

University of Florida

Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Toolbot

Final Report

Final report
By

Jeno Nagy
December 10, 2002

 1

Table of Contents

Abstract……………………………………………………………………………..03
Executive Summary………………………………………………………………...04
Introduction…………………………………………………………………………05
Integrated System……………………………….………………………………......06
Mobile Platform…………………………………………………………………….08
Actuation……………………………………………………………………………10
Sensors………………………………………………………………………………12
 IR Sensors…………………………………………………………………………………12
 Beam Break………………………………………………………………………………..13
 Bump switch network……………………………………………………………………..14
 Voice Recognition…………………………………………………………………………15
 CMUcam vision system……………………………………………...………..17
Behaviors……………………………………………………………………………20
Experimental Layout and Results…………………………………………………...24
Conclusion…………………………………………………………………………..25
Documentation………………………………………………………………………26
Appendix…………………………………………………………………………….29

 2

Abstract

 Toolbot is an autonomous tool delivery system, which follows its user and
dispenses sockets as requested by its user. The Toolbot has a small carousel with a
handful of sockets that it can deliver. Using a combination of IR sensors, voice
recognition, and a vision system, the Toolbot will provide assistance to a mechanic who
needs tools for work beneath an automobile or other situations where a stationary toolbox
in not appropriate or hard to get to.

 3

Executive Summary

 The Toolbot is a small round two-wheeled autonamous agent, which delivers

sockets to its user. This is accomplished using 2 IR sensors for proximity detection, a

CMUcam vision system for people following, a Voice Direct 364 voice recognition

processor for voice commands through an RF link, specifically the names of the sockets

needed, and various other supporting electronics such as beam breaks to get the task

done.

 Toolbot’s electronics are controlled by a central microcontroller with various

supporting devices attached. The controller is a PIC 16F877. This controller directs all

behaviors including motion with two hacked servos. The carousel is aligned using a beam

break for proper dispensing. Onboard supporting devices include a serial LCD driver IC,

resistor networks for bump switches, and one RF receiver.

 Off board devices consist of an RF headset with the Voice Direct 364 board in it.

This is connected to another small PIC for serial transmission of voice commands to the

Toolbot.

 The robot’s behaviors are dynamically affected by its environment, hence it is a

programmed machine and autonomous. After startup the robot searches for the object to

track in a circular motion. If it does not find the object within a specific given time, it

wonders around randomly. It stops and checks again and again for the object to track.

Once it locks in, it approaches it, and stops and waits to dispense a socket.

 4

Introduction

 Mechanics, or people like me, often find themselves underneath an automobile

working on resolving a problem, or making modifications. A common job requires many

different tools, which are often many feet away from where the mechanic needs it. It

would be very convenient to have an aid dispense the proper sized tool as needed, when

needed, to the mechanic. The space beneath a car in a common household garage,

without lifts can be tight, and so is visibility to check whether the proper size wrench or

socket is at hand. A small autonomous robot which, could dispense the proper tool with

voice commands, would save time and the inconvenience (back-pain) of getting out from

under the vehicle to get the right socket. This system would also keep the garage more

organized and clutter free, and keep the mechanic from having to rearrange tools laying

all over the floor after the job is done.

 This paper covers all the major components of the robot, including the mobile

platform design, actuation, sensors, the testing and structure of each component, and the

behavior of the overall system with its surroundings.

 5

Integrated System

 The system is controlled by a PIC 16F877 microcontroller. Each task of the robot

can be related to a specific part of the overall system. The movement of the platform by

the driving servo system, behaviors of motion by the IR ranging system, bump ring, and

CMUcam vision systems, and the socket dispensing task to the carousel structure and the

voice command recognition system.

 The theory of operation includes a user of the Toolbot. This user has a unique

colored object or clothing at about eye level of the robot (so orange Gator pants or

something similar). On power-up, the user stands in front of the camera at close

proximity so that the unique color can be identified and tracked by the onboard vision

system. Once the color is stored, the system checks for the color by spinning until it find

its. If found, it follows it, else it randomly wonders around and checks periodically the

same way. The flow chart of the operation can be seen on the next page, on Figure 1.

Each independent sub-system on the robot is responsible for a specific task on the flow

chart.

 Initialization includes power-up, carousel alignment, and sub-systems check.

Startup is a delay for the color lock to engage and the robot’s readiness to follow an

object.

 6

 Figure 1. Theory of Operation

The code for the PIC16F877 is written in PIC Basic Pro. The structure of the code and

the program flow can also be represented by the illustration above.

 7

Mobile Platform

 The platform is a small, seven inch diameter round platform with an overall

height of approximately seven inches with the camera on top. The objectives for the

platform include a small size to fit beneath automobiles and stability to carry ten sockets

on top without tipping over. There is also a small sliding caster for balance in the back.

