Ping—Pong Player

University of Florida
EEL 5666
Intelligent Machine Design Lab

Student Name: Sanjay Solanki
Date: 9" December 2002
Instructor: Dr.A.A.Arroyo

Table Of Contents

. Abstract

. Introduction

. Microprocessor

. Power Supply

. Body

. Mechanical Design and Actuation
. Sensors

. Conclusion

9. Acknowledgements
10. Sources

11. Appendix A

CONO O D WN B

Abstract

Ping Pong Player is amobile robot to help you
practice Ping Pong. It shoots balls on the other end of
the net asit moves on thetable. Thereisa space
provided on the robot, if the player aims the ball right
Into the space the robot will use the same ball again
and a Buzzer will sound.

| ntroduction

The Ping Pong player has atotal of 5 actuators. 2
actuators for the mobile platform and 3 for the arm to
pick and shoot the ball. It uses the Atmaega323
microprocessor and has IR sensors, Phototransistors,
Limit switch and Flex sensor

Microprocessor

The microcontroller used is Atmega323 on the

MegaAV R devel opment board from progr

Fesources.

essive

I s

e
i ..__H.r.
e U

L e,

Features

* High-parformance, Low-power AVAT a-bll Microcantrollar
* Acvanced RISC Archllecture
- 130 Powerlul Instructions — Kost Single-clock Tycle Executlon
- 32 ¥ 8 General Purpose Working Reglsters
- Fully Slatle Operatlon
- Upto 2 MIPS Throug hpul at 8 MHz
- QOn-chip 2-cyck Multiplier
* Non-volall ke Program and Data Memotes
- 22K Byles of InSystam Seli-program mabile Flash
Endurancs: 1,000 WHle/Erase Cycles
- QOpllenal Boot Code Sectlonwiih Independent Lock Blls
In-system P rogrammirg by On-<hlp Bool Program
- 1K Byte EEFROM
Endurance: 100,000 WHleEraze Cycles
— 2K Byles Interral SRAM
- Prgramming Lock for Soflware Securlty
JTAG (EEE S, 11490 Compllant) Interace
— Extenslve Cin-chip Debug Suppor
- Prgramming of Flash, EEPRCM, Fuses, and Lock Blts through the JTAG InleHacs
- Boundary-5can Capablitles According to the JTAG Standard
* Patlpheral Fealuras
— Two o-bl TimerCounters with Separals P rescaler and Compare Made
— one 16-bit TimerCounter with Separate Prescaler, Compars Mode, and Caplure
Mode
- Raal Time Counter with Separate Osclllator
- Four PWM Channgls
— 8<channel, 10-bit A0
- Eyle-oHented Two-wire Serlal Inlerface
- Prtammable Serlal USART
- MasterSiave SP1SaHal Inleacs
- Prxgrammable Walchdog Timer with Separale On-chip Oscll lator
- QOn-chip Analcg Com parator
+ Spaclal Microcontrol kbr Features
- Power-on Reset and Programmable Brawn-oul Cetectlon
= Intetnal Callbrated RE Csclilator
- External and Internal Inlerrupt Soumces
- Shi Sleep Modes: ldle, ADC Molse Reduction, Power-save, Power-down, Standby
ardl Extended Standiy
|3 and Packages
- 22 Programmable 15 Lines
- 40-pin POIP and 44-lead TQFP
* Operaling vollages
- BT -5.5V(ATmega2ZIL)
— 4.0 - 5.5V (ATmega3z3)
* Speed Grades
= 0-4 MHzZ [ATmega2zal)
— 0- 8 MHz [ATrmega223)

Power Supply

A pack of 8 batteries of Nickel cadmium each of 1.2
volts is used to power the processor. The power
supplied to the servosis used from the same batteries
but only 5 of the batteries are used. The power to the
sensors is supplied from the board.

Body

The bottom of the platform is made funnel shaped
with a pipe at the centre thus using gravity feed
system for positioning the ball for the arm to pick up.
The Fig 1 and 2 snhows the bottom funnel and the

pipe.

Therest of the body consist of providing a space of
8" by 8" and on the top is mounted the electronics.
The body is supported by aluminum frame, which
stand on two tires driven by the servos and one small
free whedl a the front

Mechanical Design and Actuation

Arm Design

The Fig.1 shows the arm for picking and throwing
the ball. The working cycle of picking and throwing
the ball is as follows. The hammer rotates about the
pivot 2 due to the pulley action about the pivot 3, the
rotation of the pivot is against the spring force. Then
the whole of the arm rotates along the Pivot 1 to lift
the ball from the pipe. After lifting the ball up the

servo on the pulley rewinds. Next the hammer action
takes place asthe lock on it is removed and the ball
shoots on the other side of the table.

Sensors

The robot is equipped with four sensors:

1. IR Sensor for avoiding the robot from falling it off
the table as it moves on the table.

2. A limit switch for limiting the hammer rotation

3. Phototrang stor to detect the ball before the arm
will actuate to throw the ball

4. A flex sensor, which sensesif the ball is hit back
on the robot and turns the buzzer ON.

All the above sensors are run my by the Atmega 323
microcontroller.

IR Sensors

The Near Infrared Proximity sensors are senditive in
the range just below the visible light, often around
880 nm wavelengths. The IR sensors consist of two
GP2D12 sharp sensors, one on each side of the robot
to detect the end of the table.

The Fig. 1 givesthe graph of the decimal value of the
corresponding Analog Output Voltage Vs Distance to
Reflective object. It can be seen from the graph that
for adistance of about 10 to 12 inchesthe Analog
Output Voltage isaround 1 Volt (decimal value 51)
whereas for a distance above 36 CM S the output

voltage islessthen 0.4 volts (decimal value 15). This
difference in the output voltage is used to detect the
end of the table. When the Robot reaches one end of
the table the direction of the motorsis reversed.

Distance in INCHES |Decimal Values Binary Output
4 119 1110111
5 99 1100011
6 85 1010101
7 73 1001001
8 63 111111
9 56 111000
10 51 110011
36 15 1111
48 1 1

Analog values Vs Distance

140
120

100 %
80

—e— Decimal Values
60
40

0 20 40 60

Distance (Inches)

Analog values

Limit Switch

VCC

Thefig. Below shows the
ckt. for the limit switch. A
resistance of 100k is added
In series. As shown the
signal is normally high. Only
after the limit switchis
triggered the signal reaches
Low.

Phototransistors

The QRB1133 consists of an Infrared emitting
diode and an NPN silicon Phototransi stor
mounted side by side. The Phototransistor
responds to radiation from the emitting diode
only when areflective object passes within its
field of view. | am using this sensor to determine
whether the ping-pong ball isin right position for
the armto lift.

The circuit below is used from Markl!l robot kit
for the phototransistor

VDD

R7 R8
56 22K

us

QRB1133 C10
2L e S

v
VSS

Flex Sensor

Jameco Part number 150551

Flex Sensor

21 | [| [FHEAP-L O et 13 1 AR

e R) ¥ i
S BREEERRESERER ST RS EET L B

]

| 412" I’
= mrrrrrrrrrrr) |1f4"

Nominal Resistance
Flex 0 Degrees: 10 K

Flex 90 Degrees
30-40 K

Proportional increase in resistance as sensor is bent or flexed. Maximum resistance 30K - 40K ohms.

The resistance of the sensor increases asit is bend on
one side. The resistance varies from 10k to 40k.

The Fig. Below shows the ckt. For the flex sensor. A
resistance of 10k is used in series with the sensor.

It can be seen that the analog value changes from 255
to 130 as the sensor is bent from O to 90 degrees.

|| Analog value Vs Angle of Bend
300
;mk 250 ooy
_ 200 —
L1 ! % 150 ¢ Analog value
c *
< 100
E?
gﬂex 50
0 T
1 10 100
L Angle
ol

Conclusion

The Ping-pong player works as expected. It shoots
the ball on the other side of the table randomly asit is
moving on the table. | enjoy playing with it. However
the overal design is not very sturdy, thinking of it as
the first prototype the next improvement would be to
make it sturdier. Future improvements could be
adding a vision sensor so that it can actually locate
the ball.

