

Ping–Pong Player

University of Florida
EEL 5666

Intelligent Machine Design Lab

Student Name: Sanjay Solanki
Date: 9th December 2002

Instructor: Dr.A.A.Arroyo

Table Of Contents

1. Abstract
2. Introduction
3. Microprocessor
4. Power Supply
5. Body
6. Mechanical Design and Actuation
7. Sensors
8. Conclusion
9. Acknowledgements

 10. Sources
 11. Appendix A

Abstract

Ping Pong Player is a mobile robot to help you
practice Ping Pong. It shoots balls on the other end of
the net as it moves on the table. There is a space
provided on the robot, if the player aims the ball right
into the space the robot will use the same ball again
and a Buzzer will sound.

Introduction

The Ping Pong player has a total of 5 actuators. 2
actuators for the mobile platform and 3 for the arm to
pick and shoot the ball. It uses the Atmaega323
microprocessor and has IR sensors, Phototransistors,
Limit switch and Flex sensor

Microprocessor
The microcontroller used is Atmega323 on the
MegaAVR development board from progressive
resources.

Power Supply

A pack of 8 batteries of Nickel cadmium each of 1.2
volts is used to power the processor. The power
supplied to the servos is used from the same batteries
but only 5 of the batteries are used. The power to the
sensors is supplied from the board.

Body

The bottom of the platform is made funnel shaped
with a pipe at the centre thus using gravity feed
system for positioning the ball for the arm to pick up.
The Fig 1 and 2 shows the bottom funnel and the
pipe.

The rest of the body consist of providing a space of
8” by 8” and on the top is mounted the electronics.
The body is supported by aluminum frame, which
stand on two tires driven by the servos and one small
free wheel at the front

Mechanical Design and Actuation

Arm Design

The Fig.1 shows the arm for picking and throwing
the ball. The working cycle of picking and throwing
the ball is as follows: The hammer rotates about the
pivot 2 due to the pulley action about the pivot 3, the
rotation of the pivot is against the spring force. Then
the whole of the arm rotates along the Pivot 1 to lift
the ball from the pipe. After lifting the ball up the

Pivot 1

Pivot 2

Pivot 3

servo on the pulley rewinds. Next the hammer action
takes place as the lock on it is removed and the ball
shoots on the other side of the table.

Sensors

The robot is equipped with four sensors:
1. IR Sensor for avoiding the robot from falling it off

the table as it moves on the table.
2. A limit switch for limiting the hammer rotation
3. Phototransistor to detect the ball before the arm

will actuate to throw the ball
4. A flex sensor, which senses if the ball is hit back

on the robot and turns the buzzer ON.

All the above sensors are run my by the Atmega 323
microcontroller.

IR Sensors

The Near Infrared Proximity sensors are sensitive in
the range just below the visible light, often around
880 nm wavelengths. The IR sensors consist of two
GP2D12 sharp sensors, one on each side of the robot
to detect the end of the table.

The Fig. 1 gives the graph of the decimal value of the
corresponding Analog Output Voltage Vs Distance to
Reflective object. It can be seen from the graph that
for a distance of about 10 to 12 inches the Analog
Output Voltage is around 1 Volt (decimal value 51)
whereas for a distance above 36 CMS the output

voltage is less then 0.4 volts (decimal value 15). This
difference in the output voltage is used to detect the
end of the table. When the Robot reaches one end of
the table the direction of the motors is reversed.

Distance in INCHES Decimal Values Binary Output

4 119 1110111

5 99 1100011

6 85 1010101

7 73 1001001

8 63 111111

9 56 111000

10 51 110011

36 15 1111

48 1 1

Analog values Vs Distance

0

20

40

60

80

100

120

140

0 20 40 60

Distance (Inches)

A
n

al
o

g
 v

al
u

es

Decimal Values

Limit Switch

 The fig. Below shows the
 ckt. for the limit switch. A
 resistance of 100k is added
 in series. As shown the
 signal is normally high. Only
 after the limit switch is
 triggered the signal reaches
 Low.

Phototransistors

The QRB1133 consists of an Infrared emitting
diode and an NPN silicon Phototransistor
mounted side by side. The Phototransistor
responds to radiation from the emitting diode
only when a reflective object passes within its
field of view. I am using this sensor to determine
whether the ping-pong ball is in right position for
the arm to lift.