 The main platform is shown below in figure 2 with cutouts for the two driving

servo holders and front mount IR sensors.

 Figure 2. Platform main base

The battery tray is located on the center section and is designed to hold a long, flat lead-

acid YUASA NP2-12 battery. Two vertical supports hold up the second layer of the

platform, which serves as the base for the carousel. This is approximately a six inch

diameter circle, above which the same size carousel sits and spins. These pieces are

shown on the following figures.

 8

 Figure 3. Vertical supports for second level

Figure 4. Second layer support and carousel

Regular sized sockets fit into the opening in the carousel. As it spins, the different sockets

line up above the trap door opening on the second level base. The electronics fit between

 9

the two vertical supports and below the second layer. This keeps the electronic

components protected and insulated from the moving parts above. Above the carousel,

the third layer is supported by aluminum spacers. This serves as a top for the carousel as

well as a base for the camera mount on top. The design of the third layer also has an

opening up front to return the socket to the carousel.

 10

Actuation

Actuation of the Toolbot consists of three different systems. The main actuation

system is the two hacked ball-bearing servos used for motion of the platform. These are

the GWS S03N BB pre-hacked servos, which produce 47 in-oz of torque.. The servos

offer continuous rotation for motion and are controlled by PWM’s form the PIC

microcontroller. The servos require a 50Hz signal, hence every 20ms. The duty cycle

determines the direction of the servo’s rotation. The PIC’s hardware PWM system is

unable to generate such a low frequency signal, so software PWM was generated for

driving signals.

 The second actuation system is the servo, which controls the rotation carousel.

This is also a GWS S03N BB servo, which is mounted at the center of the carousel. The

PWM is again generated in software to rotate the carousel slowly.

 The final actuation system is for the movement of the trap door to dispense the

sockets. This is done with an unhacked GWS PICO BB servo. By applying the right

PWN, the servo arm moves 90 degrees up or down. This pushes or lowers the door as

needed. The following diagram shows the circuit of the actuating mechanisms. The code

to control the servos is listed in the appendix.

 11

Trap Door
PICO BB

Carousel
S03N BB

Right Servo
S03N

Left Servo
S03N

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PIC16F877
U1

Servo

Gnd

Vcc

PWM
MOT1

Servo

Gnd

Vcc

PWM
MOT2

Servo

Gnd

Vcc

PWM
MOT3

Servo

Gnd

Vcc

PWM
MOT4

+5V
X

1

+5V

1
0

K

2
2

 u
f

2
2

 u
f

Figure 6. Actuation with various servos

One interesting thing I learned was the PIC’s inability to use its hardware PWM to

generate the 50Hz signal needed for proper PWM generation. The lowest resolution with

the HPWM command using a 20Mhz oscillator is 1221Hz. With a 4 Mhz oscillator is

245Hz. The solution is to generate it in software, either trough the use of interrupts or

some dynamic coding to ensure proper operation.

 12

Sensors

 Several sensors were used to achieve the mobility and goals set forth by the

design objectives. The main sensors employed were IR proximity sensors, a beam break,

bump ring system, voice recognition hardware, and the CMUcam for vision purposes.

Each sensor is described below in more detail.

IR sensors

 A pair of SHARP GP2D12 IR (Mark III robot store) proximity sensors were used

on the front of the Toolbot to detect obstacles up ahead. The IR sensors are self

modulated and demodulated, so only three connections are needed. Power, ground, and

the analog signal coming out of each sensor to be read by the A/D system on the

microcontroller. Using 8-bit resolution, the values range from 0 to 255. The useful range

of these sensors allows positive detection up to a few inches from the front of the sensor.

The max reading is about 130, which indicates an object about 4 inches in front. The

performance of the sensors can be seen in the following graph of distance versus voltage

output at the A/D port.

Voltage Vs Distance

0

20

40

60

80

100

120

140

0 10 20 30 40 50

Range (cm)

vo
ta

g
e

(8
-b

it
A

/D
)

Series1

 Figure 7. IR sensor output

 13

The code to read the A/D ports and hence the IR sensors is located in the appendix.

Beam Break

 A beam break is used to detect the alignment of the carousel with the first bin.

This is crucial, since timing is needed to dispense the proper socket from the appropriate

bin. The beam break is on Omron EE-SX3 emitter, detector pair (from Uriel Rodriquez).

