COOPERATIVE ROBOTICS: IMDL
PROJECT

ASHISH JAIN

September 2002

Abstract

This project is derived from the idea of RoboSoccer Competition. The main
idea behind the project is to involve a team of robots to do a task like play-
ing soccer. The idea uses the concept of a single camera, computer vision
algorithms, a centralised computer, a communication link for communicating
between the robots, each having its own capabilities of local object detection,
to perform the task. Since main criteria is cooperative robotics there is a not
very strong emphasis on computer vision. It is used mainly to provide loca-
tion and orientation information of robots and the object(e.g. ball). There
are lot of factors which comeinto this task, one is the centralised approach,
second is the master slave criteria and the third is the communication time
from the central computer to each of the robots.

Contents

List of Figures. ii

1 Introduction 1
1.1 Problem Statement 1
2 Integrated System 4
2.1 Microcontroller on Robot 4
2.2 Board Design oo L. 5
2.2.1 555 Timer 6

3 Mobile Platform 7
4 Sensor 10
4.1 VISIONo s 10
5 Actuation 12
6 Behaviors 15
7 Conclusion 16
7.1 Future Work 16
Appendix 18

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1

5.1
5.2

Team of Robots 0o 2
Control Systemo oL 2
The Field o o 2
defender-annoyo oL 3
defender-clear L. 3
defender-annoy 3
position-block L oo 3
POSItiON-passo e 3
position-final oL Lo 3
Experimental Design 5
First Stage Lo oo 5
Microcontrollero oL 6
First Stage PCBo oL 6
Robot TopView L. 8
Robot Behind oL 8
Platform 9
Ball Direction 11
SEIVO . . . L e 12
MotorDriver 14

i

Chapter 1

Introduction

The idea of cooperative robotics has been old but there is never been a
platform for testing ideas. RoboSoccer was one such event where they ac-
tually got people involved in performing a task done through teams. The
task of playing soccer between robots involves lot of issues that needs to be
addressed, the biggest being the team work.

The problem with cooperative robotics is to define task for each individual
robots and to give it its space and time. A problem like RoboSoccer addresses
the issue of who is going to be the defender, who is going to be in the midfield,
who is going to be the forward(job specification). There are issues like who
is going to pass the ball to whom, will it be defender to forward or defender
to midfield who in turn will pass it to forward(fulfilling the team effort).

Then there are other issues like the position of the ball, where the ball
is heading for, how to intercept it and how to pass the ball to your player.
These problems fall into the domain of cooperative behaviour.

1.1 Problem Statement

The team consist of atleast three robots and a goalkeeper,(but I am planning
to have no goalkeepers) because then I need to have eight robots making two
teams. The task that I have in mind is to usethree robots to seek a ball pass
to each other and head for the goal.

The robots will be moving in a region which will be bounded by a wall to
give them the idea of the borderline. There will be a goal created for them
so that every time they are told to start, they will go seek the ball and finish

e
T
"'\-\.__._,.-"

Poboc pac 1B I'__[.. 1
.-I-::hm:|:|:- ':-':'l:'!;

|j u

Figure 1.3: The Field

11

Figure 1.4: defender- Figure 1.5: defender- Figure 1.6: defender-
annoy clear annoy

4 =

Figure 1.7: position- Figure 1.8: position- Figure 1.9: position-
block pass final

the task of scoring the goal.

Due to certain advantages in detection from computer vision point of
view, the field as it generally is will be green, the ball in this case is or-
ange(which is the only one I found under my drawer) and the robots will be
blue in color with pink stribes at the top.

Chapter 2

Integrated System

The entire system is build upon the idea of using a camera, a central pro-
cessing unit and a wireless transmission system that communicates between
the computer and the robots. The camera is focussed on the entire field on
which robots are placed. The camera captures the image at a rate of 30
frames/sec at 640x480 color resolution, and sends it over to the computer.
The computer then processes this information and detects for the ball, and
each individual robot. Once the robots are detected they are send informa-
tion over the wireless to move towards the direction of the ball or to pass it
to the other robots.

