

Date: 12/10/02
Student Name: Don McMann

TA: Uriel Rodriguez
Jason Plew

Instructor: A. A Arroyo

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

B.E.E.R.-Bot

Beverage Equipped Entertainment Robot

Final Report

 2

Table of Contents

Abstract 3

Executive Summary 4

Introduction 5

Integrated Systems 6

Mobile Platform 8

Actuation 9

Sensors 11

Behaviors 21

Experimental Layout and Results 23

Conclusion 24

Documentation 25

Appendix A - Program Code 26

Appendix B – Follow Sub Routine 36

Appendix C – LCD Display 38

 3

Abstract

The Beverage Equipped Entertainment Robot (B.E.E.R.-Bot) was designed to serve
beverages at social events and to entertain at the same time. When B.E.E.R.-Bot finds a
person, it will offer them a beverage using voice recognition. After the beverage has been
dispensed, B.E.E.R.-Bot will wander the room looking for another person to give a
beverage to. All the while making quips related to its behaviors and environments.

 4

Executive Summary

B.E.E.R.-Bot is an autonomous robot designed to navigate a room and distribute

beverages. To move around the room, B.E.E.R.-Bot utilizes two Crown Victoria power

window motors for its drive train. These motors run at approximately seven percent of

maximum speed in order to maintain reliable control and stability.

In order to interact with its’ environment, B.E.E.R.-Bot uses 3 infrared sensors and 3

bump switches for obstacle avoidance, a pyroelectric sensor to detect the presence of

humans, a voice playback integrated circuit and a voice recognition system for

communication during beverage dispensing. B.E.E.R.-Bot uses a combination of the I.R.

sensors and the pyrosensor to locate and approach a person.

A five- liter mini keg system is used to contain and transport the beverage. The tapping

system uses a twelve-gram CO2 cartridge to pressurize the keg for dispensing.

The 16F877 PIC microcontroller was used to control B.E.E.R.-Bot and all of its’

behaviors. A Panasonic 12 volt, 7.2-amp/hour battery is used to power B.E.E.R.-Bot.

 5

Introduction

In order to decrease the time spent waiting in line for beverages at large social functions.

B.E.E.R.-Bot was designed to wander around at these events and dispense beverages to

people. It randomly seeks out individuals and offers them a beverage. Upon hearing a

“yes” response, B.E.E.R.-BOT will dispense the beverage and then go back to searching

for other individuals to deliver its payload to.

This paper will describe the design, testing and procedures used to implement this

project.

 6

Integrated Systems

B.E.E.R.-Bot’s integrated system is controlled by the PIC16F877 microprocessor

mounted on the PicProto64 board for system integration. The PicProto64 is a bare circuit

board that had to be put together.

 Its’ platform consists of a ¾” birch round platform to support the weight of the keg. It

uses a differential drive system with two automobile replacement power window motors

controlled by separate D100-B25 motor drivers. The motor drivers are directionally

controlled via logic lines and speed controlled with a pulse width modulation from the

microprocessor. The motor drivers are powered directly from the battery to limit current

drawn by the microprocessor.

The infrared sensors, used for obstacle avoidance, are connected to the processor via

analog ports. As well as the pyroelectric sensor, which is used for people detection

together with the I.R. sensors. The bump switches, also used for obstacle avoidance are

each connected to separate digital inputs.

The voice recognition system is self-contained and notifies the microprocessor when a

key word has been recognized, and leaves all decisions and behaviors based on a positive

recognition up to the microprocessor. The message playback system is controlled by the

microprocessor and messages can be selected based on the preprogrammed behaviors of

the robot.

These systems are used jointly to meet the objective of the robot, which is to find people

and give them a beverage in a fun manner while avoiding obstacles.