It is a self contained unit, with three inputs. Power, ground, and a signal line to detect

open or closed beam status. The power must be connected trough a current limiting

resitor, and for digital output, the output line should be pulled high. This gives a logical 1

when open, and 0 when closed. The theory of operation is simple. An IR LED diode

emits light which a light sensistive transistor sees. When the beam is true, the output line

is left floating, but when the beam is broken, the output line is pulled to ground. The

circuit is shown below:

To A/D pin

+5V

D1

3
3

0

3
3

0

 Figure 8. Beam Break

 14

Bump Switch Network

 The bump switch network is used to determine if a collision has occurred with

Toolbot. If the IR sensors don’t pick up an obstacle, the bump ring is the last effort to

reverse direction or change course. The circuit design is from Uriel Rodriquez, and is

implemented to save I/O pins on the controller. The bump network on Toolbot uses four

contact switches to determine collisions and the direction they came form. The output of

the network is tied to an A/D pin the PIC, from which the detection can be made. By

using unique resistor values, a multiple voltage divider network can be made. This also

works for multiple switches that close at the same time. The combination of resistors

gives the voltage divider a unique value, which can be identified by the microcontroller

for more precise movement in case of a collision. The circuit is shown below, and the

code to detect it can be seen in the appendix.

To A/D pin

1
0

K
1

0
K

2
2

K

4
7

K

1
0

0
K

S
W

1

S
W

2

S
W

3

S
W

4

+5V

 Figure 9. Bump switch network

 15

Voice Recognition

 Voice recognition is used on Toolbot to allow the user to select a particular size

socket to be dispensed using only voice. Voice recognition is a difficult sensory project,

but there are several manufactured sub-systems, which can accomplish this task. Toolbot

uses the Sensory Voice Direct 364 (from Jameco) to recognize a spoken work and send a

digital signal which represent the work said.

 The Voice Direct Board is set up for strict, continuous listening mode, which

allows the user to say one key work, followed by up to fifteen additional words. Once the

works are trained, the system is ready to listen to commands. When the key word is

recognized, the secondary word is listened to. If this is also recognized, certain pins will

be toggled high for 1 second to indicate a match.

 Two designs were tried, one on-board the robot with a miniature microphone, and

second a remote, RF link, with a transmitter in a remote control box, and the receiver on-

board Toolbot. The on-board idea did not work well, since voice tone and attenuation

must be exact to the trained words, else a false or no recognition is made.

 The RF link was a much improved idea. It employs the Voice Direct board,

another small PIC 16F84 microcontroller, and the Rentron TWS-434 RF transmitter

(from Reynolds Electronics) all enclosed in a small box, with a microphone headset. The

digital data from the voice board is read by the PIC and is sent serially at 2400 baud to

the receiver on Toolbot. The receiver is the matched pair RWS-434, which then serially

transmits the data to the main controller on Toolbot. The range as tested indoors was

effective up to 25 feet, but Rentron claims distances of 400 feet. The circuit for the

 16

transmitter and receiver are shown on the following page. The code for both are listed in

the appendix.

DataBus[OUT8..1] to PIC PORTB[7..0]

19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1
2

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9

Voice Direct 364

U1

Reset

Train

Recognize

CL Train 6
8

0

Speaker

Antenna

Microphone

+5V

3
3

0
T

al
k

LE
D

9
8
7
6
5
4
3
2
1

10
11
12
13
14
15
16
17
18

PIC16F84A
DEV1

R
1

+5V

X
1

R
2

C
1

C
2

3
3

0
D

a
ta

L
E

D

4321

TWS-434
RFTX

Figure 10. Voice Recognition RF transmitter headset

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PIC16F877
U1

X1

+5V

1
0

K

22
 u

f

2
2

 u
f

87654321

RWS-434
RFRC

ANT1

4
7

k

 Figure 11. Voice recognition RF receiver

 17

CMUcam Vision system

 People following is implemented using the CMUcam serially connected to the

main PIC controller. The CMUcam (From Seattle Robotics) is an integrated digital

CMOS camera with an SX-28 microcontroller. Digital image information is extracted and

serially transmitted. The theory of operation is that the camera can lock onto and track

objects with bright colors. It does this by taking the RGB values of the tracked item, and

following it on the screen. The camera then dumps serially image information, such as

mass Y, mass X, and pixel information. This can be used to control the motion of Toolbot

to keep the object centered in the camera’s lens.

 After many hours of terrible headaches and angry outburst of hatred, I got the

camera to work and send serial data. (Despite having the wrong lens shipped form Seattle

Robotics. NOTE: make sure you get the improved IR wide angle lens, its free if you ask).

Initially the serial link was at 9600 and in pure bi-directional ASCII, but later improved

to 38,400 baud with ASCII command transmission from PIC to camera, but raw stream

data back form the camera to the PIC. This improved calculation time, since all values

sent back were in standard 8-bit numerical format, as opposed to three 8-bit values

representing the correct value (“2”,”5”,”1”, for “251” for example).

