

Brutus vs. Albert

Hubert Ho

EEL 5666
Dr. Arroyo

Final Report
December 10, 2002

 2

Table of Contents

Abstract……………………………………………………………… 3
Executive Summary …………………………………………………. 4
Introduction…………………………………………………............... 5
Integrated System…………………………………………………….. 7
Mobile Platform……………………………………………………… 9
Actuation……………………………………………………………… 11
Sensors……………………………………………………………….. 13
 Bump/Switch Sensors………………………………………….. 13
 Sharp Distance Sensor……………………………………….… 14
 CMUcam (Special Sensor)…………………………………….. 15
 The Problem…………………………………………….. 15
 Test Images……………………………………………… 17
 The Solution…………………………………………… 19
 Implementation………………………………………… 21
 Analysis…………………………………………. ……. 22
Addition Hardware…………………………………………………… 23
 Solenoid………………………………………………………. 23
 Voice Playback………………………………………………. 24
 Speaker………………………………………………………. 26
 Power………………………………………………………… 27
 Marker……………………………………………………….. 28
Behaviors…………………………………………………………… 29
Experimental Layout and Results…………………………………… 32
Conclusion………………………………………………………….. 33
Prediction…………………………………………………………… 36
Documentation……………………………………………………… 37
Appendices…………………………………………………………. 38
 Code…………………………………………………………. 39

 3

Abstract

Brutus is a robot project, named after the “Best College Mascot” – Brutus Buckeye of
The Ohio State University. Brutus is able to determine between seeing either the mascot
of OSU, Brutus Buckeye, or the mascot of University of Florida, Albert Alligator. After
determining which mascot is detected, the robot will perform “Script Ohio” for OSU, and
“Gators” for UF, while playing the fight song of the respected school.

 4

Executive Summary

 As a current student of University of Florida, and an alumni of The Ohio State

University, football plays a huge role during Fall quarter/semester. By implementing

both of these schools together, this robot project will integrate both teams into one

project, with a performance for both schools to be proud of.

 The Ohio State University’s marching band is one of the best in the country, and a

proud tradition of this powerhouse school is “Script Ohio”. The Florida marching band

also exhibits a similar performance with “Gators”, and by playing the fight song of the

respect school, only adds to the performance to make it stronger and better.

 The microprocessor board used is an Atmel Mega163 board, which is used to

integrate and implement the whole project. The platform of the robot is built out of wood

and stable enough to handle all of the different aspects required for the robot. Many

sensor are used on this robot, but the “special” sensor is a CMUcam, which is a low-cost

camera used for robot applications. The code for the program is written in C code and

downloaded onto the chip to be tested and ran.

 Tying everything together into one package, proved to be very time consuming

and difficult, but achievable. Being able to exhibit the correct behaviors necessary is a

difficult task, but one to be proud of when done correctly.

 5

Introduction

 As an alumni of The Ohio State University Buckeyes, this fall has been an

amazing experience. Since graduating from OSU last spring, and making the decision to

continue my education here at University of Florida, relocating from one football school

to another football school definitely has its benefits. Both of these highly respected

schools and programs have had successful seasons. Ohio State has answered all

questions by finished its season undefeated (13-0), and deserving our chances to play for

the National Championship on January 3rd in Tempe, Arizona, against University of

Miami. Florida has also had a successful season under a first year coach, and has their

mindset on the Outback Bowl in Tampa vs. University of Michigan.

By incorporating the football atmosphere of both of these schools, I am able to

create my robot: Brutus (named after Brutus Buckeye, the mascot of The Ohio State

University), which is my project for IMDL (Intelligent Machine Design Laboratory), that

will be able to detect either the OSU mascot, Brutus Buckeye, or the UF mascot, Albert

Alligator. After the detection of either of these mascots, the robot’s microprocessor

board (Atmel Mega163), will be able to determine which of these mascots is being seen.

After detection, the robot will turn around, and perform either “Script Ohio” (Figure 1) if

Brutus (Figure 2) is seen, or “Gators” (Figure 4) if Albert (Figure 3) is detected, while

playing the fight song of the respected school.

 6

Figure 1 – “Script Ohio”

 Figure 2 – Brutus Mascot Figure 3 – Albert Mascot

Figure 4 – “Gators”

 7

Integrated System

 The Atmel Mega163 Microprocessor Chip was included with the purchase of the

Progressive MegaAVR-Dev development board (Figure 5). This board turned out to be

very helpful and useful for understanding the microprocessor chip, which was aided very

nicely by the included documentation. The fact that everything was laid out nicely and

readily available was a huge plus, especially for someone who does not have a vast

understanding and background with these kinds of chips.

 The board assisted nicely in having input and output pins for sensors and such,

along with the power connections, serial connections, a reset button, and LED’s. Most of

the hardware became very easy to integrate with the development board. The 2 servo

motors (used for moving the wheels of the robot) were connected to PortD pins 4 and 5,

which were the PWM (Pulse Width Modulation) timer functions. The sound chip (used

to play the fight songs of the schools) were connected to PortB pins 0,1, and 2. PortA

was used to connect the Sharp IR distance sensor (measures distances in front of the

robot), and a Bump sensor (used to trigger the start of the robot). The solenoid (used to

move the marker up and down) used PortC pin 1. The CMUcam, used to determine the

mascot in front of the robot, uses the serial port to communicate its results.

 With these many sensors, and different input/output values, all integrated into one

microprocessor board of this robot platform, programming the chip to work correctly

became a humongous task. The programming software tha t is available for the

Progressive Development board, is the AVR Studio, which programs in the C language.

This language by itself is difficult to understand, but luckily there are test programs and

also other examples by other students for us to browse and to help us understand. After

 8

spending much time testing and understanding the program, I was finally able to create

my own programs and integrate the test examples into my program to result in the

outcome I desired.

 “Script Ohio” and “Gators” were the outcome of much testing and coding for the

correct output and results presented. There were many other factors that made the

performances difficult, which include the platform itself, the wheels used, the servos, and

also the ground the robot is on.

Figure 5 – Atmel Mega163

 9

Mobile Platform

 The body of my robot was based on the many TJs (Talrik Juniors) that the MIL

lab has. Although the robot will need to perform difficult tasks, the platform of the TJ

appeared to be sufficient enough for my requirements because of the fact that not many

mechanical functions needed to be factored into the design. I knew that the TJ design

would be too small, and so I created a design that was a little larger and would be able to

provide me more functionality and possibilities.

 The design of the many pieces used in creating the robot’s platform were

designed using AutoCAD2002 (Figure 6), which proved to be somewhat of a difficult

task for someone who is not a Mechanical Engineer, but easy enough to learn and use.