Since the computer is aware of the position of the robot at every possible
instant of time, it guides the robot towards the ball. Once the robot reaches
the ball the robot can turn and shoot the ball towards the other robot or
towards the goal.

2.1 Microcontroller on Robot

The microcontroller I am using is ATMEL ATMEGASL. It is a 28 Pin DIP.
This microcontroller comes with a very good simulator AVRSTUDIO and
a C compiler avrgce which could be found on the ATMEL website. The
microcontroller has 3 PWM, 410 ports, both internal and facility for external
clock, and you can design your own ISP for programming the chip. There

is a very good free software you get for both Linux and Windows which lets
you do ISP for all ATMEL chips (PONYPROG).

Figure 2.1: Experi-

mental Design Figure 2.2: First Stage

2.2 Board Design

The board I designed involved using the PortD for 10, pins OC1A,0C1B,0C2
for generating the PWM for the motors and using A/D converter on the chip
to get signal from the IR sharpcans. I also incorporated within the board ISP
for programming the Microcontroller chip. I initially planned to use OC2 for
generating a signal of 40Khz so that I could run my IRs. The reason was
that SharpCan IR detector detects IR signal only at 40Khz. Since OC2 is
incapable of generating signal of frequency as low as 40Khz I had to go for the
555 Timer. The 555 Timer is very easy, once you understand the equation
for generating the particular frequency. I was looking into a possibility of
using IRs for wall detection, and so I added it to my board as an option.

The boards (Fig 2.1 & 2.2) were the first stage board. I used first stage
board(Fig2.2) for for running the servos. But that idea didn’t work because
of problems I faced with servos. So I had to design a motordriver board and
for that I needed another microcontroller board. The motordriver board had
4 optoisolators and one 2993B Motor Driver chip which allows at max two
motors to be controlled.

The second stage board turned out to be much smaller in size because 1
separated the 555 Timer. I could do that because all 555 needed was power
supply and it didn’t need any control from the microcontroller.

3
0
=
<
ﬁﬁﬁﬂﬁhﬁaﬁiftfﬂ
il R
§§§§3§%§§§3§55
Soaa bt }r{%e
iSisns REep:
£ 5
SER 3? = Figure 2.4: First St
S igure 2.4: First Stage
H2EEEaBeE a0 PeB

Figure 2.3: Microcon-
troller

2.2.1 555 Timer

I had to use the 555 Timer because I could easily obtain 40Khz needed for
IRLed. The reason for having 40Khz frequency was to be able to use the
hacked Sharp Cans for distance detection.

Chapter 3

Mobile Platform

Designing the Mobile Platform was a difficult problem. The issues that I
had were that I had no idea how big my Microcontroller board would be
and how would I like to place. Another of my problem was to include the
kick mechanism. I was planning to have a solenoid based system, which
although being simple from mechanical design was hard to implement on the
board. I experimented with it and it drew so much of current that within
minutes I drained my entire battery. I then switched to the motor based
mechanism. This meant creating a paddle for hitting the ball. Uriel and
Rolando had already designed a paddle as part of the IEEE competition.
On their permission I altered their design to fit into my robot. This meant
incorporating it into the electronics too. Since Atmel already had 3 PWM I
thought I could use it. The OC2 suffers from lack of Input Capture and so
frequency cannot be brought down to 50 Hz needed for running the paddle.
I had to again go for the 555 Timer to do the required.

Figure 3.1: Robot Figure 3.2: Robot Be-
TopView hind

—

N ~
1O LL j/ P
)

-

] j
L

-

K

-

<

N

— — —=

o

o/

7

a

]
N\

\/

L]

N BN

!

Figure 3.3: Platform

L

Chapter 4

Sensor

The sensors I have used are the central camera and IR (optional). The sensor
basically involves the vision code which I have written for doing the stuff.

4.1 Vision

I have written vision code that uses a Hi-8 Sharp camera, a Meteor framegrab-
ber and driver code. The part of getting the frame to process the image is
changing the already available code Mike had written for his vision stuff.
This code helps me in getting the frame and then I process the frame to get
the information I need.