 The camera is wired to a pair of input and output pins for receiving and

transmitting. For various speed setting, jumpers must be set on the camera board. For

38,400, set jumper 2 only. Toolbot uses TTL logic level serial transmission, which the

CMUcam offers as separate output pins on the board. These pins are also tied internally

to a Max233 level shifter IC. This needs to be removed from its socket, otherwise the

TTL logic pins do not work.

 18

 The CMUcam is initialized in a sequence of commands sent to the camera. The

following shows how to lock on to a color on front of the camera and track its center of

mass, its pixel count, and the camera’s confidence level at seeing the object.

SerOut2 CMUcamTX,6,["rs",13] 'Camera reset
SerIn2 CMUcamRC,6,[WAIT(":")]
SerOut2 CMUcamTX,6,["PM 1",13]'poll mode only
SerIn2 CMUcamRC,6,[WAIT(":")]
SerOut2 CMUcamTX,6,["MM 1",13]'mass mode on
SerIn2 CMUcamRC,6,[WAIT(":")]
SerOut2 CMUcamTX,6,["CR 18 32 19 32",13] 'turn auto gain, white balace off
SerIn2 CMUcamRC,6,[WAIT(":")
SerOut2 CMUcamTX,6,["RM 3",13]
SerOut2 CMUCamTX,6,["TW",13]
SerIn2 CMUcamRC,6,[WAIT(":")]
LOOP
'SerOut2 CMUcamTX,6,["TC",13]
SerIn2….DATA NEEDED
GOTO LOOP

The camera is reset on software, set to poll mode, mass mode is engaged and the image is

adjusted by turning auto-gain and white balance off. Raw mode is turned on for raw

transmission from camera to PIC. Then Track Window is called to lock in on object in

the center part of the image. The RGB values of this object are tracked by calling the

Track Color command. One frame of values is sent back each time. Toolbot checks to see

if the center of mass in the X direction is close to the center. The screen size is 80 by 143,

so the X center is at 40. If the mean is between 35 and 55, then move forward, else if les

then 35 move left, or more that 55 move right. The pixel count indicated how many

pixels the object takes up, hence the distance form it. If the pixel count > 208, then the

object is close, so Toolbot stops. Confidence level indicates the camera’s current lock on

the color. If the confidence is low, the object is not in view.

 19

Behaviors

 Toolbot behaviors can be categorized into several subsections. The robot swit ches

from behavior to behavior based on the dynamic changes in its surroundings. The

behaviors are Familiarization, People Following with obstacle avoidance, Searching,

Random Roaming with obstacle avoidance, and Tool Deposit. Each is described below.

Familiarization

 On startup, toolbot must familiarize itself with the object it is requested to track.

This is done using the CMUcam’s Track Window command. Once the camera is warmed

up and the proper modes are set, The camera takes a snap shot of what ever is in the

center of its lens, and locks in on that RGB color combination. The familiarization takes a

few seconds, with a green LED status light blinking to alert the user. This behavior state

is only entered once, during powerup. If for some reason there are tracking issues,

Toolbot must be turned off and reinitialized.

Searching

 In order to achieve people following skills, some searching is involved to find the

object being tracked. The searching algorithm is very simple, and this behavior is entered

after familiarization, and then on certain time intervals of the object is not tracked or seen

for a while. The camera takes an initial reading after familiarization, and Toolbot

determines wether the object is seen. If it is, then Toolbot moves toward the object, if not,

then the search behavior is initiated. Toolbot spins in place twice around its own axis,

slowly, to see if the object can be seen in a 360 degree motion near by. If it is located, the

search behavior is switched to people/object following. If not seen, then random roaming

 20

is initiated. This gives Toolbot a chance to move to another part of the world, and try

searching again.

Random Roaming

 Random roaming occurs when a search fails to provide definite direction for

Toolbot to follow. In random roaming, toolbot moves forward after a spin search. It

continues moving forward until obstacles are detected by either the IR sensors or the

bumpswitch network. Then the appropriate action is taken. The actions can be seen from

the flow chart below.

Move Forward

IR or bump?NO

YES

IR?

YES

NO
evers e

and turn le ft

Search ing s p in

Both IR? YES

N O

Left I r?

Right I r?