After designing the pieces, the T-Tech machine was then programmed to cut out the

wood, based on the design created in AutoCAD. Something that I had to keep in mind

was that the wood was 1/8 inch thick, and thus my design had to factor that size in, and

the side pieces had to allow enough room for the other pieces to fit into correctly.

After cutting out the pieces, I sanded down the sides and glued the pieces together

to form the body. The body was large enough to place my microprocessor board on, a

place in the back for my battery pack, enough room for my servos to be mounted, and the

top had room for both my camera and a helmet to be attached. One thing that I did need

to add to this design was an arm on the bottom for controlling the solenoid, which was

responsible for my marker to draw the words “Ohio” and “Gators”. The was a huge

headache, but finally achieved successfully.

 10

Figure 6 – AUTOCAD design

 11

Actuation

 My robot used two hacked servo motors (as the source of locomotion), which

seemed to give me some trouble because of the fact that the hacked servos were not

precise enough as my application would have liked. These servos were easier to integrate

into this system and with my microprocessor board, as compared to motors, because the

chip already had pins ready for PWM (Pulse Width Modulation) that can handle the servo

movements. I had considered using stepper motors, but turned away because motors

required special stepper motor drivers and they cost more then I would have liked. I had

hoped that the servos would be enough to handle my application, and they proved to be

successful, but not perfect.

 By hacking the servos and achieving continuous movement, this allowed me to

mount one servo on the left and one on the right side of the robot. By spinning one servo

one way, and the other servo the opposite way, I was able to have the robot move

straight. The values needed by the servos to move straight were difficult and required

many tests before being found. Similarly, many tests were needed in order to have the

robot move backwards, turn right, and also turn left. These values were only found after

careful testing and trials.

The servos were Balsa Products BP148N 2BB Standard-torque ball-bearing servo

motors, from MarkIII (Figure 7). The wheels used were injection molded wheels (Figure

8), also bought from MarkIII, which fit perfectly on the servos. The wheels were hard

plastic wheels, but by attaching the included rubber bands, the wheels thus had friction

and a way to stick to the ground and move the robot.

 12

 While each of the servos make up 2 points that the robot touches the ground,

another point is needed in order to make the robot stable. This last point is made up of a

plastic furniture glide piece, located in the rear of the robot, which sticks into the bottom

of the robot and allows it to glide on the surface of the floor. These three points

stabilized the robot enough so that it can move accurately and perform the necessary

actions.

Figure 7 – Servo Motors

Figure 8 – Wheels

 13

Sensors

Bump/Switch Sensors

 After the robot has been turned on, it will be inactive and wait until a bump

switch is pressed by the user. This will then trigger the robot to begin the performance.

The main function and purpose of this is so that the robot will be in control of the user

and hopefully not somehow break itself by falling off a table, or running somewhere it

could possibly be damaged. I found this sensor very easy to use and also very important

in order for the robot to begin correctly.

 The Bump Sensor that I implemented was a simple snap-action switch, ordered

from Jameco (Figure 9). The actuator used to make the contact was a hinge lever, and

while the switch is open, a low value is read in, until the sensor has a “hit”, which makes

the value then high. I only used one of these sensors because of the specifications of my

robot does not need to worry about running into anything.

Figure 9 – Bump Sensor

 14

Sharp Distance Sensors

 By using the Sharp Distance Sensor (Figure 10), the robot will be able to tell if

there is actually something in front of it. If we were to just rely on the photo images and

pattern extraction techniques, the robot may incorrectly qualify something as being either

mascot, which in reality is actually wrong. By using these sharp sensors, the robot will

be able to determine its exact distance to the object.

 The Sharp Distance Sensor that I have chosen is the Sharp GP2D12 Infrared

Ranger. I am using one of these sensors, which is mounted on the front center of the

robot, pointing straight forward. The sensor then returns the value to the Atmel

Progressive Board for processing.

The distance is measured by actually having one side being a light emitter, and

the other side being a light detector, where the light emitter sends a light beam, which is

reflected off an object, and returned back to the light detector. The distance from the

sensor to the object is proportional the time the reflection is detected back. This means

that when the object is close to the sensor, the value sent to the board is higher then when

it is far away, where the value is lower.

It turned out that I only wanted to find the distance of about a foot away from the

object, and so after many tests, the correct value of 24 was the value looked at by the

sensor. Once a value of 24 was returned to the microprocessor, the robot then knew to

stop looking

for mascot and

a picture could

then be taken

by the

CMUcam.

Figure 10 – Sharp Distance IR Sensor

 15

CMUcam (Special Sensor)

The Problem

 The Brutus robot is using a CMUcam Vision Board (Figure 12) camera to take

images of what it is facing. The webpage and description of the CMUcam can be found

at its website: www-2.cs.cmu.edu/~cmucam. This camera is a “new low-cost, low-power

sensor for mobile robots.” This cost of this camera is $109 through Seattle Robotics, and

can be found at www.seattlerobotics.com/cmuinfo.htm. This camera uses a serial port,

which makes it easy to connect to both the robot’s microprocessor board, or a computer’s

serial port.

While being connected to a computer, the camera’s package also includes two

demo programs which allow for the user to test the camera and see the images. In

addition to seeing the images of the camera, the demo programs also allow the user to test

the many different functions of the camera, which include the following: setting the

camera’s internal register values, dumping frames, delaying packets transmitted, getting

the mean color values, getting the current version of software, controlling the tracking

light of the camera, and several others. Other characteristics of the CMUcam is that it

can track color blobs at 17 frames per second, gather mean color and variance data,

transfer real- time binary bitmap images, dump raw images, and it has a resolution of

80x143 pixels.

 Upon trying to take images in different lighting conditions, it turns out that the

camera does not have a very good IR filter lens, which limits the conditions that the robot

will be able to work in. In areas with high IR, such as from light bulbs, the images

appear very dark and red, which makes determining the true color of objects very hard.

 16

Another problem with the images of the two mascots in the pictures became the fact that

if the images would have very different values depending on the distance of the camera to

the image. Another problem arose being the fact that if the background of the mascot is

random, then the color pixels of the images would very greatly from one set of pictures to

another. These problems would be dealt with by limiting the conditions of the camera’s

images.

After connecting the camera to the microprocessor board, and dumping the

images, the microprocessor board will have to determine if the image contains either

Brutus (OSU’s mascot) or Albert (UF’s mascot). This became the main problem and

focus for my Pattern Recognition Project. The problem of being able to interface the

CMUcam with the Atmel Mega163 (Figure 11) microprocessor chip was very time

consuming and full of headaches. Luckily because of the fact that the Atmel processor

board suggests the use of AVR-Studios, which programs in C, to program the board, it

became easier to understand how to operate the CMUcam with the microprocessor board.