 7

 The following flow chart demonstrates B.E.E.R.-Bots’ integrated electrical control

system:

PIC16F1877
Microcontroller

D100-B25
Left Motor Driver

Board

D100-B25
Right Motor
Driver Board

Left Motor Right Motor

Left I.R.
Sensor

Center I.R.
Sensor

Right I.R.
Sensor

Left Bump
Switch

Rear Bump
Switch

Right Bump
Switch

12v Battery

Voice Direct 364
Voice

Recognition

ISD 2560
Voice Playback

PyroElectric
Sensor

Analog

Figure 1 Integrated System

 8

Mobile Platform

The mobile platform used was based on the Rug Warrior design. The platform itself is a

precut 12” diameter, ¾” thick piece of birch. It incorporates a smaller 6 ½” platform that

the keg sets in and a battery holder that was designed using AutoCAD and cut out on the

T-Tech machine. Figure 2 is the AutoCAD design.

 Figure 2 AutoCAD

Originally the platform was designed using a thin 2.0 Ah battery, however this had to be

changed to a 7.2 Ah battery that is 3 times the size of the original. This took up

considerable space and added a lot of weight to the rear of the platform. This caused the

platform to be highly unstable when the weighted keg was not present during testing.

If I were to do it again I would use a 15” diameter platform to compensate for the large

battery.

 9

Actuation

B.E.E.R.-Bots’ motors have to be strong enough to carry the weight of the full keg, the

battery, platform and other parts. For this reason two replacement motors for the Crown

Victorian power window motors were chosen. They are controlled by the D100-B25

motor drivers using two control lines for forward and reverse control of the motors. The

input line truth table is depicted in Table 1.

Enable IN1 IN2 Action
H L L Stop
H L H Forward
H H L Reverse
H H H Stop
L X X OFF

Table 1 Input Line Truth Table

Motor speed is controlled with a 1kHz pulse width modulation signal supplied by the

microprocessor. Originally a 20 MHz oscillator was used to control the microprocessor

but the smallest PWM signal that could be generated was a 1.22 kHz signal. Therefore a

4 MHz oscillator was used to control the microprocessor and generate a 1kHz PWM.

 The motor drivers draw power directly from the battery to minimize current draw from

the microprocessor board. Figure 3 illustrates the wiring diagram for the motors and

drivers.

Figure 3 D100 wiring diagram

 10

The 0.1µF capacitors are used for noise suppression, B.E.E.R.-Bot was tested with and

without these capacitors and ran fine either way.

It was recommended that the logic lines be inserted before the PWM signal to protect the

PAL’s on the driver board. To do this a hardware PWM was implemented via the PIC

and a relay was placed inline between the microprocessor and the D100 to control

activation of the PWM. The relay is controlled by the microprocessor and is delayed

10msec after the logic lines are asserted. The wiring diagram for the relay circuit is

shown in figure 4.

2N2222

1N4148

VCC

Relay Coil

IO

10k

Figure 4 Relay Control Circuit

 11

Sensors

IR Sensors
Three Sharp GP2D12 infrared distance-measuring sensors are used for obstacle

avoidance. The GP2D12 documentation reports that it accurately determines the range to

a target between 3.9 inches and 31.5 inches and can be used as a proximity detector to

detect objects between 0 and 51inches.

I tested each sensor using an 11 x 16 inch cardboard square held perpendicular to and

directly in front of each sensor. A maximum distance of 84 inches was used as the initial

measuring point. An output was recorded every three inches between 84 and 10 inches,

and every inch between 10 and 0 inches. The following graph demonstrates the results of

this experiment:

Figure 5 I.R. Sensors

As can be seen from the graph, all three sensors are very similar and begin a noticeable

up trend at 30 inches that peaks at 3 inches. The distance of an object within this range

IR Sensor Test

-20

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

Distance (inches)

A
n

al
o

g
 O

u
tp

u
t

left

center

right

 12

can be seen fairly accurately. Anything between 30 inches and 60 inches can be detected,

but an accurate distance cannot be established.