N O

YES

YES

Turn towards right

Turns toward left

 Figure 13. Random roaming behavior

 21

People Following

 People following (object following) is entered when the camera has a positive

lock on the object it needs to track. Toolbot calculates its movement based on the location

of the middle mass of the object, specifically in the X axis. Y axis calculations are

ignored, but could be implemented in the future for up, down looking also. If the middle

mass is within the range for forward motion, Toolbot moves forward for a small amount

of time, and then reevaluates for its next move. If the object is on either extreme of the

line of sight, then Toolbot turns slowly towards the object until it is near center again,

then moves forward. If the object is lost at any time in this process, Toolbot stops and

goes into search mode. The search mode is the same one as on initialization, with a spin

about its own axis, unless the object is lost while it was in sight and Toolbot was turning.

For example, if Toolbot is turning to the left, and then the object fall out of view, Toolbot

assumes it is because the object was moving too fast towards the left and continuous t

spin left. The same of true for the right side.

 While moving forward, the same steps are checked for obstacles as in the random

motion behavior, Bump sensors take priority over IR sensors, which over the camera. So

even if there is a positive lock on the object to move forward, if there are obstacles ahead,

Toolbot will turn appropriately, and if the object is lost, will go into search mode.

 One major lesson learned again with the PIC’s inability to generate the proper

PWM from hardware. Without this, Toolbot must stop and revaluate its motion direction,

so that the software can react and generate the PWM. With hardware, the motors would

be running constantly and only updating the direction values would be needed, producing

a much smother operation cycle.

 22

Tool Deposit

 Once Toolbot is close to its target object, it stops and offers a socket to its user. It

signals by displaying the appropriate message on the LCD display, as well as flashing a

red LED indicator. Toolbot waits for serial commands from the user. If no commands

area sent, Toolbot rechecks the status of the camera every 5 seconds to see if the target

has moved without needed tools. If still there, it keeps waiting, if moved it follows.

If a socket is needed, it is dispensed and Toolbot waits for the socket to be returned and

the return button pressed. It then rechecks the camera status and enters one of the other

behaviors as described earlier.

 23

Experimental Layout and Results

 The main code to operate Toolbot was tested in sections and once successful, they

were combined to form the overall flow of behaviors described before. Tests were

performed on each section to ensure proper operation. The major sections are listed

below.

Basic Obstacle Avoidance

 Since obstacle avoidance is required in all other moving behaviors it was the first

one to be completed and tested. The IR sensor data can be found under the sensors

section. The IR sensor data controls Toolbot with various IF..THEN..ELSE statements.

The value of the IR sensors was adjusted until a comfortable turning distance was seen

from the obstacle ahead. The results gave a nice turn and provided good obstacle

avoidance.

Carousel Alignment

 To dispense the proper socket, the carousel on Toolbot must stop above the trap

door within some degree of accuracy. After several tests, I realized that even if the

carousel is aligned initially, it losses alignment after dispensing a few sockets. This was

solved by realigning the carousel to its initial setting each time a socket is returned. This

keeps the timing close, and only glitches a few times.

 24

Conclusion

 Toolbot overall performs as needed by the original design. The only issue is with

the camera and its inconsistency with lighting. Under most circumstances it performs

excellent and finds its user, but there are times when it takes several tries before it gets a

good lock on its object. I have another IR filter coming in the mail, which should fix the

camera’s susceptibility to external light.

 Limitations of my work were mainly time related. I have more ideas to try to

improve the design further, but time only allows so much. Several areas of the design

worked better than I had expected. The voice recognition with the RF headset was nice

compared to yelling at the microphone a few feet away. The platform design worked

really well. It is balanced, compact, and fairly neat. Areas of improvement focus on the

carousel’s instability sometimes and again the CMUcam’s issues.

 Technical issues with the PIC leave me to say this: Don’t use one if you need to

run servos continuously in the background, unless some interrupt services can be set up

to correct this problem. The Atmels did not have this problem. Also if anybody decides to

use the CMUcam, give yourself plenty of time to experiment with it to learn it (and

maybe buy two, so you can throw one against the wall). After some experimenting it does

work well, with proper lighting.

 If I would start the project over, I would of used an Atmel microcontroller for its

better features. For future enhancements on Toolbot, I’d like to increase the payload to

more tools, voice playback system, and possibly a servo activated camera mount so that it

can swivel left right, up and down, for more degrees of tracking freedom.

 Overall the project was fun, I learned a lot of new things, and things not to do.

 25

Documentation

Credits

 I’d like to give credit and thanks for all the help I was given by Dr. Arroyo, Dr.
Swartz, Uriel Rodriquez, and Jason Plew in carving Toolbot out of a pile of resistors and
two sheets of plywood.

Uriel provided me with several key parts and ideas for Toolbot, including the bump
network system, and the break beam for the carousel.