Figure 11 – Atmel Mega163 Figure 12 – CMUcam
 Microprocessor

 17

Test Images

 By implementing the two separate demo programs for the CMUcam, I was able to

test the camera for different results by sending the camera different commands through

the serial port. In using different commands and setups, I was able to see different results

in the images captured and understand what the optimal setup for the camera would be.

 The best image, as far the size of the mascot as compared to the whole image,

would be one where the mascot is seen from the bottom of the image to the top. This

turned out to be when the robot is about a foot away from either mascot. By restricting

the camera to only capture the images while being a foot away from the mascot, we are

increasing the chances of having a consistent image to be classified. This actually turned

out to be very important and very necessary as testing increased and became more

difficult.

 With the image, another problem that arose was the fact that the background

behind the mascot changes depending where the mascot is located. With the background

changing, the different colors and objects in the whole image would make the mascots

very hard to classify and separate. After much agony and turmoil, the decision was made

to make the background consistent and not changing. I was able to do this by putting up

a white bed sheet behind the mascot, thus making the background always white and only

the mascots’ colors would be processed.

 In addition to the backgrounds not being consistent, another problem arose, which

is a very common and always eminent problem, of lighting. Depending on the lighting of

the atmosphere of room that the testing is done, the images would vary greatly. The

problem of the CMUcam not having a very good IR filter plays a huge part here, in that

 18

light bulbs result in images that are very dark, red, and hard to distinguish objects and

colors (Figure 13). The solution to this problem was using a florescent light, which I

hold over the robot, facing the mascots. Not only did this solution fix the problem of the

redness, the florescent lights also seemed to brighten up the mascots’ colors, making

them very distinguishable and easy to pick out (Figure 14).

These changes appeared to be good solutions to the image problem, in that the

images became very consistent. By having consistent images captured by the CMUcam,

this allows for testing and classifying to be easier and more accurate. On the bad side,

the robot is restricted to only these conditions stated above. I feel that although the robot

is restricted, this is still a difficult application to make work and this is a very good start

to answer this problem.

Figure 13 – no IR filter (regular light bulb)

Figure 14 – IR filter (florescent light)

 19

The Solution

 By taking the images captured from the CMUcam, which are saved on the

computer, I am able to use software to manipulate the data and find the best way to

classify the two mascots. The classifier that I chose for separating the two mascots deals

with color because each of the mascots have definite colors that separate one from the

other. The Brutus Buckeye mascot has mostly red, tan, and dark brown materials, while

Albert Alligator is made up of mostly orange, dark green, and light green. In applying

the techniques from homework 2, problem number 3, instead of looking at each pixel as a

3 dimensional color scheme of Red, Green, and Blue (RGB), and because the color blue

is very small, we can choose to leave blue out of our calculations. By having a 2

Dimensional vector, the amount of information needed to be processed is reduced greatly.

 By taking these 2D color vectors (Figures 15 and 16), and analyzing the images

with Mathematica, we are able to create a good classifier, with graphs and Gaussian

distributions for the different cases. With these classifiers, we are able to implement

separations and understand what the microprocessor board will have to do in order to

process the different images.

The technique that I initially wanted to implement was to read in each pixel of an

image and classify it as either being: Brutus, Albert, or neither. Where after all of the

pixels in an image have been evaluated, the board should be able to determine which

mascot is seen by the camera. While this would have been a very nice classifier, I

discovered that the CMUcam already has a function that would be able to “Get the Mean

color value in the current image” (which means the RGB pixel averages). With this

 20

function already available, it would be much easier to just test the mean RGB values and

discover a good way to classify the two mascots in this way.

 By taking the best images of the mascots captured from the CMUcam, and

importing them into Mathematica, I was able to find the mean pixel RGB values. These

values are as follows: for Brutus Buckeye, the mean values were:

{159.826, 115.89, 40.8258} {Red, Green, Blue}.

The values for Albert Alligator were as follows:

{149.82, 119.045, 41.3058} {Red, Green, Blue}.

 With interpreting these results, it can be found that the Green and Blue averages

were very similar, and possibly not a very reliable classifier. On the other hand, Red

stands out to be about a 10 (out of 255) point difference, which could very well be the

difference needed to determine between the two objects. By choosing the average value

between 159.826(Brutus) and 149.82(Albert) of 155, we have now found the classifying

threshold to be implemented into the program for the robot’s microprocessor board.

0 50 100 150 200 250
0

50

100

150

200

250

 0 50 100 150 200 250
0

50

100

150

200

250

Figure 15 – RG graph of Brutus Figure 16 – RG graph of Albert

 21

Implementation

 Connecting the CMUcam to the Atmel microprocessor board proved to be very

tricky and difficult to implement because of the fact that the camera did not include very

detailed instructions on how to handle this topic. The camera has two options – going

through the level-shifted serial port, or connecting using the TTL serial port. I found

using the level-shifted 9-pin serial port connector easier to implement and configure. The

connection was actually made by only using the GND, TX, and RX from the camera to

the board.

 The code for the camera is as follows:

{
PRINT(“RS”); //resets the camera
EOL(); //end of line
PRINT(“PM 1”); //polls one line at a time
EOL();
PRINT(“CR 19 32 16 140”); //sets auto-gain and exposure of 140
EOL();
PRINT(“RM 3”); //sets raw input and output
EOL();
PRINT(“GM”); //gets mean color values

}

This code basically transmits the mean color values through the serial port to the

microprocessor board. After reading in the mean red value, the microprocessor compares

it to the threshold previously determined.

 If the value read is less then the classifying threshold of 155, then the mascot is

Albert, and if the value is greater then 155, then the mascot is Brutus. This then triggers

the performance of the respected mascot. Although this process seems to be fairly easy,

testing the values and finally receiving the correct values became a very tough challenge.

The difficulty was that if the camera is connected to the microprocessor board, then it can

 22

not be connected simultaneously to the computer, which makes it very difficult to debug

and know what values are being read. This problem was finally resolved by having the

board send the commands to the camera, receive the values back, and then wait to be

triggered to send the values to the computer. Meanwhile, the connections are removed to

the camera, and connected to the computer, and finally sending the values to the

computer’s Hyperterminal. The values can then finally be seen by the user and

determined if they are correct or not.

Analysis

 While using the mean color values found by the CMUcam to determine threshold

differences is not a very difficult application, the fact that I was able to incorporate the

Gaussian distributions and mean value techniques covered during class into an actual

robot project, makes it a special condition. Mathematica was used to see actual statistical

3D and 2D models for both images of Brutus and Albert. From these contour plot

models, we are able to see the differences of the images and know that there is actually a

way of classifying one object from another.