B.E.E.R.-Bot incorporates two automobile replacement power window motors as a drive

system. When initial obstacle avoidance testing began, a PWM was used to run the

motors at 80% of their maximum output. This was too fast as B.E.E.R.-Bot could detect

an obstacle and turn without hitting the obstacle or spilling its payload. After running

several trials a PWM of 7% was chosen as this allowed B.E.E.R.-Bot to see an obstacle

and execute an avoidance maneuver smoothly.

B.E.E.R.-Bot has an IR sensor mounted on the front center of the platform to detect

obstacles directly in front of it. In this case it stops, reverses directions, turns randomly to

the left or right for a random amount of time and continues on.

B.E.E.R.-Bot’s drive wheels protrude beyond the platform slightly at approximately the

50-degree marks, measured from the center of the platform, to the left and right. To

compensate for this fact, the left and right IR sensors were mounted at the 45-degree

marks to guard the wheels. This left an unexpected to gap in the sensing areas between

the center and left and right sensors. To correct this error, the left and right sensors were

each moved inward 5 degrees toward center.

Bump sensors in the form of whiskers were placed around the platform, 2 in the front and

one in the rear, to stop the robot if the IR sensors fail to detect an obstacle. These were

one of the last systems put on the robot as platform space was a major concern during

development of B.E.E.R.-Bot.

 13

Pyroelectric Sensor Package

B.E.E.R.-Bot incorporates an Eltec 442-3 dual-element lithium tantalite pyroelectric

sensor. The lithium tantalite crystal is doped with an electrode on opposite sides. When

infrared energy between the range of 8 and 14 micrometers hits the substrate, heat is

generated which displaces electrons and creates a charge between the two electrodes. The

voltage difference between the two elements is amplified and creates a change in the

nominal output voltage of the sensor. The output rises when motion is detected in one

direction and falls when motion is detected in the opposite direction. Thus the

pyroelectric sensor is ideal for detecting the movement of humans, as the wavelength of

maximum energy radiated by humans is about 10 micrometers.

I tested the pyroelectric sensor by walking across its field of view at ½, 3, 5 and 8-foot

intervals at a moderate walking pace in the left-to-right and right-to left directions for

each interval. The nominal value when no movement is in the field of view of the sensor

is 2.5 volts on the output pin, which corresponds to a reading of 128 on the analog output

of the microprocessor. The LCD is set to refresh every 0.5 seconds and two people

recorded results as another walked across the field of view. The first result on each graph

is the nominal value of 128, the next result is the first non-nominal value seen. The

following graphs show the results of these tests:

Left-to-Right (6 inches)

0

50

100

150

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 o

u
tp

u
t

Trial 1

Trial 2
Trial 3

 14

Right-to-Left (6 inches)

0

50

100

150

200

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

Figure 6 Pyro at 6”

As can be seen from these graphs, there are no distinct differences in the outputs between

the left-to-right and right-to-left motions at six inches from the sensor. Therefore the

presence of a person can be detected, however people following capabilities will not be

possible at this distance.

3ft Left-to-Right

0
20
40
60
80

100
120
140

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

 15

3ft Right-to-left

0

50

100

150

200

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 o

u
tp

u
t

Trial 1

Trial 2

Trial 3

Figure 7 Pyro at 3’

In the preceding graphs there is a marked difference between the separate directions.

When moving in the left-to-right direction there is a strong down trend in the output

before it levels back to the nominal value, while the right-to-left movement demonstrates

a strong up trend in the output and drops back to the nominal value of 128. People

following skills and detection can be implemented fairly easily at this distance.

5ft Left-to-Right

0

50

100

150

200

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

 16

5ft Right-to-Left

0
50

100
150
200
250

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

Figure 8 Pyro at 5’

At a distance of 5 feet, there is still noticeable difference between the separate directions,

however they are not as tolerant as before. The left-to-right graph drops below the

nominal 128 and the right-to- left rises above the nominal value. In both graphs there is at

least one anomaly where the output goes in the opposite direction before going in the

expected direction. Human detection is obviously possible at the distance however

determining the direction of the individual may not be as accurate as before.