There were several good websites, which I found useful in helping debug the subsystems
of Toolbot. In no particular order:

Websites of relative importance

(PICs)
<http://www.planetmicrochip.com>
Good site for data sheets, same code, etc. for the PIC, after all they make them

<http://electronicKits.com>
Cheap PIC programmer works real good

(RF transmitter/receiver)
<http://www.rentron.com>
Lots of stuff on IR and RF decoding, encoding, and not too pricey

(CMUcam)
<http://www.seattlerobotics.com>
Origin of the camera, ask for the proper IR lens.

<htttp://www.acroname.com>
More CMUcam stuff, they sell it too, sample codes

(Servos in general)
<http://RobotStore.com>
Some useful basic info on servos and controls for them

 26

Parts List

Most of the parts were purchased through the internet, but some items were

provided by the TA’s. Only the significant pieces are listed on the following table.

Part Part# Supplier Contact

PIC 16F877 176882 Jameco http://www.jameco.com
PICProto Board64 13652 Jameco http://www.jameco.com
PICALL programmer DIY KIT 117 Carl's Electronics http://electronickits.com
Servo Wheels Mark III http://www.junun.org/MarkIII
Sharp GP2D12 IR Mark III http://www.junun.org/MarkIII
Servos Mark III http://www.junun.org/MarkIII
Voice Direct 364 173489 Jameco http://www.jameco.com
Serial LCD driver 171951 Jameco http://www.jameco.com
CMUcam Seattle Robotics http://www.seattlerobotics.com

 27

Appendix

 The appendix contains the final code in PicBasic Pro used to control Toolbot.

 28

' This code controls Toolbot

' Jeno Nagy

' 12-9-02

DEFINE OSC 20

DEFINE ADC_BITS 8 ' Set number of bits in result

DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)

DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS

MiddeX CON 40

MiddleY CON 70

LFMax CON 1250 'Left servo forward max speed

LRMax CON 250 'Right servo forward max speed

LStop CON 0 'Left servo stop speed

RFMax CON 250 'Right servo forward max speed

RRMax CON 1250 'Right servo reverse max speed

RStop CON 0 'Right servo stop speed

RefreshPeriod CON 20 'refresh servo pins delay

CarSpeed CON 825 'Carousel Speed

LEDArray VAR PORTC.2

LMotor VAR PORTB.1 'Left servo

RMotor VAR PORTB.2 'Right servo

CMUcamRC VAR PORTC.0

CMUcamTX VAR PORTC.1

LCD VAR PORTB.0

Door VAR PORTC.3

Carousel VAR PORTB.3

RFin VAR PORTB.6

RedSwitch VAR PORTB.5

RedLED VAR PORTB.4

Bumper VAR BYTE 'A/D bumper switch

LeftIR VAR BYTE 'A/D left IR

RightIR VAR BYTE

 29

BBreak VAR BYTE

DoorCounter VAR BYTE

SpinDelay VAR BYTE

BinNumber VAR BYTE

Nothing VAR BYTE

Pattern VAR BYTE

IdleCount VAR BYTE

MX VAR BYTE

MY VAR BYTE

Confidence VAR BYTE

Pixels VAR BYTE

RawMode VAR BYTE[9]

LSpeed VAR WORD

RSpeed VAR WORD

LastDirection VAR BYTE

Counter VAR BYTE

BackCount VAR BYTE

 Pause 50

 TRISA = %11111111 ' Set PORTA to all input

 ADCON1 = %00000010 ' Set PORTA analog

 Output LCD

 Output LEDArray

 Output LMotor

 Output RMotor

 Input RedSwitch

 Input CMUcamRC

 Low LMotor

 Low RMotor

 Low LCD

 LastDirection = 2

 DoorCounter = 0

 SpinDelay = 0

 BinNumber = 1

 Nothing = 0

 30

 BackCount = 0

 Counter = 0

 Pattern = 0

 IdleCount = 0

 Pause 1000

 SerOut LCD,2,[$FE,$01]

 LSpeed = LStop

 RSpeed = RStop

 GoSub BlinkLEDArray

 GoSub BlinkLEDArray

 GoSub BlinkRedLED

 GoSub BlinkRedLED

InitDoor:

 While (DoorCounter < 50)

 PulsOut Door,250

 Pause RefreshPeriod

 DoorCounter = DoorCounter + 1

 Wend

 Pause 500

 DoorCounter = 0

 While (DoorCounter < 50)

 PulsOut Door,1250

 Pause RefreshPeriod

 DoorCounter = DoorCounter + 1

 Wend

 DoorCounter = 0

InitCarousel:

 ADCIN 3,BBreak

 Pause 10

 IF (BBreak > 100) Then

 PulsOut Carousel,CarSpeed

 Pause RefreshPeriod

 Else

 GoTo InitCMUcam

 EndIF

 31

 GoTo InitCarousel

InitCMUcam:

 GoSub BlinkLEDArray

 Pause 3000 ' Wait 5 second for image stabilization

 SerOut LCD,2,[$FE,$01]

 Pause 50

 SerOut2 CMUcamTX,6,["rs",13] 'Camera reset

 SerIn2 CMUcamRC,6,[WAIT(":")]

 Pause 1

 GoSub BlinkLEDArray

 GoSub blinkCMU

 SerOut2 CMUcamTX,6,["PM 1",13] 'poll mode only

 SerIn2 CMUcamRC,6,[WAIT(":")]

 Pause 1

 GoSub blinkCMU

 SerOut2 CMUcamTX,6,["MM 1",13] 'mass mode on

 SerIn2 CMUcamRC,6,[WAIT(":")]

 Pause 1

 GoSub blinkCMU

 SerOut2 CMUcamTX,6,["CR 18 32 19 32",13] 'turn auto gain, white balace off

 SerIn2 CMUcamRC,6,[WAIT(":")]

 Pause 1

 GoSub blinkCMU

 SerOut2 CMUcamTX,6,["RM 3",13]

 Pause 1

 GoSub blinkCMU

 SerOut2 CMUCamTX,6,["TW",13]

 SerIn2 CMUcamRC,6,[WAIT(":")]

 Pause 1

 GoSub BlinkCMU

 SerOut2 LCD,84,["Tracking Mass"]

 Pause 1

Track:

 Pixels = 0

 Confidence = 0

 32

 IF (LastDirection = 4) Then

 LastDirection = 0

 LSPeed = LStop

 RSpeed = RStop

 Pause 500

 EndIF

 GoSub CAMTrack

 IF (Confidence < 8) Then

 Low LEDArray

 LSpeed = LFMax

 RSpeed = RRMax

 IdleCount = IdleCount + 1

 IF IdleCount > 80 Then

 IdleCount = 0

 GoTo DriveAround

 EndIF

 IF (LastDirection = 2) OR (LastDirection = 4) Then

 IF (BackCount < 2) Then

 LSpeed = LRMax + 200

 RSpeed = RRMax - 200

 BackCount = BackCount + 1

 Else

 LSpeed = LFMax

 RSpeed = RFMax

 BackCount = 0

 LastDirection = 0

 EndIF

 Else

 IF (LastDirection = 1) Then

 LSpeed = LRMax

 RSpeed = RFMax

 Else

 IF (LastDirection = 3) Then

 LSpeed = LFmax

 RSpeed = RFmax

 33

 EndIF

 EndIF

 EndIF

 Else

 High LEDArray

 IF (Pixels > 20) AND (Pixels < 207) Then

 IF (MX < 35) Then

 LSpeed = LRMax

 RSpeed = RFMax

 LastDirection = 1

 IdleCount = 0

 Else

 IF (MX > 45) Then

 LSpeed = LFMax

 RSpeed = RRMax

 LastDirection = 3

 IdleCount = 0

 Else

 LSpeed = LFMax

 RSpeed = RFMax

 LastDirection = 2

 IdleCount = 0

 EndIF

 EndIF

 Else

 IF (Pixels > 208) Then

 LastDirection = 4

 IdleCount = 0

 GoTo Dispense

 EndIF

 EndIF

 EndIF

 IF (LastDirection = 2) Then

 While (Counter < 40)

 PulsOut LMotor,LSpeed

 34

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 Else

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 EndIF

 GoTo Track

CAMTrack:

 SerOut2 CMUcamTX,6,["TC",13]

 SerIn2 CMUcamRC,6,[WAIT("M"),STR Rawmode\8]

 MX = Rawmode(0)

 MY = Rawmode(1)

 Pixels = RawMode(6)

 Confidence = RawMode(7)

 'SerOut2 LCD,84,["X:",DEC MX," Y:",DEC MY]

 'SerOut LCD,2,[$FE,$C0]

 'SerOut2 LCD,84,["P:",DEC Pixels," C:",DEC Confidence]

 'Pause 500

 'SerOut2 LCD,84[$FE,$01]

 Pause 1

 Return

Dispense:

 Pattern = 0

 DoorCounter = 0

 SpinDelay = 0

 BinNumber = 1

 GoSub BlinkRedLED

 ADCIN 0, LeftIR

 ADCIN 1, RightIR

 35

 Pause 10

 IF (LeftIR > 60) OR (RightIR > 60) Then

 High RedLED

 SerOut LCD,2,[$FE,$01]

 Pause 1000

 SerOut2 LCD,84,["Need a socket?"]