The image processing gives me the color of stripes which are placed
over the robot and the ball. A frame generally contains RGB values of a
pixel(basic unit of an image on computer). The code converts RGB into
HSV space a much more useful and intensity independent space and I use
H values to detect the color. The Hue(H) is a linear function on color, i.e.
for every colour there is a single value of Hue. Then I take the mean value
of all the pixels that contain the Hue of the stripe I have placed over the
robot. This gives me roughly the location of both the stripes. These values
then gives me two points on the robot and the ball gives me the third point.
Using these two points on robot I identify the direction of motion and using
the point on the ball T identify the angle robot makes from the ball. The
points also helps me in knowing the distance between the robot and the ball.

Using the criteria of the distance and the angle between the robot, I give

10

*

P

Turning Angle

Orientdtion %

>M otion Vector

Figure 4.1: Ball Direction

the robot the desired motion to reach to the ball.

11

Chapter 5

Actuation

The actuators that I am using are the hacked GWS servo that can be found
on MarkIII Robot as high torque servo. The hacked servos require a PWM
at 20ms and one needs to calibrate the servos for the stop, forward and
backward duty cycles.

There were some problems I found with the application I had in mind.
The servos would drift a bit when I tried to stop them after running for some
time using the PWM. The servos would drift adding noise to the system and
would interfere with the receiver’s signal. Once they would start drifting they
would not respond to transmitter at all and would continue to do so. The
way I found the solution for it was not letting the servos to stop throughout
the entire game. This made vision algorithm way more complicated and
difficult to work.

Figure 5.1: Servo

12

13

There is another solution to this problem and I have already designed
the board for this. The solution is using the full hacked servo (DC Motors)
and use motor driver chips to run the motors. I have finally been able to
implement the motor driver to run motors. The motor drivers certainly give
a better digital control and PWM required for it is not that difficult.

(JI0I0JN :g'G 9In31g

JOATLI

px)
MC_Conn

e

Ve

i
Batt_Connector

e

Left_ Mot

-

R3 R4
RES2 IRES2

7z 7z
b 1
=K S
5V
IR8
U2 IRES2
NetLabel2 1

)
sV Battery O Neilabels 3| yeead - VLogle 5 Netlabels 1
NelLabel6 g I NetLabel7
— GND
AN] ~
N uta 1 N
Ou2A 0
g

us

J6
Right Motor

3
+C6
CITOR %L

C2
CAPACITOR

o

{5v
t 1
C3 C4 Cs
CAPACITOR| CAPACITOR| CAPACITOR

=t

Title
Size Number Revision
B
Date: T1-Dec-2002 [Sheet_of
File: ClDocuments and Seffings\Ashish\Deskid adb

4!

Chapter 6

Behaviors

The idea of building multiple robots was to get them involved in a cooperative
task. A task they could accompolish as a team. The robots can be assigned
various jobs while still being part of the team. One of the robot can be
forward, while two could defend or if I manage to build more robots I could
actually define more tasks to them as a team.

One of the rather interesting lesson to learn was to see the robot oscillating
trying to get the ball. I had not designed the robot with proportional control
in mind. But when I went ahead and tried to give it the guidelines towards
getting the ball, I actually ended up making a proportional controller which
was the cause of my oscillations.

15

Chapter 7

Conclusion

The work involved was really an extremely rewarding experience. Realising
the circuits was one part of the deal, while getting everything working was
a totally different deal. I managed to get the robot move according to the
wishes of the computer. I learned a lot about designing circuit and how design
gets even more complicated when you have two things to design mechanical
as well as electronics. The wireless communication which was extremely low
power could detect real far distances, which I found to have more applications
for the hobbyists.