8ft Left-to-Right

0

50

100

150

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

 17

8ft Right-to-Left

0

50

100

150

0 1 2 3 4

Time (seconds)

A
n

al
o

g
 O

u
tp

u
t

Trial 1

Trial 2

Trial 3

Figure 9 Pyro at 8 ft

At 8 feet, the difference in data is too obscure to determine accurately the direction of

motion. Human detection is the only reliable attribute at this distance.

Trying to detect the presence of an individual can be done reliably at any distance

between 6inches and 8 feet. However direction of motion should be done between the

approximate distances of 3 to 5 feet. This may be accomplished my setting minimum and

maximum detection values to create a range of tolerances that can be used to determine

whether direction can be accurately detected.

 The problem I found when trying to do people following was that the pyro-sensor has a

large window to detect motion in and it has no depth perception. To compensate for these

faults I columnated the sensor with a 1 ¼’” card stock tube. This shrunk the window size

of the sensor and made the system more accurate when locating people. I then used the

pyro-sensor together with the I.R. sensors to locate a person, go towards that person and

verify that it has indeed found a person.

 18

Speech Recognition System

The Voice Direct 364 speech recognition kit is utilized to initiate the beverage dispensing

process. It is set up for single word continuous listening mode, which means it listens for

one key word to be recognized. Some of the major disadvantages I have found using this

system is that the microphone must be positioned the same distance from the speakers’

mouth during recognition as it was during training. Any differences in the inflection of

word during training and recognition will also cause the system not to recognize the

word. During testing I had a cold and could not get the unit to recognize anything I said.

Background noises will also cause the system not to recognize commands.

The key word recognition seems to be more liberal than the command word. If only one

command is required, the command word can be left blank (by not training it) and the

output will toggle high when it recognizes the key word. This has helped to have greater

recognition accuracy. Figure 10 demonstrates the wiring diagram for continuous listening

mode.

 19

Figure 10 Continuous Listening

Voice Playback

The ISD 2560 was used for voice playback. It can play up to 60 seconds worth of

messages sampled at 8kHz. It is capable of message cueing via mode 0 in any order. I use

a breadboard setup when recording messages, as this simplifies control of the I.C.

Figure 11 demonstrates connections to the ISD2560.

 20

Figure 11 ISD2560

 21

Behaviors

Upon start up, B.E.E.R.-Bot goes into a start up phase where it waits for the pyroelectric

sensor to warm up, this takes approximately 20 seconds. Once the warm up phase is

complete, one of B.E.E.R.-Bots’ motors activates, caus ing it to go in a circle. This is its’

search mode, where it uses the pyroelectric sensor to locate a person. If no one is found

within 15 seconds, B.E.E.R.-Bot goes into obstacle avoidance mode for approximately 30

seconds, wandering around randomly. It then goes bask into search mode.

If someone is detected while in search mode, B.E.E.R.-Bot immediately exits this mode

and goes towards the person. It then uses its’ I.R sensors to detect the person, as an

obstacle. If an obstacle is detected, B.E.E.R.-Bot turns towards the obstacle using the

pyro-sensor to verify that it is indeed a person. If a positive verification is established

B.E.E.R.-Bot asks if the individual would like a beverage. If the voice recognition system

detects a “yes” answer, it then waits while the user pours a beverage from the tap.

B.E.E.R.-Bot periodically polls the individual and waits for another “yes” response

before leaving and going back into obstacle avoidance mode.

If any of the previous stages come back with a negative response, such as no person

found or not getting a positive response from its offer, B.E.E.R.-Bot goes into obstacle

avoidance mode and then starts over again. The behavior algorithm is demonstrated in the

flow chart of figure 12.

 22

Warm up

Start

Search Mode

Person Found?

Go toward Person

Yes

Obstacle
Avoidance

Was a person
found?

No

No

Offer a Beverage.

Was a “yes”
detected?