The circuit below is used from MarkIII robot kit
for the phototransistor

 Flex Sensor

The resistance of the sensor increases as it is bend on
one side. The resistance varies from 10k to 40k.

The Fig. Below shows the ckt. For the flex sensor. A
resistance of 10k is used in series with the sensor.
It can be seen that the analog value changes from 255
to 130 as the sensor is bent from 0 to 90 degrees.

Analog value Vs Angle of Bend

0

50

100

150

200

250

300

1 10 100

Angle

A
na

lo
g

Analog value

Conclusion

The Ping-pong player works as expected. It shoots
the ball on the other side of the table randomly as it is
moving on the table. I enjoy playing with it. However
the overall design is not very sturdy, thinking of it as
the first prototype the next improvement would be to
make it sturdier. Future improvements could be
adding a vision sensor so that it can actually locate
the ball.

Acknowledgements

My sincere thanks to Dr. A.A.Arroyo, Uriel
Rodriguez and Jason Plew for their guidance
throughout the project work.
My special thanks to Anirban Dutta for his help in
designing the Mechanical System and Amit
jayakaran for his help in the code for generating the
extra PWM’s.

Sources

• Progressive resources LLC : AVRmega DEV
board

• Jameco : Flex sensor
• MarkIII : IR sensors, Phototransistors, Servos
• Radioshack : Buzzer, Battery, Resistors,

capacitors

Appendix A

Code:

PingPong.c:

/* Program for Ping Pong Player */
/* Created by sanjay solanki */
/* October 6, 2002 */
/* Revised December 05, 2003 */

#include <io.h>
#include <interrupt.h>
#include <math.h>
#include <sig-avr.h>

#define SERVO_ARMBALLPICKUP 172
#define SERVO_ARMBOTTOM 110
#define SERVO_ARMTOP 0
#define SERVO_PULLEYWIND 150
#define SERVO_PULLEYUNWIND 95
#define SERVO_PULLEYSTOP 102
#define SERVO_PULLEYLOCK 95
#define SERVO_PULLEYUNLOCK 180

typedef unsigned short u16;
typedef volatile unsigned char u08;

#include "tiremotor.h"

u08 pulley, arm, pulleylock;
u08 temp_pulley,temp1_pulley;
u08 m=48,n=98;

void delay(u16 delay_time) {
 do {
 u08 i=0;
 do {
 asm volatile("nop\n\t"
 "nop\n\t"
 "nop\n\t"
 "nop\n\t"
 ::);
 } while(--i);
 } while(--delay_time);
}

u08 ADC_getreading(u08 channel)
 {
 u08 temp_valueH;

 outp((1<<REFS0)|(1<<REFS1)|(1<<ADLAR),
ADMUX); //use 4.95V as reference voltage

 ADMUX=ADMUX & 0xF8;
 ADMUX=ADMUX | channel;

 if (channel==4)
 {
 outp(4+192,ADMUX);
 sbi(ADMUX,ADLAR); /* result is left
adjusted */
 }

 if (channel==3)
 {
 outp(3+192,ADMUX);
 sbi(ADMUX,ADLAR); /* result is left
adjusted */
 }

 sbi(ADCSR, ADSC);

 loop_until_bit_is_set(ADCSR, ADIF);
 //wait till conversion is complete

 temp_valueH = inp(ADCH);

 sbi(ADCSR, ADIF);

 ADMUX=0;

 return temp_valueH;

}

void flex(void)
{
 if(ADC_getreading(4)<245)
 {

 MOTOR_speed(SERVO_STOP,SERVO_STOP)
;

 temp_pulley = pulley;
 pulley = SERVO_PULLEYSTOP;
 cbi(PORTB,7);
 delay(0x2FF);
 sbi(PORTB,7);
 delay(0x2FF);
 cbi(PORTB,7);
 delay(0x4FF);
 sbi(PORTB,7);
 delay(0x2FF);
 cbi(PORTB,7);
 delay(0x2FF);
 sbi(PORTB,7);
 pulley = temp_pulley;
 }

}

void obsta(void)
{

 if(ADC_getreading(1)<23)
 {

 MOTOR_speed(SERVO_STOP,SERVO_STOP)
;
 delay(0x2);
 m = 48; //LEFT MOTOR
FORWARD SPEED
 n = 98; //RIGHT MOTOR
FORWARD SPEED