7.1 Future Work

The work is useful from the point of doing team tasks. The idea could be used
for controlling multiple lawn mowers for mowing the grass, it could be used as
multiple waiters in a restaurant serving people and defining for each robot its
own table and how to get to it. The multiple robots idea could be extended
even far. Right now I have looked into from the possibility of one central
camera guiding the robots. The other method that can be used is that each
robot have its own camera and processing unit. I have looked into the idea of
CMU cam to do the multiple cameras, but there is another technology which
could be extremely useful from the point of processing. We can use these
robots for doing more vision based stuff. Each robot could be placed with a
camera with wireless(as cheap as $50) and the images could be transferred to
a central computer over wireless where they are processed and then computer
can send signals to robot to do the task(related to Shalom’s Work). We could

16

17

use multiple vision on one camera using video quad processors which puts
four images into one image. This is one possibilty I am going to seek in for
next semester.

Appendix

Here is some code that I wrote for the microcontroller and some circuit
diagrams. Also included is the vision code.

18

#ifndef SERVO_ATMEL_H
#define SERVO_ATMEL_H

#define SERVO_FREQ 10000
#define ZERO 0O

#define ONE 1

#define SERVO_STOP 1000
#define SERVO_RIGHT 1
#define SERVO_LEFT 2000
#define FULL_RIGHT 100
#define FULL_LEFT -100
#define GAIN 10

#define Factor 100

extern void servo_motor_init(void);

extern void motor_speed(int mot_num, int SPEED);
extern void port_init(void);

extern void servo_motor_stop(void);

extern void servo_motor_restart(void);

extern void motor_turn(void);

#endif

19

Header File

20

[* Created By: Ashish Jain
*

* These functions are used to initialize the PWM generator for use with a
* fully hacked servo or DC motor. They are build on code from Rolando Panez
*/

#include <io.h>
#include <math.h>
#include "Mega8Servo.h"

typedef unsigned char u08;
typedef unsigned short ul6;
typedef int s16;

main()

{

u08 port_value;

u08 timerH,timerL,timerH_prev;
u08 count;

count=0;

servo_motor_init();
port_init();
/Imotor_speed(0,99);
//motor_speed(1,99);

while(1)

{
port_value=inw(PIND);

if(port_value==0xA0)

{

outp(0<<PB4,PORTB);
outp(0<<PB5,PORTB);
motor_speed(0,2);
motor_speed(1,2);

}

else if(port_value==0x09)
{
outp(ONE<<PB4,PORTB);
motor_speed(0,40);
motor_speed(1,40);

}

else if(port_value==0xEO)

{
outp(ONE<<PB5,PORTB);

(R R, Y & o WY o) Y

motor_speed(1,2);
}

else if(port_value==0xCO0)

{

motor_turn();

}

else if(port_value==0xDO0)
{

outp(0<<PB4,PORTB);
outp(0<<PB5,PORTB);
motor_speed(0,50);
motor_speed(1,50);

}

else

{

motor_speed(0,99);
motor_speed(1,99);

}

}

}

void motor_turn(void)
{
int i,j,k,l;
outp(1<<PB4,PORTB);
for(i=0;i<95;i++)
{
motor_speed(0,0);
motor_speed(1,0);
for(j=0;j<255;j++)
for(k=0;k<255;k++)
for(I=0;I<3;l++)
{
}
}
}

void port_init(void)

{

unsigned char input=0,output=0xFF;

~ihwaadDNDDD)

21

22

}
void servo_motor_init(void)
{
outw(ICR1L, SERVO_FREQ); [* Set TOP to match 20ms period */
outw(OCR1AL, SERVO_STOP); [* Set PWM to 10% duty cycle on ch:
A*l
outw(OCR1BL, SERVO_STOP); [* Set PWM to 10% duty cycle on ch:
B */
outp((ONE<<COM1A1)|(ONE<<COM1B1), TCCR1A); [* Set output
compare OC1A/OC1B clear on compare match, */
outp((ONE<<WGM13)|(ONE<<CS11), TCCR1B); /* store TOP in ICR1, a
prescaler Clk(1/O)/8. */
outp((ONE<<PB1)|(ONE<<PB2)|(ONE<<PB4)|(ONE<<PB5), DDRB);

void motor_speed(int mot_num, int SPEED){
ulé OCRTMP;
s16 TMP_SPEED;
ulé SERVO_SPEED;

if(SPEED > FULL_RIGHT)
SPEED = 100;

else if(SPEED < FULL_LEFT)
SPEED = -100;

if(mot_num == 0){
OCRTMP = inw(OCR1AL);
[* if(SPEED == 0) /I If Speed = 0 then stop motor
SERVO_SPEED = SERVO_STOP;
else if(SPEED >= FULL_RIGHT) // If speed = FULL_RIGHT then full spe
the right
SERVO_SPEED = SERVO_RIGHT;
else if(SPEED <= FULL_LEFT) // If speed = FULL_LEFT then full speed
left
SERVO_SPEED = SERVO_LEFT;
else /I If speed is less than O calculate percentage*/
SERVO_SPEED =Factor*SPEED;
/loutw(OCR1AL, SERVO_SPEED);
outw(OCR1AL, SERVO_SPEED);
}
else if(mot_num == 1){
OCRTMP = inw(OCR1BL);
[*if(SPEED == 0) /Il If Speed = 0 then stop motor//
SERVO_SPEED = SERVO_STOP;

Code for Microcontroller(Continued..)

23

else if(SPEED >= FULL_RIGHT) // If speed = FULL_RIGHT then full spe:
the right//
SERVO_SPEED = SERVO_RIGHT;
else if(SPEED <= FULL_LEFT) // If speed = FULL_LEFT then full speed
left//
SERVO_SPEED = SERVO_LEFT,;
else /I If speed is less than O calculate percentage//*/
SERVO_SPEED = Factor*SPEED;
outw(OCR1BL, SERVO_SPEED);

}

return;

/*
if(port_value==0xA0)

{
while(1)
{
timerH_prev=timerH;
timerH=inw(TCNT1H);
timerL=inw(TCNT1L);
if(timerL>0)
count=count+1,;
if(count<=22)
{
motor_speed(1,-100);
motor_speed(0,-100);

else if(count<=100&&count>22)
{
motor_speed(1,-100);
motor_speed(0,100);
}
else
break;
if(count==254)
count=0;
for(i=0;i<5000;i++);
}

count=0;

}

else if(port_value==0xEO)

{
while(1)

timerH_prev=timerH,;
timerH=inw(TCNT1H);
timerL=inw(TCNT1L);
if(timerL>0)
count=count+1;
if(count<=10)

{
motor_speed(1,-100);
motor_speed(0,-100);

}

else if(count<=100&&count>10)
{
motor_speed(1,-100);
motor_speed(0,100);
}
else
break;
if(count==254)
count=0;
for(i=0;i<5000;i++);
}

count=0;

else if(port_value==0x0E)
{
motor_speed(0,100);
motor_speed(1,-100);

else if(port_value==0x09)

{
while(1)
{
timerH_prev=timerH;
timerH=inw(TCNT1H);
timerL=inw(TCNT1L);
if(timerL>0)
count=count+1;
if(count<=10)
{
motor_speed(1,100);
motor_speed(0,100);

else if(count<=100&&count>10)

{
motor_speed(1,-100);

mMatrar enandA/N 1NN\ -

24

25

}

else
break;
if(count==254)
count=0;
for(i=0;i<5000;i++);
}

count=0;

}

else if(port_value==0x09)
{
while(1)
{
timerH_prev=timerH;
timerH=inw(TCNT1H);
timerL=inw(TCNT1L);
if(timerL>0)
count=count+1;
if(count<=10)
{
motor_speed(1,100);
motor_speed(0,100);

else if(count<=100&&count>10)
{
motor_speed(1,-100);
motor_speed(0,100);
}
else
break;
if(count==254)
count=0;
for(i=0;i<5000;i++);
}

count=0;

else if(port_value==0x0B)