Yes

No

Wait

Are you done
yet?

Yes

No

Yes

Figure 12 Behavior flow chart

 23

Experimental Layout and Results

I attempted several different ways of following/locating people using the pyroelectric

sensor.

The first attempt used a piece of modified code from the “Eltec Pyroelectric Sensor

Package”. The subroutine is listed in the appendix as Follow. The code turned the robot

left if the pyro-sensor read greater than 134 and turned right if the sensor read less than

122. This code is problematic in the sense that the persons’ relative position changes as

the robots direction changes. This procedure caused a very jerky motion that was

unacceptable for the objective of B.E.E.R.-Bot.

I then tried turning the robot until the pyro-sensor detected a person. When it detected a

person it would stop turning and go forward towards the person. The problem here was

that the window size is too large and the robot would stop before it was centered on the

person.

I took a small piece of card stock with a thin slit cut out of the middle to reduce the

window size. This worked, but proved to be unreliable as the sensor had to be perfectly

aligned with slit in the card. Simple movements of the robot would jar the sensor out of

alignment.

I then columnated the sensor as described in the sensor section of this report and that

seemed to work perfectly.

 24

Conclusion

In the future, B.E.E.R.-Bot will dispense beverages on its own and may incorporate a

video camera to better interact with its environment. From listening to others experiences,

however, it will not be the CMU cam. I would also like to make the platform bigger and

enclose the electronics so it is not exposed to getting wet.

B.E.E.R.-Bot was a challenging and thought-provoking project. I became very familiar

with the PIC microcontroller and PIC Basic. Most of the class used the ATMEL

microcontroller and from listening to them, it sounds like the ATMEL is a user- friendlier

device.

This class was also great for tying the concepts together from most of my previous course

work and inspiring confidence in my engineering ability. I found that almost any device I

could imagine is already out on the market; I only had to adapt it to my needs.

 25

Documentation

The following were purchased from Jameco Electronics www.jameco.com:
• PIC16F877
• PicProto64
• Voice Direct 364
• ISD 2560 Voice Record/Playback Device
• Assorted electronic connectors, switches and parts

The following were purchased from Acroname www.acroname.com:

• Sharp GP2D12 Detector Package
• Eltec 442-3 Pyroelectric Sensor Package

The following were purchased from www.listermann.com:

• Philtap for Mini-Kegs
• 5 liter Mini-Keg
• CO2 cartridges

The following were purchased from Lowe’s Hardware (352) 376-9900:

• 12” round ¾” birch (platform)
• Small sprinkler head PVC (bump switches)
• Spray paint
• Sliding door guide (bump switch mount)

The motors were purchased form SanteFe Auto Parts (352) 372-2588

The shaft couplers for mounting the wheels were purchased from www.mastercarr.com

Motor drivers were purchased from www.tecel.com

Wheels were purchased at Target (bicycle training wheels)

The Gator hat was purchased at Center Stage Costumes and Magic (352) 374-4334

Thank you to Jeno Nagey for allowing me to use his code for the LCD display.

 26

Appendix A - Program Code
DEFINE ADC_BITS 8 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS

ADleft VAR BYTE
ADCntr VAR BYTE
ADRight VAR BYTE
Pyro VAR BYTE
LCD VAR PORTB.0
dutyl VAR WORD ' left Duty cycle value (CCPR1L:CCP1CON<5:4>)
dutyr VAR WORD ' Right Duty cycle value (CCPR1L:CCP1CON<5:4>)
trntime VAR BYTE ' random time variable'
trndir VAR BIT
Cntr VAR WORD
Lbump VAR BIT
Rbump VAR BIT
Bbump VAR BIT
BckTime VAR WORD
IDtime VAR WORD
ID VAR BIT
RecOut VAR BIT
RecTime VAR WORD
Cruisetime VAR WORD
pour VAR BIT
pspin VAR WORD