Acknowledgements

My sincere thanksto Dr. A.A.Arroyo, Uridl
Rodriguez and Jason Plew for their guidance
throughout the project work.

My specia thanksto Anirban Duttafor hishelp in
designing the Mechanical System and Amit

jayakaran for his help in the code for generating the
extra PWM's.

Sources

- Progressive resources LLC : AVRmega DEV
board

- Jameco : Flex sensor

- Marklll : IR sensors, Phototransistors, Servos

- Radioshack : Buzzer, Battery, Resistors,
capacitors

Appendix A
Code:
PingPong.c:

[* Program for Ping Pong Player */
[* Created by sanjay solanki */

[* October 6, 2002 */

[* Revised December 05, 2003 */

#include <io.h>
#include <interrupt.h>
#include <math.h>
#include <sig-avr.h>

#define SERVO_ARMBALLPICKUP 172
#define SERVO_ARMBOTTOM 110
#define SERVO_ARMTOP 0

#define SERVO_PULLEYWIND 150
#define SERVO_PULLEYUNWIND 95
#define SERVO_PULLEY STOP 102
#define SERVO_PULLEYLOCK 95
#define SERVO_PULLEYUNLOCK 180

typedef unsigned short ulo;
typedef volatile unsigned char u08;

#include "tiremotor.h"

u08 pulley, arm, pulleylock;

u08 temp_pulley,templ pulley;
u08 m=48,n=98;

void delay(ul6 dday time) {
do{
u08 i=0;
do{
asm volatile(" nop\n\t"
"nop\nit"
"nop\n\t"
"nop\nit”
),
} while(--1);
} while(--delay_time);
}

u08 ADC _getreading(u08 channel)

{
u08 temp_valueH;

outp((1<<REFS0)|(1<<REFS1)|(1<<ADLAR),
ADMUX); [/luse4.95V asreference voltage

ADMUX=ADMUX & OxFS§;
ADMUX=ADMUX | channd;

If (channel==4)

{
outp(4+192, ADMUX);

shi(ADMUX,ADLAR); /* result is|eft
adjusted */
}

If (channel==3)

{
outp(3+192,ADMUX);

shi(ADMUX,ADLAR); /* result is left
adjusted */
}
shi(ADCSR, ADSC):

loop_until_bit_is set(ADCSR, ADIF);
//walit till conversion is complete

temp_valueH = inp(ADCH);
shi(ADCSR, ADIPF);

ADMUX=0;

return temp_valueH,;

void flex(void)
{
IF(ADC_getreading(4)<245)
{

MOTOR_speed(SERVO_STOP,SERVO_STOP)

temp_pulley = pulley;
pulley = SERVO PULLEY STOP;
chi(PORTB,7);
delay(Ox2FF);
sbi(PORTB,7);
delay(Ox2FF);
chi(PORTB,7);
delay(Ox4FF);
sbi(PORTB,7);
delay(Ox2FF);
chi(PORTB,7);
delay(Ox2FF);
sbi(PORTB,7);

pulley = temp_pulley;
}

}

void obsta(void)
{

If(ADC_getreading(1)<23)
{

MOTOR_speed(SERVO_STOP,SERVO_STOP)

delay(0x2);

m=48; //ILEFT MOTOR
FORWARD SPEED

n=98; //RIGHT MOTOR
FORWARD SPEED

}

If(ADC_getreading(0)<23)
{

MOTOR_speed(SERVO_STOP,SERVO_STOP)

delay(0x2);
m = 84;
n=35;

}

MOTOR_speed(m,n);

void obstadelay(ul6 delay time) {

}

do{

u08 i=0;
do{
obsta();
flex();