{
while(1)
{
timerH_prev=timerH;
timerH=inw(TCNT1H);
timerL=inw(TCNT1L);
if(timerL>0)

count=count+1;
WlAantiint——29)\

{
motor_speed(1,50);
motor_speed(0,50);
}
else if(count<=100&&count>22)
{
motor_speed(1,-100);
motor_speed(0,100);
}
else
break;
if(count==254)
count=0;
for(i=0;i<5000;i++);
}
count=0;
}
else
{
motor_speed(0,100);
motor_speed(1,-100);
}

*/

Code for Microcontroller

26

27

convert(unsigned char r,unsigned char g,unsigned char b,double *h,double *s,doubl
{
double rd,gr,bl;

rd=(double)r/255;
gr=(double)g/255;
bl=(double)b/255;
RGBtoHSV(rd,gr,bl,h,s,v);
}

char *rectangle(long x,long y,char *frame,unsigned char r,unsigned char g,unsignec
b)

{

int k,I;

if(x<=480&&x>=478)

{

X=X-2;

}
else if(x>=0&&x<=5)
{

X=X+2:

}
if(y<=640&&y>=638)

y=y-2,

}

else if(y>=0&&y<=5)
{

y=y+2;

}

for(k=x-2;k<x+2;k++)
for(l=y-2;l<y+2;l++)
{

frame[4*(640*k+l)]=Db;
frame[4*(640*k+l)+1]=g;
frame[4*(640*k+|)+2]=r;
}

return(frame);

}

int dist_I(int xp,int yp,int i)

double xI1,yl1,dis,val;
double xdis,ydis;
if(i<4)

{
xI1=(double)(x[i]-x[i-1]);
yl1=(double)(y[i]-y[i-1]);

}

else

{
xI1=(double)(x[i-1]-x[0]);
yl1=(double)(y[i-1]-y[O]);

}

xdis=(double)(xp-x[i-1]);

ydis=(double)(yp-y[i-1]);
dis=fabs(xdis*yl1-ydis*xI1);
val=sqgrt(xI1*xI1+yl1*yl1);
if(val'=0)

dis=dis/val,

else
dis=0;

return((int)dis);

}

void get_out(void)
t
inti;
unsigned char send;
val=0xCO0;
send=~val;
outb(send,base);
printf("left");
usleep(2000);
for(i=0;i<5;i++)
{
val=0xCO0;
send=~val;
outb(send,base);
usleep(2000);

}

}

char *change_frame(char *frame)

t
int ij;

rinmeceianad Aharr~ I

28

double h,s,v;
long sumi,sumyj;
long sumyi,sumyj;
long sumwi,sumwj;
int count=0,county=0,countw=0;
int Xp,yp,xn,yn;
unsigned char send,val;
int dis1,dis2,dis3,dis4;
long disball;
double angle;
double cc,ii,ee;
double dpvect,cpvect;
double mdla,mdlb,anglebt;
sumi=0;
sumj=0;
sumyi=0;
sumyj=0;
sumwi=0;
sumwij=0;
for(i=0;i<480;i++)
for(j=0;j<640;j++)
{
r=frame[4*(640*i+))+2];
g=frame[4*(640%i+))+1];
b=frame[4*(640%i+))+0];
convert(r,g,b,&h,&s,&v);
I if(abs(r-g)<10&&abs(g-b)<10&&abs(r-b)<10&&r>180)
I/ if(v>0.7&&b>170&&0>190&&r>180)
if(v>0.7&&5<12&&09>190&&b>170&&r>170)
{
frame[4*(640%i+))+2]=0;
frame[4*(640%i+))+1]=255;
frame[4*(640*i+))+0]=0;
sumyi=sumyi+i;
sumyj=sumyj+j;
county++;

}
else if((abs(h-310)<45)&&(fabs(v-0.75)<0.2))

frame[4*(640%i+))+2]=0;
frame[4*(640%i+j)+1]=0;
frame[4*(640*i+))+0]=255;
sumi=sumi+i;
sumj=sumj+j;
count++;

I¥Alena 1(FIahecellh CNON\AENO O Aahelv ANAT1TNO0 OCa~N 70 OAN1T1CN\

{

frame[4*(640%i+j)+2]=0;

frame[4*(640%i+))+1]=255;

frame[4*(640%i+))+0]=255;
sumyi=sumyi+i;
sumyj=sumyj+j;
county++;