 TRISC.2 = 0 ' Set PORTC.2 (CCP1) to output
 CCP1CON = %00001100 ' Set CCP1 to PWM
 T2CON = %00000101 ' Turn on Timer2, Prescale=4

 TRISC.1 = 0 ' Set PORTC.1 (CCP2) to output
 CCP2CON = %00001100 ' Set CCP2 to PWM

 PR2 = 249 ' Set PR2 to get 1KHz out

 dutyr = 30 ' Set duty cycle
 dutyl = 120

 CCP1CON.4 = dutyr.0 ' Store duty to registers as
 CCP1CON.5 = dutyr.1 ' a 10-bit word
 CCPR1L = DUTYr >> 2

 CCP2CON.4 = dutyl.0 ' Store duty to registers as
 CCP2CON.5 = dutyl.1 ' a 10-bit word
 CCPR2L = DUTYl >> 2

 Output LCD
 Low LCD

 27

 Pause(50)
 SerOut LCD,2,[$FE,$01]
 TRISA = %11111111 ' Set PORTA to all input
 ADCON1 = %00000010 ' Set PORTA analog
 Pause 500 ' Wait .5 second

'**************************'
'****Start Main Program****'
'**************************'
loop2: ADCIN 3, Pyro
 GoSub DisPyro
 Pause 50
 While pyro < 126 'wait til pyro warms up before starting'
 GoTo loop2
 Wend
loop3:
 GoSub pfind
 GoSub getperson
 GoSub Identify
 IF ID = 1 Then
 GoSub offer
 Else
 GoSub message4
 GoSub ObsAvoid
 EndIF
 IF pour = 1 Then
 GoSub waitn
 Else
 EndIF
 GoSub ObsAvoid
 GoTo loop3
'**************************'
End '****End Main**********'
'**************************'

' Subroutine writes left and right IR values to LCD'
DisplayLR:
 SerOut LCD,2,[$FE,$01] ' Clear Screen and return cursor
 Pause 10
 SerOut LCD,2,["Left IR: ", #ADleft DIG 2, #ADleft DIG 1, #ADleft DIG 0]
 SerOut LCD,2,[$FE,$C0] ' Set cursor to next line
 SerOut LCD,2,["Right IR: ", #ADright DIG 2, #ADright DIG 1, #ADright DIG 0]
 Return

'Subroutine to display Pyro sensor values to LCD'
DisPyro: ADCIN 3, Pyro ' Read channel 0 to Pyro val
 ADCIN 1, ADCntr

 SerOut LCD,2,[$FE,$01] ' Clear Screen and return cursor
 Pause 10
 SerOut LCD,2,["Pyro: ", #Pyro DIG 2, #Pyro DIG 1, #Pyro DIG 0]
 Return

'Suroutine to go forward'

 28

Forward:
 GoSub RmotorGo
 GoSub LmotorGo
 Return

'Stop right motor'
RmotorStop:
 Low PORTB.5 'Rrelay off'
 Pause 10
 Low PORTB.3 'In1R low'
 Low PORTB.7 'IN2R low'
 Pause 10
 Return

'Start Right motor'
RmotorGo:
 Low PORTB.3 'In1R low'
 High PORTB.7 'IN2R high'
 Pause 10
 High PORTB.5 'Rrelay on'
 Pause 10
 Return

'left motor stop'
LmotorStop:
 Low PORTB.2 'Lrelay off'
 Pause 10
 Low PORTB.6 'IN1L low'
 Low PORTB.4 'IN2L low'
 Pause 10
 Return

'Start Left motor'
LmotorGo:
 Low PORTB.6 'IN1R low'
 High PORTB.4 'IN2R high'
 Pause 10
 High PORTB.2 'Rrelay on'
 Pause 10
 Return

'Subroutine for Obstacle Avoidance'
ObsAvoid: Cruisetime = 110
 While Cruisetime > 0
 Cruisetime = Cruisetime - 1
 Pause 100
 ADCIN 0, ADleft ' Read channel 0 to adval
 ADCIN 1, ADCntr
 ADCIN 2, ADright
 Lbump = PORTD.0
 Rbump = PORTD.1