 From the same Mathematica tests run on multiple images, of different conditions,

we are able to determine the best situation and conditions, which were to have the robot a

distance of one foot away from the mascot, have a white background behind the mascot,

and to have a florescent light providing a consistent lighting. Ideally, with these

conditions stated, and the classifying threshold found, the robot should be able to

successfully determine between Brutus and Albert.

 23

Additional Hardware

Solenoid

 The Solenoid (Figure 17) that I used is a push-type solenoid that was purchased

through Jameco, which was used to control the movement of the marker. The solenoid

functions by connecting the two wires to either ground or power, causing the plunger to

be pushed through and held in place. When the plunger is pushed down, this causes the

arm to be lowered, which controls the marker on the end of the arm. When the solenoid

is not connected, the arm is raised by a sponge, pushing the marker off of the ground.

 The solenoid circuit was connected by implementing an optoisolating circuit,

which separates the solenoid from the rest of the robot. The optoisolator used was a

Fairchild Semiconductor Photodarlington Optocoupler H11B1, which waits for the signal

from microprocessor board, and then sends the signal to the Power Mosfet

MTP75N03HDL. The signal from the microprocessor board completes the circuit, which

causes the MOSFET to trigger the solenoid and thus lowering the marker.

 This circuit proved to be very difficult to understand and figure out. After

breadboarding the circuit several times with several different setups, the answer was

finally found. Initially the circuit diagrams I had received included using a resistor on the

MOSFET, which I found to be unnecessary and caused the circuit to not work properly.

After many tests, and finally removing this resistor, the circuit finally worked, and the

marker moved correctly.

Figure 17 – Solenoid

 24

Voice Playback

 The ISD25120 (Figure 18) was used to play the fight song of both schools. The

chip has the capability to playback 120 seconds worth of input recordings at a frequency

of 4kHz. While my application only needed to choose between a total of only two

“message” choices, the chip has the capability of playing any number of messages. There

are several different ways to record onto the chip, and also to playback the messages from

the chip. The easiest way I found was to use the breadboard setup to record onto the chip

and then use the microcontroller to control the different input lines of the chip, for

playback purposes.

 By using the pushbutton setup for the chip (Figure 19), I was able to simply

control the recording, playback, and pausing with switches from a breadboard. By

removing the switches and using the microcontroller, I had to solder the chip onto a

proto-board and wire-wrap the connections together. This was a very difficult and

confusing process, but also a very educational and helpful experience also. Each of the

input lines for the chip were controlled by the microcontroller, which was a difficult task

to implement, but when finally done right, the correct song was finally able to be played.

 The way I recorded onto the chip, the OSU fight song was first, and then the UF

fight song second. In order to play the OSU song, I just had to turn on the play line on

the board to true. In order to play the UF song, I had to set the mode to a different

addressing mode, in order to advance to the second song, and return back to the normal

mode, and then play the song. This process took a considerable amount of testing, but I

was finally able to have it work correctly.

 25

Figure 18 – Voice Playback Chip

Figure 19 – Chip Wiring

 26

Speaker

 While the speaker (Figure 20), for the voice playback chip, was a standard 8 ohm

speaker, I had problems trying to get it to amplify the sound. The servos turned out to be

very loud and difficult for the speaker to overcome by itself. I tried to integrate an

amplifier chip into the speaker input, but the results were not very positive. I found that

the speaker just by itself was louder then with the amplifier. This was somewhat

annoying, but in the end I was able to amplify the sound without the chip.

 My solution to the speaker’s sound being to soft was to use a Styrofoam cup to

amplify the sound. I cut out the bottom of the cup, and attached the speaker to the open,

bottom end. The sound was able to vibrate and while being directed out of the cup,

became loud enough to overcome the sound of the servos running.

Figure 20 - Speaker

 27

Power

 For the source of power to operate the robot, I chose to use eight AA Nickel

Metal-Hydride batteries (Figure 21). This total gave out around 10.5V, fully charged.

While the microprocessor board has its own voltage regulator, the power should be fine

as long as it was above 7V. The board then also was able to have its own power output

of 5V, which was used to power the bump switch, Sharp IR sensor, and the voice

playback chip.

 The direct power of the batteries were also used to power the CMUcam, solenoid,

and the servo motors. However, before the power could be used by the servos, I used a

LM7805 Voltage Regulator in order to create a consistent 5V to each of the servos. This

became very helpful and necessary in order to have a constant condition for the motors.

The power going to the CMUcam does not necessarily have to be very high, but the

CMUcam board can handle it because it has its own voltage regulator on its board. The

solenoid runs best on 12V, but by giving it 10.5V, it was able to operate well enough.

Figure 21 – Ni-MH Batteries

 28

Marker

 The marker I ended up using was a medium point Boone dry-erase marker. This

was the marker I chose because of the fact that it was thin enough to fit in the robot

platform. When the robot was finally put together I had problems with the marker not

being able to touch the ground. After testing the solenoid circuit over and over, I finally

discovered the fact that the marker was too tall and being interfered with by the wires of

the robot.

 I spent time altering the length of the marker so that it was shorter and then not be

able to touch the wires. This appeared to be a good solution and cause the outcome to be

more positive. The problem with using markers is that they dry out very easily, and thus

I had to have a constant supply of markers, always being altered and ready to use new

ones.

 29

Behaviors

When Brutus starts up, it waits for the bump sensor to be pressed, triggering it to

finally its demonstration. The first thing that happens during this demonstration is that it

looks for a mascot in front of it. It does this by using the Sharp IR Distance Sensor,

mounted on the front of the robot. The robot will slowly spin to its right until something

is sensed within two feet in front of the robot. I have limited the world that the robot is

placed in, so that anytime it senses anything within two feet, it knows that it’s a mascot.

After detecting the mascot, Brutus then tries to position itself about a foot away

from the object. By placing itself at a distance of a foot away, this allows for the

CMUcam to capture a good image of the mascot in order to determine which mascot it is-

either Brutus or Albert. The robot then takes the picture with the CMUcam and

determines which mascot it is by taking the average pixel values, found by the camera.

If the object is determined to be Brutus, the robot then turns to the right and

beings writing out “Script Ohio” and playing the Buckeye Fight Song. In the same

manner, if Albert is seen, the robot backs up and beings to write out “Gators” and playing

the Florida Fight Song. The solenoid is triggered to activate and push down the marker

in order for the path of the robot to be traced and left behind so that the two words can be

seen.