Y

else if(abs(h-20)<10&&b<50&&g>25&&r>80)

{
frame[4*(640%i+))+2]=255;
frame[4*(640%i+))+1]=255;
frame[4*(640%i+))+0]=255;

sumwi=sumwi+i;
sumwj=sumwj+j;
countw++;

}

[* else

{ -
frame[4*(640%i+j)+2]=0;
frame[4*(640%i+j)+1]=0;
frame[4*(640%i+))+0]=0;
}

*/

1

if(count>0)

{

sumi=sumi/count;
sumj=sumj/count;

}

else

t

sumi=x[0];

sumj=y[0];

}

if(county>0)

sumyi=sumyi/county;
sumyj=sumyj/county;

else

{
sumyi=x[0];
}sumyj=y[0];

if(countw>0)
T

30

31

sumwi=sumwi/countw;
sumwj=sumwj/countw;

}

else

{
sumwi=240;
sumwj=320;

}

Xp=sumyj;

yp=sumi;

Xn=sumwj;

yn=sumwij;

angle=180*atan2((double)(sumyi-sumi),(double)(sumyj-sum;j))/3.142;
mdla=sqgrt((sumyj-sumj)*(sumyj-sumj)+(sumyi-sumi)*(sumyi-sumi));
mdlb=sqgrt((sumwj-sumj)*(sumwj-sumj)+(sumwi-sumi)*(sumwi-sumi));
dpvect=(-(sumyj-sumj)*(sumwi-sumi)+(sumyi-sumi)*(sumwj-sumj))/(mdla*mdib);
cpvect=(-(sumyj-sumj)*(sumwj-sumj)-(sumyi-sumi)*(sumwi-sumi))/(mdla*mdib);
anglebt=180*atan2(cpvect,dpvect)/3.142;

printf("dotproduct=%d\n",dpvect);
printf("crossproduct=%d\n",cpvect);
printf("distance from ball=%If\n",mdIb);
disl=dist_l(sumj,sumi,l1);
dis2=dist_l(sumj,sumi,2);
dis3=dist_l(sumj,sumi,3);
dis4=dist_l(sumj,sumi,4);

if(disl<distance)

{
get_out();

}

else if(dis2<distance)

{
get_out();

}

else if(dis3<distance)

{
get_out();

}

else if(dis4<distance)

{
get_out();

}

else

{

A ~nIlALRES DONDO O Aanrv~nlALLE 1 NN

{
if(mdib>75)

{
val=0xAO0;
send=~val;
outb(send,base);
printf(“forward");
usleep(2000);

}

else

{
val=0x03;
send=~val;
outb(send,base);
printf("stop");
usleep(2000);

}
}
else if(anglebt<-20&&angle>-160)
{
val=0xEQ;
send=~val;
outb(send,base);
printf("Turn left");
usleep(2000);

else

val=0x09;
send=~val;
outb(send,base);
printf("Turn left");
usleep(2000);

/*
val=0xAO0;
send=~val;
outb(send,base);
printf("Moving");
*/
} Sample Vision Code

33

printf("dis1=%d dis2=%d dis3=%d
dis4=%d",dist_l(sumj,sumi,1),dist_l(sumj,sumi,2),dist_l(sumj,sumi,3),dist_l(sumj,sun
printf(" %d %d\n",sumi,sumj);

printf("x[0]=%d y[0]=%d\n",x[0],y[0]);

frame=rectangle(sumi,sumj,frame,255,0,0);
frame=rectangle(sumyi,sumyj,frame,0,0,255);
frame=rectangle(sumwi,sumwj,frame,0,0,0);

printf("w=%d %d \n",sumwi,sumwj);

printf("angle=%If anglebt=%If\n",angle,anglebt);

return(frame);