 }

 if(ADC_getreading(0)<23)
 {

 MOTOR_speed(SERVO_STOP,SERVO_STOP)
;
 delay(0x2);
 m = 84;
 n = 35;
 }

 MOTOR_speed(m,n);
}

void obstadelay(u16 delay_time) {
 do {
 u08 i=0;
 do {
 obsta();
 flex();
 } while(--i);
 } while(--delay_time);
}

SIGNAL (SIG_OUTPUT_COMPARE0)
{
 cli();

 PORTC=PORTC | 7;

 outp(0,TCNT0); //start value of timer variable
 outp(3,TCCR0); //prescale 64
 while(TCNT0<=45)
 {}

 outp(0,TCNT0); //start value of timer variable

 while (TCNT0<=180)
 {
 if (TCNT0>pulley)
 PORTC=PORTC & 0xFE;

 if (TCNT0>arm)
 PORTC=PORTC & 0xFD;

 if (TCNT0>pulleylock)
 PORTC=PORTC & 0xFB;

 }

 PORTC=PORTC & 0xF8;

 outp(5,TCCR0); //prescale 1024
 outp(0,TCNT0);//Reinitializr value of timer 0

 outp((1<<OCIE0),TIMSK); // Enable interrupt
of timer 0
 sei();

}

u08 throw(void)
{

 while(bit_is_set(PINA,2))
 {
 obstadelay(0x1);
 pulley = SERVO_PULLEYWIND;
 }

 pulleylock = SERVO_PULLEYLOCK;
 pulley = SERVO_PULLEYSTOP;

 arm = SERVO_ARMBALLPICKUP;
 obstadelay(0xFA);

 while(ADC_getreading(3) > 250)
 {
 obstadelay(0x1);
 }

 arm = SERVO_ARMBOTTOM;
 obstadelay(0x3);

 pulley = SERVO_PULLEYSTOP;

 arm = SERVO_ARMTOP;
 obstadelay(0x3);

 pulley = SERVO_PULLEYUNWIND;
 obstadelay(0x8F);

 pulley = SERVO_PULLEYSTOP;

 pulleylock = SERVO_PULLEYUNLOCK;
 obstadelay(0xF);

 return (1);

}

void ADC_init(void)
{
 DDRA=0;
 outp((1<<ADEN) | (1<<ADPS2) | (ADPS1),
ADCSR); //Initialize to use 8bit resolution for all
channels
}

int main(void)
{

 outp(0xFF,DDRC);
 outp(0x00,DDRA);
 outp(0xFF,DDRB);
 sbi(PORTB,7);
 PORTC=7;

 pulley = 102;
 pulleylock = SERVO_PULLEYUNLOCK;
 Motor_init();
 ADC_init();

 sei(); //Set global interrupt enable

 arm = SERVO_ARMTOP;
 delay(0xFFF);

 u16 cnt;
 for(; ;)

 {
 throw();
 }

}

tiremotor.h

/* Program for running a hacked servo motor */
/* Created by sanjay solanki */
/* October 6, 2002 */

#include <io.h>
#include <math.h>

#define SERVO_STOP 68
#define SERVO_RIGHT 50
#define SERVO_LEFT 100
#define FULL_RIGHT 100
#define FULL_LEFT -100
#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define K 10

void Motor_init(void)
{
 OCR1AL = SERVO_STOP;

 OCR1BL = SERVO_STOP;
 TCCR1A = (1 << COM1A1) | (1 << COM1B1) |
(1 << PWM10) | (1 << PWM11);
 TCCR1B = (1 << CS11) | (1 << CS10);
 sbi(DDRD, PD4);
 sbi(DDRD, PD5);

 //Init timer 0
 outp((1<<OCIE0),TIMSK); // Enable interrupt
of timer 0
 outp(0,TCNT0);//Initial value of timer 0
 outp(5,TCCR0);//Prescale of 1024
 outp(0xBC,OCR0);//Decimal value 94 - equal to
16.04ms - 94*1024/6M
 sbi(DDRC,0);
 sbi(DDRC,1);
 sbi(DDRC,2);
}

void SERVO_speed(int mot_num, int speed)
{
 if(mot_num == 0)
 OCR1BL = speed;

 else if(mot_num == 1)
 OCR1AL = speed;
 return;

}

void MOTOR_speed(int leftspeed, int rightspeed)
{
 SERVO_speed(LEFT_MOTOR, leftspeed);
 SERVO_speed(RIGHT_MOTOR, rightspeed);
}