The performances of “Script Ohio” (Figures 22) and “Gators” (Figures 23) were a

huge headache because of the fact that the behaviors of the robot were coded and hard to

keep consistent. After finally having words that looked perfect, the servos would

sometimes change and not give constant results. Thus, sometimes the words would be

straight, and sometimes they would be crooked and inconsistent. Another factor that

 30

added into the different appearances of the robot was the fact that I had to use a plastic

cover to cover up the floor, so that the marker would no t mark up the tiles. This plastic

cover caused slippage and also inconsistent results.

I believe that with more time and chances to change to actual stepper motors, the

performances and results of my robot could be better then exhibited. The surface of the

ground could also be improved by finding something that the wheels would not slip on. I

think that if a thicker marker would be possible, then the resulting “Ohio” and “Gators”

could be seen better also. Overall though, I feel that the robot was very successful and

impressive.

Figures 22 – Script Ohio

 31

Figure 23 – Gators

 32

Experimental Layout and Results

 The coding and experimenting of Brutus was divided up into several parts, which

is evident in the program code. One of the first items that I tried to achieve was to have

“Script Ohio” and “Gators” written to the point where they could be successfully

determined (Figure 24). This took a great deal of time and careful testing, but finally

correct results were found.

 The solenoid was also a separate test because of the fact that I had to build the

optoisolator circuit and run multiple tests on it. The solenoid never seemed to work

correctly because of the fact that it was very small, and not much in terms of power

output. It was however able to push the marker down far enough to draw the lines of the

different words.

 Another separate test was for the sound output of the voice playback chip. This

chip became a huge pain because I had to test its functionality and understand how to use

it. The initial tests and experiments were just on the breadboard, trying to record tests

sounds and having it play back recordings. After finally having this successful, I had a

huge problem understanding how to advance messages, and not only play the first

recording each time. Finally, I was ready to place the circuit on a protoboard, which had

problems in itself by the fact that the wire wrap produced messy circuits. Finally the tests

with the microprocessor board were also successful and ready to use correctly.

 Testing and experimenting with the CMUcam was also another huge headache

because of the fact that the included documentation was not very well written and did not

give accurate information on how to implement the camera. After many tests and talking

with fellow students, the answer for the camera was discovered. The camera then had

 33

problems with the lighting, background, and connecting to the microprocessor board.

These problems were slowly solved with countless experiments and testing.

 One of the last tests that was implemented was finding the mascots, by using the

Sharp IR Distance Sensor. This sensor was probably not the ideal sensor to use for this

purpose, but the only sensor that I had available and ready to use. I tested many times for

the different values, and trying to position the robot it place to capture the correct image

by the CMUcam. After finally positioning itself correctly, the images were accurate and

determined correctly.

 Implementing the tests to run smoothly together was a huge task, but taken care of

accurately by the program code. Each piece of the code was written separately, in order

to achieve less confusion and easier way to debug. The main code is contained in

“OSUF.c”, which makes the correct function calls to the many other functions. By

creating all of these separate functions, testing the integrating the code together resulted

in the desired outputs and tests.

 34

Figure 24 – Testing

 35

Conclusion

 Brutus was able to achieve every goal that I specified for it to do. Brutus was able

to find and detect a mascot, being either Brutus Buckeye or Albert Alligator, use the

CMUcam to determine which mascot it is, and perform “Script Ohio” and “Gators” while

playing the fight song.

 I feel that I was limited to the amount of other behaviors that I could implement

into the robot because of the fact that I spent most of my time understanding how to use

the different hardware that I had. Much time was spent testing out the different pieces of

sensors, servos, microcontroller, camera, and solenoids, instead of implanting different

things to improve the robot. Using the Atmel microprocessor board seemed to be a good

choice because it was user friendly and had test codes and examples that could be used to

understand the programs.

By finally being able to correctly implement a project together with so many

different aspects of classes learned, proved to be a very valuable experience. Instead of

just learning about theory and aspects to Electrical Engineering, this class allowed us to

have our own thoughts and try different things. Much can be learned by doing things

hands on and learning from failures and mistakes. This is also applicable to life

situations and understanding how to handle different problems.

Overall, I found this robot project to be a very difficult and time consuming

project, but also a very great experience. I suggest this class for everyone who actually

wants to learn and enjoys doing things hands-on.

 36

Predictions

 Now is the time we discuss the real future – January 3rd, 2003 in Tempe, Arizona.

The two undefeated college football teams in the country – The Ohio State University

Buckeyes and the University of Miami Hurricanes will be stepping onto the field at 8pm

to play for the National Championship. As this robot project is coming down to a close,

it has been programmed to choose between the two best mascots and college football

programs in the country – the OSU Buckeyes and the UF Gators, and while only one of

these teams has the opportunity to play on January 3rd, I strongly believe that the robot

knows who to choose. In the perfect world and situation, both of these teams would be

playing, but for now, we’ll just have to choose Brutus Buckeye.

GO BUCKEYES!!!

 37

Documentation

The following were purchased from Mark III Electronics

(http://www.junun.org/MarkIII/Store.jsp):

• Sharp GP2D12 Distance Measuring Sensors

• Balsa Products BP148N 2BB: Standard-torque Ball-bearing Servo Motors

• Injection Molded Wheels

The following were purchased from Jameco Electronics (www.jameco.com):

• ISD 25120 Voice Record/Playback Device

• Solenoid – 12VDC 36 ohm

• Switch- D2F Series Subminiature Snap-Action Switches

• Speaker – 8 ohm

The following were purchased from Progressive Resources LLC (www.prllc.com):

• MegaAVR-Dev development board

The following were purchased from Seattle Robotics

(www.seattlerobotics.com/cmuinfo.htm):

• CMUcam

 38

Appendices

Program Code – Ordered as follow:

OSUF.c – main code
ScriptOhio.h
ScriptOhio.c
ScriptGators.h
ScriptGators.c
wait.h
wait.c
motor.h
motor.c
ADC.h
ADC.c
LED.h
LED.c
Marker.h
Marker.c
Music.h
Music.c
Camera.h
Camera.c
FindMascot.h
FindMascot.c

 39

OSUF.c – main code

#include <io.h>
#include <math.h>
#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

#include "motor.h"
#include "wait.h"
#include <stdlib.h>
#include <string.h>

#include "ScriptOhio.h"
#include "ScriptGators.h"
#include "ADC.h"
#include "LED.h"
#include "UART.h"
#include "marker.h"
#include "Camera.h"
#include "Music.h"
#include "FindMascot.h"

int main(void)
{
 Music_init();
 MOTOR_init();
 ADC_init();
 UART_init();
 Camera_init();

 outp(0xff,DDRC);

// ScriptOhio();

 unsigned char IR_value;
 unsigned char BumpSensor;
 unsigned char BumpSensor2;
 unsigned char rdata;