 IF (ADCntr > 50) OR (Lbump = 1) OR (Rbump = 1)Then
 Random trntime
 Low PORTB.5 'Lrelay off'

 29

 Low PORTB.2 'Rrelay off'
 Pause 500
 'left relay reverse'
 High PORTB.3 'IN1L high'
 Low PORTB.7 'IN2L low'
 'right relay reverse'
 High PORTB.6 'IN1R high'
 Low PORTB.4 'IN2R low'
 High PORTB.5 'Lrelay on'
 High PORTB.2 'Rrelay on'
 Bcktime = 1000
 While Bcktime > 0
 Pause 1
 Bcktime = Bcktime - 1
 Bbump = PORTD.2
 IF Bbump = 1 Then
 Bcktime = 0
 Else
 EndIF
 Wend

 trndir = trntime.1
 IF trndir = 1 Then
 Low PORTB.5 'Lrelay off'
 Else
 Low PORTB.2 'Rrelay off'
 EndIF
 Pause 750
 Pause trntime
 Low PORTB.5 'Lrelay off'
 Low PORTB.2 'Rrelay off'
 EndIF
'Check left IR sensor'
 IF ADleft > 50 Then
 GoSub RmotorStop
 Else
 GoSub RmotorGo
 EndIF
'check right IR sensor'
 IF ADright > 50 Then
 GoSub LmotorStop
 Else
 GoSub LmotorGo
 EndIF
 Wend
 Return

'Try to find a person'
Pfind: Pspin = 150

 ADCIN 0, ADleft ' Read channel 0 to adval
 ADCIN 1, ADCntr
 ADCIN 2, ADright
 ADCIN 3, Pyro

 30

 GoSub Lmotorstop
 GoSub RmotorGo

 While (pyro > 118) AND (pyro < 138) AND (pspin > 0)
 pspin = pspin - 1
 Pause 100
 ADCIN 3, Pyro
 ADCIN 1, ADCntr
 Lbump = PORTD.0
 Rbump = PORTD.1

 IF (ADCntr > 50) OR (Lbump = 1) OR (Rbump = 1)Then
 pyro = 100
 Else
 EndIF
 Wend
 GoSub RmotorStop

Return

'**goto Person**
getPerson:
keepgoing: ADCIN 0, ADLeft ' Read channel 0 to adval
 ADCIN 1, ADCntr
 ADCIN 2, ADRight
 Lbump = PORTD.0
 Rbump = PORTD.1

 GoSub LmotorGo
 GoSub RmotorGo
 IF (ADCntr > 50) OR (ADLeft > 50) OR (ADRight >50) Then
 GoSub RmotorStop
 GoSub Lmotorstop
 Else
 GoTo keepgoing
 EndIF
Return

'**Identify Person**
Identify:

 IF (ADLeft > 50) Then
 GoSub RmotorGo
 Else
 GoSub LmotorGo
 EndIF

 IDtime = 500
 While IDtime > 0
 ADCIN 3, Pyro
 IDtime = Idtime -1

 31

 Pause 2
 IF (pyro < 118) OR (pyro > 138) Then
 ID = 1
 IDtime = 0
 Else
 ID = 0
 EndIF
 Wend
 GoSub RmotorStop
 GoSub Lmotorstop
Return

'Offer a beer
offer:
 GoSub message1
recout = 0
RecTime = 60000
RecOut = PORTC.7
 While (rectime > 0) AND (recout = 0)
 RecTime = (RecTime - 1)
 RecOut = PORTC.7
 Wend