}

/*** /

int process_frame(char *framel, char *frame2)
{
inti,n=1;
int j,k,l;
int count=0;
int xval,yval,ct2;
unsigned char hue;
double rd,gr,bl;
int xi,yj;
xval=0;
yval=0;
ct2=0;
framel=change_frame(framel);
#ifdef X_DISPLAY_ACTITRACK
update_xdisplay(framel, &BoxAll, 0, &BoxAll, n);
#endif

return(1);

}

Sample Vision Code

pIeog o3elg 1SI1q

2 3 4 5
GND: voc
vdd JPs
18
1 3 . 4HEADER
2 2
1 1
ONJOFF)
EatteyS LEFT_SHARPCAM 1SPJumpy vee——m] 2
) RIGHT_SHARPCAM
110 GND
8 NetLabel55
7 NetLabel56
7 [NetLabels?
€ [NetLabelss
3 [NetLabels
3 NetLabel60 u2
2 [NetLabel6l (-RES)PC6 PC5(ADCS)
1 e @omen rC4ADCH |- e
IOPORT “NelLabel60
a (INTO)PD2 ~ PC2(ADC2) 1N
(INT1)PD3 PCI(ADCI) =
PD4 PCO(ADCO) —235
vee a >GND
GND
o3 il (XTALDPBS AVCC 0] {vee
NetLabel57 11 gl;m)m7 PBS(SCIO(;
Nellabel36 12 Nellabells
NelLabelss 13| FD¢ PE3(OD)| Nellabe2s
4| ' ZE) NetLabel24
14 qcepro PRIQOCIA)
ATMEGASL
L e vee £
R
2 1riG piscH 1 —— Vmoler
3 6 RES2R3 R4 R7
OUT THRESH]
R P RESZ RESZ RESZ
Reset ControlV
114
vee H NetLabells
3 ISP Pinl
@
nz
ISP JUMPER2
n
o | NetLabel33
O0d ™ Nettabel3s NelLabel37
m NelLabel38
LefiMotor
vee
ul
Battery VOLTREG
. +C9 L(‘10 Lcn Lmz c13 cl4 cis 16
(o) CAPACITOR POL CAPACITOR | 'CAPACITOR | CAPACITOR | CAPACITOR | CAPACITOR CAPACITOR | CAPACITOR
CAPACITOR
CAPACITOR
GND GND
Tille
GND
G\D Sze umber Revision
B
Date: 2-Dec-2002 [Sheet of
File: CADocuments and Sefts Ddbrawn By:
1 2 3 4

Ve

pIeog o8e1G pu0dog

1 2 3
»5
vad
18 4 HEADER
1
2
BatteryO ON/OFF
110
8 NetLabel55
8 [T Nettabelse
7 [NetLabels?
€ [NetLabelss
3 [NetLabels
3 NetLabel60 u2
3 [Nettabels! NeLabel321[" ronce pesancs) 2
1 NellabelT RXD)PDO PC4ADC4) -—4VCC
IOPORT "NelLabel60 (L,\([:Tmo;f,glz ﬁ;gﬁgg; 255 DI
NetLabel59 - etLabel33 AR
aseBi 2] NTIPD3 PCI(ADCI) 33X N RI
| b4 PCOADCO) 225 i ——¢
veek vee GND > LED RES2
NS O&TALI)PB& :\?CE(F: [‘l [VeC n
| NeiLabel2) Batiery
NetLabelsT (KTAL2PET pn(s\(zgg; NetLabel30 ¢ DownLoad
‘Netl abel56 e e Nell abells
NetLabel55 NetLabel25
Netlabeisy 13| pry; PB2(OCIB) Netrabel2e 1
N (ICPYPRO PRI(OCIA)
vecl 1 ATMEGASL
2
GND< 3
4 ‘Vmotor
coN4
2
NetLabel24
NetLabe30

NetLabel15

)

v
GND

ut
Battery 'VOLTREG
+C9 C10 C11 C12 C13 Cl4 C15 C16
C2 ‘CAPACITOR POL CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR
CAPACITOR
GND GND
Title
Size ‘Number Revision
B
Date: 11-Dec-2002 Sheet _of
File: C:\Documents and Setti By:
6

¢¢