 IR_value = ADC_getreading(0);
 BumpSensor = ADC_getreading(2);
 BumpSensor2 = ADC_getreading(3);

 while (1)
 {
 BumpSensor = ADC_getreading(2);

 while (BumpSensor > 50)
 {
 BumpSensor = ADC_getreading(2);
 }

 40

 FindMas();

 //blink();

 rdata = ParseString();

 if (rdata < 223)
 {
 Play_UF();
 wait(1000);
 ScriptGators();
 Play_UF();
 }
 else
 {
 Play_OSU();
 wait(1000);
 ScriptOhio();
 Play_OSU();
 }
 cbi(PORTC,PC1);

 }
}

 41

ScriptOhio.h

#ifndef SCRIPTOHIO_H
#define SCRIPTOHIO_H

extern void ScriptOhio(void);

#endif

ScriptOhio.c

#include <sig-avr.h>
#include <progmem.h>

#include "ScriptOhio.h"
#include "marker.h"
#include "music.h"

void ScriptOhio(void)
{
 MOTOR_init();

 //turn
 motor_run(25, -963, 800); //turn
 motor_run(0, 0, 100);

 pen_down();
 wait(1000);

// "O"

 motor_run(54, -969, 1000);
 motor_run(54, -970, 1000);
 motor_run(54, -969, 1000);

 motor_run(54, -985, 700);
 motor_run(53, -985, 700);
 motor_run(52, -985, 700);
 motor_run(53, -985, 550);

 motor_run(54, -970, 500);

 motor_run(53, -985, 550);
 motor_run(52, -985, 700);
 motor_run(53, -985, 700);
 motor_run(54, -985, 700);

 motor_run(54, -969, 1000);
 motor_run(54, -970, 1000);

 42

 motor_run(54, -969, 1000);

 motor_run(54, -985, 700);
 motor_run(53, -985, 700);
 motor_run(52, -985, 700);
 motor_run(53, -985, 550);

 motor_run(54, -970, 500);

 motor_run(53, -985, 550);
 motor_run(52, -985, 700);
 motor_run(53, -985, 700);
 motor_run(54, -985, 700);

// motor_run(54, -985, 700);
// motor_run(53, -985, 200);
 motor_run(52, -985, 1500);
 motor_run(53, -985, 300);
 motor_run(54, -985, 300);

//"O" finish
 motor_run(54, -969, 1000);
 motor_run(54, -970, 1000);
 motor_run(54, -969, 1000);

 motor_run(54, -970, 500);

//"h" start
 motor_run(54, -985, 300);
 motor_run(53, -985, 300);
 motor_run(52, -985, 1500);

 motor_run(54, -975, 1000);

 motor_run(52, -985, 1500);
 motor_run(53, -985, 300);
 motor_run(54, -985, 300);

 motor_run(0, 0, 100);
 pen_up();
 motor_run(0, 0, 100);
 motor_run(25, -963, 700); //turn

 motor_run(54, -970, 600);
 pen_down();
 motor_run(54, -969, 1000);
 motor_run(54, -970, 1000);
 motor_run(54, -969, 1500);
 motor_run(54, -970, 500);
 motor_run(54, -969, 1500);
 motor_run(54, -970, 500);
 motor_run(54, -969, 1000);

 43

 pen_up();
 motor_run(25, -972, 1100); //spin

 motor_run(54, -969, 2000);

 pen_down();
 motor_run(70, -969, 550);
 motor_run(70, -968, 700);
 motor_run(70, -966, 3000);

 motor_run(70, -968, 700);
 motor_run(71, -969, 100);

//end "h"
 Play_OSU();

//begn "i "

 motor_run(69, -985, 100);
 motor_run(55, -985, 300);
 motor_run(52, -985, 3600);
 motor_run(53, -985, 300);
 motor_run(54, -985, 300);

 motor_run(54, -969, 2000);

 pen_up();
 motor_run(25, -972, 1100); //spin

 motor_run(54, -969, 2000);

 pen_down();
 motor_run(60, -985, 300);
 motor_run(55, -985, 300);
 motor_run(52, -985, 3600);
 motor_run(53, -985, 300);
 motor_run(53, -985, 300);

//end " "
 motor_run(54, -970, 1000);

//"o"

 motor_run(70, -970, 300);
 motor_run(70, -969, 600);
 motor_run(70, -966, 3400);

 motor_run(70, -969, 600);
 motor_run(70, -970, 300);

 motor_run(54, -969, 1000);

 motor_run(70, -970, 300);

 44

 motor_run(70, -969, 600);
 motor_run(70, -966, 3400);

 motor_run(70, -969, 600);
 motor_run(71, -970, 300);

 motor_run(54, -969, 500);

 motor_run(0,0, 500);

 pen_up();

//dot "i"

 Play_OSU();

 motor_run(25, -972, 150);
 motor_run(54, -969, 4000);
 pen_down();
 motor_run(25, -972, 5000);

 pen_up();
 motor_run(0, 0, 100);

}

 45

ScriptGators.h

#ifndef SCRIPTGATORS_H
#define SCRIPTGATORS_H

extern void ScriptGators(void);

#endif

ScriptGators.c

#include <sig-avr.h>
#include <progmem.h>

#include "ScriptGators.h"
#include "marker.h"
#include "music.h"

void ScriptGators(void)
{
 MOTOR_init();

 motor_run(38, -954, 2000);

 pen_down();
 wait(1000);

///*
//"G"
 motor_run(69, -985, 100);
 motor_run(55, -985, 100);
 motor_run(53, -985, 7000);
 motor_run(53, -985, 500);
 motor_run(54, -985, 300);

 motor_run(54, -969, 300);

 motor_run(0, 0, 100);
 pen_up();
 motor_run(25, -963, 1000); //turn

 motor_run(54, -970, 600);
 pen_down();
 motor_run(54, -969, 1000);

 motor_run(0,0,100);
 pen_up();
 motor_run(38, -954, 3000); //reverse

 motor_run(38, -954, 3500);
 pen_down();
 motor_run(54, -969, 1500);
 pen_up();

 46

 motor_run(54, -969, 2000);
//end "G"
//"a"
 pen_down();
 motor_run(69, -985, 300);
 motor_run(55, -985, 300);
 motor_run(51, -985, 4500);
 motor_run(53, -985, 300);
 motor_run(54, -985, 300);

 motor_run(54, -969, 700);

 pen_up();
 motor_run(25, -972, 1050); //spin

 motor_run(54, -969, 1000);

 pen_down();

//"t"
 motor_run(69, -985, 100);
 motor_run(55, -985, 300);
 motor_run(50, -985, 2300);
 motor_run(53, -985, 200);
 motor_run(54, -985, 100);

 motor_run(54, -969, 2500);

 pen_up();
 motor_run(25, -972, 1050); //spin

 motor_run(54, -969, 2500);

 Play_UF();
 pen_down();

//*/
 motor_run(69, -985, 100);
 motor_run(55, -985, 300);
 motor_run(50, -985, 2300);
 motor_run(53, -985, 200);
 motor_run(54, -985, 100);

//end "t"

//"o"
 motor_run(69, -969, 100);
 motor_run(69, -965, 7000);
 motor_run(69, -969, 200);

 pen_up();

//end "o"

 47

//"r"
 motor_run(70, -950, 400);
 motor_run(54, -969, 2500);
 motor_run(0,0, 100);
 pen_down();
 motor_run(56, -969, 1500);

 pen_up();
 motor_run(0, 0, 100);
 motor_run(48, -943, 1000); //turn

 motor_run(54, -970, 600);
 pen_down();
 motor_run(0,0,100);

 motor_run(53, -971, 2500);

//"s"
 //motor_run(0, 0, 100);
 pen_up();
 motor_run(0,0, 100);
 motor_run(25, -963, 1200); //turn

 motor_run(54, -969, 1500);
 pen_down();
 motor_run(0,0,100);
 motor_run(54, -968, 2000);

 pen_up();
 motor_run(0, 0, 100);
 motor_run(48, -943, 1100); //turn

 motor_run(54, -970, 1000);
 pen_down();

 motor_run(54, -969, 500);
 motor_run(60, -965, 300);
 motor_run(68, -965, 3000);

 motor_run(0, 0, 1000);
 pen_up();
}

 48

wait.h

#ifndef WAIT_H
#define WAIT_H

extern void wait(int delay);

#endif

wait.c

#include <io.h>
 #include "wait.h"

void wait(int delay)
{
 while (delay > 0)
 {
 delay--;
 int i;
 for(i=1597;i;i--)asm("nop");
 }//while

}//wait

 49

motor.h

#ifndef MOTOR_H
#define MOTOR_H

#define SERVO_STOP 0 //102
#define SERVO_RIGHT 1
#define SERVO_LEFT 1000
#define FULL_RIGHT 100
#define FULL_LEFT -100
#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define K 10

extern void MOTOR_init(void);
extern void motor_run(int leftmotor, int rightmotor, int wa ittime);
#endif

motor.c

#include <io.h>
#include <math.h>
#include "motor.h"
#include "wait.h"

void MOTOR_init(void)
{
 __outw(SERVO_STOP, OCR1AL); //5 -right
 // set PWM to 10% duty cycle on channel A
 __outw(SERVO_STOP, OCR1BL); //4 -left
 // set PWM to 10% duty cycle on channel B
 outp((1<<COM1A1) | (1<<COM1B1) | (1<<PWM10) | (1<<PWM11), TCCR1A);
 // set output compare OC1A/OC1B clear on compare match,
 outp((1<<CS11) | (1<<CS10), TCCR1B); // store
prescaler Clk(I/O)/8.
 sbi(DDRD, PD4); //left
 sbi(DDRD, PD5); //right

}

void motor_run(int leftmotor, int rightmotor, int waittime)
{
 __outw(leftmotor, OCR1AL);
 __outw(rightmotor, OCR1BL);

 wait(waittime);
}

 50

ADC.h

#ifndef ADC_H
#define ADC_H

extern void ADC_init(void);
extern unsigned char ADC_getreading(int channel);

#endif

ADC.c

#include "ADC.h"

#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

 //Initialize the A/D converter
 void ADC_init(void)
 {
 outp((1<<ADEN) | (1<<ADPS2) | (ADPS1), ADCSR); //Initialize to use 8bit resolution for all
channels
 }//ADC_init

 unsigned char ADC_getreading(int channel) //, int refvolt)
 {
 unsigned char IR_value;

 //unsigned char temp_valueH;

 //if(refvolt == 1){
 // outp((1<<REFS0)|(1<<REFS1)|(1<<ADLAR), ADMUX); //use 4.95V as reference
voltage
 //}
 //else{
 outp((1<<REFS0)|(1<<ADLAR), ADMUX); //use 2.56V as reference voltage
 //}

 if(channel == 0){}
 else if(channel == 1){
 sbi(ADMUX, MUX0);
 }
 else if(channel == 2){
 sbi(ADMUX, MUX1);
 }
 else if(channel == 3){
 sbi(ADMUX, MUX0);
 sbi(ADMUX, MUX1);

 51

 }
 else if(channel == 4){
 sbi(ADMUX, MUX2);
 }
 else if(channel == 5){
 sbi(ADMUX, MUX2);
 sbi(ADMUX, MUX0);
 }
 else if (channel == 6){
 sbi(ADMUX, MUX2);
 sbi(ADMUX, MUX1);
 }
 else if (channel == 7){
 sbi(ADMUX, MUX2);
 sbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);
 }

 sbi(ADCSR, ADSC);

 loop_until_bit_is_set(ADCSR, ADIF); //wait till conversion is complete
 //temp_valueH = inp(ADCH);
 IR_value = inp(ADCH);

 sbi(ADCSR, ADIF);

 return IR_value;
}//ADC_getreading

 52

LED.h

#ifndef LED_H
#define LED_H

extern void LED(int IR_value);

#endif

LED.c

#include "LED.h"

#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

void LED(int IR_value)
{

 if (IR_value < 15) {
 sbi(PORTC,PC0);
 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORTC,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 30) {
 cbi(PORTC,PC0);
 sbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORT C,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 45) {
 cbi(PORTC,PC0);
 cbi(PORTC,PC1);
 sbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORTC,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 60) {
 cbi(PORTC,PC0);

 53

 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 sbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORTC,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 75) {
 cbi(PORTC,PC0);
 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 sbi(PORTC,PC4);
 cbi(PORTC,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 90) {
 cbi(PORTC,PC0);
 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 sbi(PORTC,PC5);
 cbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else if (IR_value < 105) {
 cbi(PORTC,PC0);
 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORTC,PC5);
 sbi(PORTC,PC6);
 cbi(PORTC,PC7);
 }
 else {
 cbi(PORTC,PC0);
 cbi(PORTC,PC1);
 cbi(PORTC,PC2);
 cbi(PORTC,PC3);
 cbi(PORTC,PC4);
 cbi(PORTC,PC5);
 cbi(PORTC,PC6);
 sbi(PORTC,PC7);
 }
}

 54

 Marker.h

#ifndef MARKER_H
#define MARKER_H

extern void pen_down(void);
extern void pen_up(void);