 IF RecOut = 1 Then
 GoSub message2
 pour = 1
 Else
 GoSub message3
 pour = 0
 EndIF
Return

waitn:
 recout = 0
 GoSub message5
 Pause 8000
 GoSub message7
 Pause 4000
 GoSub message6
 While recout = 0
 RecOut = PORTC.7
 Wend
 pour = 0
 recout = 0
Return

showIRnBump:
 SerOut LCD,2,[$FE,$01] ' Clear Screen and return cursor
 Pause 10
 SerOut LCD,2,["L: ", #Lbump," C: ", #ADCntr DIG 2, #ADCntr DIG 1, #ADCntr
DIG 0]
 SerOut LCD,2,[$FE,$C0] ' Set cursor to next line
 SerOut LCD,2,["R: ", #Rbump, "P: ", #Pyro DIG 2, #Pyro DIG 1, #Pyro DIG 0]

 32

Return

'play message 1
message1:
 High PORTC.6
 Pause 100

 Low PORTC.6
 High PORTC.5
 Low PORTC.5
 High PORTC.5
 Pause 3000

Return

message2:

 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000

Return

message3:
 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 Low PORTC.5

 33

 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000
Return

message4:
 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000
Return

message5:
 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 34

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000
Return

message6:
 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4

 35

 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000
Return

message7:
 High PORTC.6
 Pause 500
 High PORTC.5
 Pause 100
 Low PORTC.6

 Pause 100
 High PORTC.4
 Pause 500

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 100
 Low PORTC.4
 Pause 100

 Low PORTC.5
 High PORTC.5
 Pause 3000
Return

 36

Appendix B – Follow Sub Routine

'Subroutine for people following'
Follow: ADCIN 0, ADleft ' Read channel 0 to adval
 ADCIN 1, ADCntr
 ADCIN 2, ADright
 ADCIN 3, Pyro
 IF ADCntr > 50 Then
 Random trntime
 Low PORTB.5 'Lrelay off'
 Low PORTB.2 'Rrelay off'
 Pause 500
 'left relay reverse'
 High PORTB.3 'IN1L high'
 Low PORTB.7 'IN2L low'
 'right relay reverse'
 High PORTB.6 'IN1R high'
 Low PORTB.4 'IN2R low'
 High PORTB.5 'Lrelay on'
 High PORTB.2 'Rrelay on'
 Pause 750
 trndir = trntime.1
 IF trndir = 1 Then
 Low PORTB.5 'Lrelay off'
 Else
 Low PORTB.2 'Rrelay off'
 EndIF
 Pause 750
 Pause trntime
 Low PORTB.5 'Lrelay off'
 Low PORTB.2 'Rrelay off'
 EndIF

 IF (ADleft > 50) OR (Pyro >134) Then
 Low PORTB.5 'Lrelay off'
 Pause 10
 Low PORTB.3 'In1L low'
 Low PORTB.7 'IN2L low'
 Pause 10
 Else

 Low PORTB.3 'In1L low'
 High PORTB.7 'IN2L high'
 Pause 10
 High PORTB.5 'Lrelay on'
 Pause 10

 EndIF

 IF (ADright > 50) OR (Pyro < 122) Then
 Low PORTB.2 'Rrelay off'
 Pause 10
 Low PORTB.6 'IN1R low'
 Low PORTB.4 'IN2R low'

 37

 Pause 10
 Else
 Low PORTB.6 'IN1R low'
 High PORTB.4 'IN2R high'
 Pause 10
 High PORTB.2 'Rrelay on'
 Pause 10

 EndIF
 Return

 38

Appendix C – LCD Display

To facilitate sensor testing and troubleshooting, an HD44780 controlled LCD display was

connected to the microprocessor. This was accomplished using the EDE702 Serial LCD

Interface IC.

The EDE702 provides serial control of the LCD display via a 9600 Baud rate data link

from the micro controller. When power is applied, the EDE702 automatically clears the

LCD, initializes the cursor and sets it to receive four-bit parallel input from the IC. This

frees up an additional 6 lines on the processor and simplifies coding of the LCD

initialization.

The following is a modified wiring schematic from the EDE702 on- line documentation,

and demonstrates how I connected the LCD to the PIC 16F877:

