorSpeed(0, 0);

 motorSpeed(0, 100);

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 50; x++) {

 wait = wait + 1;

 }

 }

 motorSpeed(0, 0);

} //end turnAroundLeft method

//turns right
void turnRight(void) {

 int wait = 0;
 int z, x;

 19

 motorSpeed(0, 0);

 motorSpeed(100, 0);

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }

 }

 motorSpeed(0, 0);

} //end turnRight method

//turns right
void turnLeft(void) {

 int wait = 0;
 int z, x;

 motorSpeed(0, 0);

 motorSpeed(0, 100);

 for(z = 1; z < 25000; z++) {

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }

 }

 motorSpeed(0, 0);

} //end turnRight method

void motorSpeed(int leftSpeed, int rightSpeed) {

 servoStart(leftMotor, leftSpeed);
 servoStart(rightMotor, rightSpeed);

}

//wiggles his tail to taunt the cat
void wiggleTail(void) {

 for(x = 0; x < 5; x++) {

 20

 count = 0;

 while(count < 5000) {

 motorSpeed(0, 20);

 count++;

 }//end while

 motorSpeed(0, 0);

 count = 0;

 while(count < 5000) {

 motorSpeed(20, 0);

 count++;

 }//end while

 }//end for

 motorSpeed(0, 0);

}//end wiggleTail

//taunts cat to initiate play
void taunt(void) {

 int bumpValue = 0, tailValue = 0;

 cbi(PORTC, PC3);

 for(;;) {

 wiggleTail();

 motorSpeed(15, 15);

 for(z = 0; z < 300; z ++) {

 ADCset(tail);

 tailValue = runADC(tail);

 if(tailValue > 140) {

 sbi(PORTB, PC1); //turn on tailLED

 wait = 0;

 for(x = 0; x < 10000; x++) { //delay so that LED is visible

 21

 wait = wait + 1;

 }

 goto End;

 }//end if

 ADCset(bump);

 bumpValue = runADC(bump);

 if(bumpValue > 40) {

 sbi(PORTB, PC0); //turn on bumpLED

 wait = 0;

 for(x = 0; x < 10000; x++) {//delay so that LED is visible

 wait = wait + 1;

 }

 goto End;

 }//end if

 }//end for

 } //end for loop

End: cbi(PORTB, PC0); //turn off tailLED
 cbi(PORTB, PC1); //turn off bumpLED

 motorSpeed(0, 0);

}//end taunt

//run from the cat
void run(void) {

 int whiskerValue, pyroValue, rightValue, leftValue, tailValue;

 for(x = 0;x < 200; x++) {

// turnRight();

 motorSpeed(100, 100);

 ADCset(whiskers);

 whiskerValue = runADC(whiskers); //stores value measured by the ADC into leftValue

 ADCset(pyro);

 22

 pyroValue = runADC(pyro);

 ADCset(leftIR);

 leftValue = runADC(leftIR);

 ADCset(rightIR);

 rightValue = runADC(rightIR);

 if(whiskerValue > 64 && whiskerValue <= 96) { //if right whisker is bumped

 motorSpeed(0, 0); //stop
 motorSpeed(-100, -100); //back up from obstacle

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 turnLeft();

 } else if(whiskerValue > 128 && whiskerValue <= 154) {

 motorSpeed(0, 0); //stop
 motorSpeed(-100, -100); //back up from obstacle

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 turnRight();

 } else if(whiskerValue > 154 && whiskerValue <= 162) {

 motorSpeed(0, 0); //stop
 motorSpeed(-100, -100); //back up from obstacle

 for(z = 1; z < 25000; z++) {

 23

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 turnAroundLeft();

 } else if(pyroValue > 150 && pyroValue <= 255) { //if cat is moving left (on the right)

 sbi(PORTB, PC7); //turn on pyroLED

 motorSpeed(0, 0); //stop
 motorSpeed(-100, -100); //back up from obstacle

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 turnAroundLeft();

 cbi(PORTB, PC7); //turn off pyroLED

 } else if(pyroValue > 0 && pyroValue <= 105) { //if cat is moving right(on the left)

 sbi(PORTB, PC7); //turn on pyroLED

 motorSpeed(0, 0); //stop
 motorSpeed(-100, -100); //back up from obstacle

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 40; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 turnAroundRight();

 24

 cbi(PORTB, PC7); //turn off pyroLED

 } else if(leftValue >= twoFeetLeft && rightValue >= twoFeetRight) { //if an object is too
close to both IRs

 sbi(PORTB, PC6); //turn on IR LED

 turnAroundRight();

 cbi(PORTB, PC6); //turn off IR LED

 } else if(leftValue >= twoFeetLeft && rightValue < twoFeetRight) { //if an object is
close to leftIR

 sbi(PORTB, PC6); //turn on IR LED

 turnRight();

 cbi(PORTB, PC6); //turn off IR LED

 }else if(rightValue >= twoFeetRight && leftValue < twoFeetLeft) {//if an object is close
to rightIR

 sbi(PORTB, PC6); //turn on IR LED

 turnLeft();

 cbi(PORTB, PC6); //turn off IR LED

 } //end if-else

 } //end for loop

}//end run

void sleep(void) {

 cbi(PORTC,PC4);

 motorSpeed(0, 0);

 cbi(TCCR1A, COM1A1);
 cbi(TCCR1A, COM1B1);

 for(z = 1; z < 25000; z++) {

 wait = 0;

 for(x = 1; x < 300; x++) {

 wait = wait + 1;

 }//end for

 }//end for

 25

 sbi(TCCR1A, COM1A1);
 sbi(TCCR1A, COM1B1);

}//end sleep

int main(void) {

// int leftValue = 0, rightValue = 0, whiskerValue = 0, pyroValue = 0, tailValue = 0;

 init_ADC(); //initialize the ADC

 outp(0xff,DDRC); // use all pins on PortC for output

 outp(0xff,PORTC);

 outp(0xff,DDRB); // use all pins on PortB for output

 outp(0x00,PORTB); //turn off all the LEDs

 calibrate(); //calibrate the IRs

 motorInit();

 for(;;) {

 taunt();

 run();

 for(z = 1; z < 4000; z ++) {

 sleep();

 } //end for

 }//end for

 return 0;

}