#endif

Marker.c

#include <io.h>
#include <math.h>
#include "marker.h"

void pen_down(void)
{
 sbi(PORTC,PC1);
}

void pen_up(void)
{
 cbi(PORTC,PC1);
}

 55

Music.h

#ifndef MUSIC_H
#define MUSIC_H

extern void Music_init(void);
extern void Play_OSU(void);
extern void Play_UF(void);

#endif

Music.c

#include "music.h"
#include "wait.h"

#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

void Music_init(void)
{
 outp(0xff,DDRB);

//stop
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 sbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

}

void Play_OSU(void)
{
 outp(0xff,DDRB);

 56

//stop
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 sbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//start
 cbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//play
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

/*
loop_until_bit_is_clear(PORTA, 4);

wait(100);
//repeat
//stop
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 sbi(PORTB,PB2); //stop/reset

 57

 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//start
 cbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//play
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

*/
}

void Play_UF(void)
{
 outp(0xff,DDRB);

//stop
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 sbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record

 58

 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//set mode0
 sbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//advance message
 sbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//end advance
 sbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset

 59

 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);
//start
 cbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//play
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

/*
//repeat

//stop
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 sbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 60

 wait(50);

//set mode0
 sbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORT B,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//advance message
 sbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//end advance
 sbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//reset
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);
//start
 cbi(PORTB,PB0); //mode0
 cbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);

 61

 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

 wait(50);

//play
 cbi(PORTB,PB0); //mode0
 sbi(PORTB,PB1); //start/pause
 cbi(PORTB,PB2); //stop/reset
 sbi(PORTB,PB3); //playbac/record
 cbi(PORTB,PB4);
 cbi(PORTB,PB5);
 cbi(PORTB,PB6);
 cbi(PORTB,PB7);

*/

}

 62

Camera.h

#ifndef CAMERA_H
#define CAMERA_H

extern void blink(void);
extern void Camera_init(void);

extern unsigned char ParseString(void);

#endif

Camera.c

#include "Camera.h"
#include "wait.h"
#include "UART.h"

#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

/* blinks the CMUcam tracking light */

void blink()
{
// PRINT("RS\r\n");
// wait(1000);

 PRINT("L1 1\r\n");
// EOL();
 wait(1000);
 PRINT("L1 0\r\n");
 wait(1000);

}

/*
 * reset camera
 * enable poll mode
 * enable middle mass tracking mode
 * set auto-gain and exposure of 40
 * set color tracking parameters for orange ball
 * set auto mode for tracking light
 * set raw IO mode and ACK/NCK suppression
 */
void Camera_init(void)

 63

{
 PRINT("RS"); //tx_command("RS");
 EOL();
 blink();
 PRINT("PM 1"); //tx_command("PM 1");
 EOL();
 blink();
// PRINT("MM 1"); //tx_command("MM 1");
// EOL();
 blink();
 PRINT("CR 19 32 16 140"); //tx_command("CR 19 32 16 40");
 EOL();
 wait(1000); //aCore_Sleep(2000);
}

unsigned char ParseString(void)
{
 unsigned char colon;
 unsigned char numdata;
 unsigned char Sdata;
 unsigned char rdata;
 unsigned char gdata;
 unsigned char bdata;

 PRINT("RM 3\r");
 wait(100);

 PRINT("GM \r\n");

 colon = UART_ReceiveByte();
 numdata = UART_ReceiveByte();
 Sdata = UART_ReceiveByte();
 rdata = UART_ReceiveByte();
 gdata = UART_ReceiveByte();
 bdata = UART_ReceiveByte();
// wait(100);

 blink();
 return(rdata);
}

 64

FindMascot.h

#ifndef FINDMASCOT_H
#define FINDMASCOT_H

#define Dist 45

extern unsigned char AverageIR(void);
extern void FindMas(void);

#endif

FindMascot.c

#include <io.h>
#include <math.h>
#include <interrupt.h>
#include <sig-avr.h>
#include <progmem.h>

#include "motor.h"
#include "wait.h"
#include <stdlib.h>
#include <string.h>

#include "FindMascot.h"
#include "ADC.h"
#include "LED.h"
#include "UART.h"
#include "motor.h"

unsigned char AverageIR(void)
{
 unsigned char a1, a2, a3, a4, a5, a6;
 unsigned char average;

 a1 = ADC_getreading(0);
 a2 = ADC_getreading(0);
 a3 = ADC_getreading(0);
 a4 = ADC_getreading(0);
 a5 = ADC_getreading(0);
 a6 = ADC_getreading(0);

 if ((a3 <= a4) && (a3 <= a5) && (a3 <= a6))
 {
 a3 = 0;
 }
 else if ((a4 <= a5) && (a4 <= a6))
 {
 a4 = 0;
 }
 else if (a5 <= a6)
 {

 65

 a5 = 0;
 }
 else
 {
 a6 = 0;
 }

 if ((a3 >= a4) && (a3 >= a5) && (a3 >= a6))
 {
 a3 = 0;
 }
 else if ((a4 >= a5) && (a4 >= a6))
 {
 a4 = 0;
 }
 else if (a5 >= a6)
 {
 a5 = 0;
 }
 else
 {
 a6 = 0;
 }

 average = ((a3 + a4 + a5 + a6) / 4);
 return(average);

}

void FindMas(void)
{
 unsigned char IR_value;

// motor_run(54, -969, 1000); //fast straight
// motor_run(50, -963, 5000); //slow straight
// motor_run(46, -960, 5000); //slow backwards
// motor_run(47, -962, 5000); //slow spin left
// motor_run(49, -961, 5000); //slow spin right
 //left motor stops at 48
 motor_run(0, 0, 100);

 IR_value = ADC_getreading(0);

 while (IR_value < 24)
 {
 motor_run(49, -961, 100);
 IR_value = ADC_getreading(0);

 //IR_value = ADC_getreading(0);
 //UART_Printfu16(IR_value);
 //EOL();

 }

 66

 motor_run(49, -961, 200);

 IR_value = ADC_getreading(0);

 while (IR_value != 45)
 {
 //if (IR_value < 24)
 //{
 // motor_run(46, -962, 100);
 //}
 //else
 if (IR_value < 45)
 {
 motor_run(50, -964, 100);
 }
 else
 {
 motor_run(46, -960, 100);
 }
 IR_value = ADC_getreading(0);

 //IR_value = ADC_getreading(0);
 //UART_Printfu16(IR_value);
 //EOL();

 }

 IR_value = ADC_getreading(0);
 //UART_Printfu16(IR_value);
 //EOL();
 wait(100);

 motor_run(0, 0, 100);

}

 67