} while(—i):

} while(--delay_time);

SIGNAL (SIG_OUTPUT_COMPAREQ)

{

cli();
PORTC=PORTC | 7;

outp(O,TCNTO); //start value of timer variable
outp(3,TCCRO); //prescale 64
while(TCNTO0<=45)

1

outp(O,TCNTO); //start value of timer variable

while (TCNTO0<=180)

{
If (TCNTO>pulley)
PORTC=PORTC & OxFE;

If (TCNTO>arm)
PORTC=PORTC & OxFD;

If (TCNTO>pulleylock)
PORTC=PORTC & OxFB;

}
PORTC=PORTC & OxF8;

outp(5,TCCRO); //prescale 1024
outp(0, TCNTO);//Reinitializr value of timer O

outp((1<<OCIEQ), TIMSK); // Enable interrupt
of timer O
sel();

}

u08 throw(void)
{

while(bit_is_set(PINA,2))

{
obstadelay(0x1);

pulley = SERVO_PULLEYWIND:

pulleylock = SERVO_PULLEYLOCK;
pulley = SERVO PULLEY STOP:;

arm = SERVO ARMBALLPICKUP,
obstadelay(OxFA);

while(ADC_getreading(3) > 250)

{
obstadelay(0x1);

}

am=SERVO _ARMBOTTOM,;
obstadelay(0x3);

pulley = SERVO_PULLEY STOP,

arm = SERVO ARMTORP,
obstadel ay(0x3);

pulley = SERVO_PULLEYUNWIND;
obstadel ay(Ox8F);
pulley = SERVO PULLEYSTOP;

pulleylock = SERVO PULLEYUNLOCK;

obstadel ay (0OxF);
return (1);
}
void ADC _init(void)
{
DDRA=0;

outp((1<<ADEN) | (1<<ADPS2) | (ADPS1),
ADCSR); //Initialize to use 8bit resolution for all
channels

}

Int main(void)

{

outp(OxFF,DDRC);
outp(0x00,DDRA);
outp(OxFF,DDRB);
si(PORTB,7);
PORTC=7,

pulley = 102;

pulleylock = SERVO PULLEYUNLOCK;
Motor_init();

ADC init();

sel(); //Set global interrupt enable

arm = SERVO ARMTORP,
delay(OxFFF);

ul6 cnt;
for(; ;)

throw();

tiremotor.h

[* Program for running a hacked servo motor */
[* Created by sanjay solanki */
[* October 6, 2002 */

#include <io0.h>
#include <math.h>

#define SERVO_STOP 68
#define SERVO _RIGHT 50
#define SERVO _LEFT 100
#define FULL_RIGHT 100
#define FULL_LEFT -100
#define LEFT_MOTOR O
#defineRIGHT _MOTOR 1
#defineK 10

void Motor_init(void)

{
OCRIAL = SERVO_STOP,

OCRI1BL = SERVO _STOP;

TCCR1A = (1<<COM1Al) | (1 << COM1B1]) |
(1 << PWM10) | (1 << PWM11);

TCCRI1B = (1 << CS11) | (1 << CS10);

sbi(DDRD, PD4);

shi(DDRD, PD5);

[/Init timer O

outp((1<<OCIEQ), TIMSK); // Enable interrupt
of timer O

outp(0,TCNTO);//Initial value of timer O

outp(5,TCCRO);//Prescale of 1024

outp(OxBC,0OCRO0);//Decimal value 94 - equal to
16.04ms - 94* 1024/6M

sbi(DDRC,0);

sbi(DDRC,1);

shi(DDRC,2);
}

void SERVO_speed(int mot_num, int speed)
{

If(mot_num == 0)
OCRI1BL = speed,;

elseif(mot_num==1)
OCRI1AL = speed;
return;

}

void MOTOR _speed(int leftspeed, int rightspeed)

{
SERVO_ speed(LEFT_MOTOR, leftspeed);
SERVO_ speed(RIGHT _MOTOR, rightspeed);