 High LEDArray

 SerIn Rfin,4,10000,GoTrack,["MESSAGE"],Pattern

 Low LEDArray

 IF (Pattern < 6) OR (Pattern > 15) Then

 GoTo Dispense

 EndIF

 SerOut LCD,2,[$FE,$01]

 Pause 1000

 SerOut2 LCD,84,["Get Tool#:",DEC Pattern,"mm"]

 While (BinNumber <> (Pattern - 5))

 While (SpinDelay < 7)

 PulsOut Carousel,CarSpeed

 Pause RefreshPeriod

 SpinDelay = SpinDelay + 1

 Wend

 SpinDelay = 0

 BinNumber = BinNumber + 1

 IF BinNumber = 11 Then

 BinNumber = 1

 EndIF

 Wend

 SpinDelay = 0

 IF (Pattern > 10) Then

 While (SpinDelay < 2)

 PulsOut Carousel,CarSpeed

 Pause RefreshPeriod

 SpinDelay = SpinDelay + 1

 Wend

 EndIF

 36

 While (DoorCounter < 50)

 PulsOut Door,250

 Pause RefreshPeriod

 DoorCounter = DoorCounter + 1

 Wend

 Pause 2000

 DoorCounter = 0

 While (DoorCounter < 50)

 PulsOut Door,1250

 Pause RefreshPeriod

 DoorCounter = DoorCounter + 1

 Wend

 SerOut LCD,2,[$FE,$01]

 Pause 1000

 SerOut2 LCD,84,["Return socket and"]

 SerOut LCD,2,[$FE,$C0]

 SerOut2 LCD,84,["press red button."]

 WaitforReturn:

 IF (RedSwitch <> 1) Then

 GoSub BlinkRedLED

 GoTo WaitForReturn

 EndIF

 EndIF

GoTrack:

 SerOut LCD,2,[$FE,$01]

 Low RedLED

 GoTo Track

DriveAround:

 GoSub BlinkRedLED

 GoSub BlinkLEDArray

 SerOut LCD,2,[$FE,$01]

 Pause 1000

 SerOut2 LCD,84,["Anybody here"]

 37

 SerOut LCD,2,[$FE,$C0]

 SerOut2 LCD,84,["needs sockets?"]

 ADCIN 0,RightIR

 ADCIN 1,LEFTIR

 ADCIN 2,Bumper

 LSpeed = LStop

 RSpeed = RStop

 Pause RefreshPeriod

 IdleCount = 0

CheckSensors:

 Counter = 0

 IF (RightIR < 70) AND (LeftIR < 70) AND (Bumper < 50) Then

 LSpeed = LFmax

 RSpeed = RFMax

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Else

 IF (RightIR < 70) AND (LeftIR > 70) AND (Bumper < 50) Then

 LSpeed = LFMax

 While (Counter < 25)

 RSpeed = RSpeed + 4

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 Else

 IF (RightIR > 70) AND (LeftIR < 70) AND (Bumper < 50) Then

 RSpeed = RFMax

 While (Counter < 25)

 LSpeed = LSpeed - 4

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 38

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 Else

 IF (RightIR > 70) AND (LeftIR > 70) AND (Bumper < 50) Then

 While (LSpeed > LRMax) AND (RSpeed < RRMax)

 LSpeed = LSpeed - 4

 RSpeed = RSpeed + 4

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Wend

 While (Counter < 50)

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 LSpeed = LRmax

 RSpeed = RFmax

 While (Counter < 15)

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 Else

 IF (Bumper > 50) Then

 LSpeed = LStop

 RSpeed = RStop

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 39

 Pause RefreshPeriod

 LSpeed = LRMax

 RSpeed = RRMax

 While (Counter < 70)

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 LSpeed = LRmax

 RSpeed = RFmax

 While (Counter < 30)

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 Counter = Counter + 1

 Wend

 Counter = 0

 EndIF

 EndIF

 EndIF

 EndIF

 EndIF

 PulsOut LMotor,LSpeed

 PulsOut RMotor,RSpeed

 Pause RefreshPeriod

 ADCIN 0,RightIR

 ADCIN 1,LeftIR

 ADCIN 2,Bumper

 IdleCount = IdleCount + 1

 IF (IdleCount > 200) Then

 IdleCount = 0

 Nothing = 0

 GoTo Track

 40

 EndIF

 GoTo CheckSensors

 End

 Return

BlinkCMU:

 SerOut2 CMUcamTX,6,["L1 1",13]

 Pause 250

 SerOut2 CMUcamTX,6,["L1 0",13]

 Pause 250

 Return

BlinkLEDArray:

 High LEDArray

 Pause 200

 Low LEDArray

 Pause 200

 Return

BlinkRedLED:

 High RedLED

 Pause 200

 Low RedLED

 Pause 200

 Return

 End

 41

