

Sensor Report

University of Florida
Department of Computer and Electrical Engineering

EEL 5666
Intelligent Machine Design Laboratory

Steven Theriault

TA: Uriel Rodriguez
Jason Plew

Instructor: A. A. Arroyo

December 10, 2002

 1

Table of Contents

Overview ……………………………………………………………… 2

Sonar Operation ……………………………………………………… 3

Results ……………………………………………………………… 4

Appendix A ……………………………………………………………… 5

 2

Overview

The autonomous robot that I am working on is a replica of a 13th century French

trebuchet. Its function is to first search for a castle. Once it finds a castle, it will position

itself at a distance that will ensure a hit by a projectile. If the trebuchet hits the castle, the

castle will notify the robot that the castle was hit, and the trebuchet will signal victory by

playing the French National Anthem.

To find the correct distance from the castle, the robot will use a sonar system. The

SRF04 ultrasonic range finder (figure1) from Devantech will be the sonar used. It was

purchased from the Mark III Robot Store for $26.00. The specifications say that it is able

to detect a 3 cm pole at 2 meters, with a range from 3 cm to 3 m.

Figure 1: SRF04 Ultrasonic Range Finder

 3

Sonar Operation

The sonar works by sending out a sound pulse at a frequency above the human hearing

range. When the sound hits an object, the pulse is sent back to the sonar where is can be

heard. The sonar measures the time it took for the sound to return to the sonar and can be

used to calculate the distance to the object.

The SRF04 has four connections to use the sonar. Two of them are power and ground.

There is an input line for initiating a sonar ping, and an output line to receive a pulse.

The width of the pulse is determined length of time it takes for the sound to return to the

sonar.

To initiate a sonar ping, bring the input line high for 10µs and then back low. This will

send a sonic burst out (see figure 2). After 100µs the output will go high and will remain

high for 100µs to 18ms. If an echo is not detected, the sonar will time out after 18ms and

the output line will go low. To initiate another pulse, the controller must wait 10ms.

Figure 2: SRF04 Timing Diagram

 4

Results

Software was written in assembly language (Appendix A) for the Atmel ATmega163 to

test the SRF04. The software prints to the screen the number of cycles it takes to pulse

on the output line of the sonar. These cycles have been calculated into seconds and are

shown in Figure 3. The graph has imposed over the sample points a linear regression

line.

Distance vs. Delay

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Distance (inches)

D
el

ay
 (µ

s)

Delay (µs)

Linear (Delay (µs))

Figure 3: Distance vs. Delay

As can be seen by the graph above, the sonar is very linear. The sonar has a resolution of

about 2.5 inches and a useful range of 3 inches to 7 feet. After 7 feet the output is not

steady, and an accurate reading cannot be obtained.

 5

Appendix A – Coding for sonar testing

;SonarTest.asm
;
;This program test the SRF04 sonar. It initiates a pulse and then prints the pulse width
;to the screen as a 2 byte hexadecimal number. The pulse width is determined by clock
;frequency/8
;
;Written by: Steven Theriault
;
;10/17/02

.include "C:\Program Files\Atmel\AVR Tools\AvrAssembler\Appnotes\m163def.inc"

.def temp=r16
.def capturel=r1
.def captureh=r2
.def temp1=r17
.def temp2=r18
.def temp3=r19

.org 0
 jmp main

.org $24
main:
 ldi temp,high(ramend); Stack Pointer Setup
 out SPH,temp
 ldi temp,low(ramend)
 out SPL,temp

;set data direction
 ldi temp,$01
 out DDRB,temp
 ldi temp,0b10110000 ;pins7,5,4 as outputs
 out DDRD,temp

;init UART
 ldi temp,0 ;setup UART baud rate 9600
 out UBRRHI,temp
 ldi temp,38
 out UBRR,temp

 6

 sbi UCSRB,TXEN ;enable UART transmit

;init T1
 ldi temp,0b10000010 ;prescaler clk/8
 out TCCR1B,temp ;enable input noise filter
 ;falling edge input capture

mainloop:
 sbi PORTB,0 ;initiate sonar ping

 ldi temp,20 ;wait 10us
wait10us:
 dec temp
 brpl wait10us

 ldi temp,0b00100100 ;clear overflow flag 1
 out TIFR,temp ;clear IC flag

 in capturel,TCNT1L ;store timer1 value
 in captureh,TCNT1H

 cbi PORTB,0 ;start sonar ping

chk_ic_flg:
 in temp,TIFR
 sbrs temp,ICF1 ;wait for IC flag
 rjmp chk_ic_flg

 in temp,ICR1l ;load capture registers
 in temp1,ICR1h

 cp temp,capturel ;test original time with new capture time
 cpc temp1,captureh

 brsh captSub ;if new>original branch

;$FFFF - original time + new time
 ldi temp2,$ff ;use temp3:temp2 for accumulator
 ldi temp3,$ff

 sub temp2,capturel ;$FFFF - original time
 sbc temp3,captureh

 7

 add temp2,temp ; + new time
 adc temp3,temp1

 mov temp,temp2 ;move acculmulator back to temp,temp1 to
print via UART
 mov temp1,temp3

 jmp printResults

captSub:
 sub temp,capturel ;subtract 16bit time
 sbc temp1,captureh

printResults:
 push temp1 ;push capture time for UART
 call sendHEX

 push temp
 call sendHEX
 call sendEOL

 ldi temp,$4F ;wait 10ms
wait10ms:
 ldi temp1,$FF
wait10msa:
 dec temp1
 brne wait10msa
 dec temp
 brne wait10ms

 jmp mainloop

;Method to send hex number to UART
;gets number from stack
;stack is emptied after routine call
sendHEX:
;UART TX most significant nibble
 pop temp2 ;save return addr from stack
 pop temp3
 pop temp ; pop off stack to temp reg
 push temp ;push temp back on stack

 swap temp ;make most sig nibble the least sig nibble

 8

 andi temp,$0F ;zero upper nibble

 cpi temp,$a ;test for correcting a-f
 brmi addThirty1 ;between 0 and 9

 ldi temp1,7
 add temp,temp1 ;add 7 to temp

addThirty1:
 ldi temp1,$30
 add temp,temp1 ;add $30 to temp

waitTX1:
 sbis UCSRA,UDRE ;wait until tx reg is empty
 jmp waitTX1

 out UDR,temp ;send data

;UART TX least significant nibble
 pop temp ; pop off stack to temp

 andi temp,$0F ;zero most sig nibble

 cpi temp,$a ;test for correcting a-f
 brmi addThirty ;between 0 and 9

 ldi temp1,7
 add temp,temp1 ;add 7 to temp

addThirty:
 ldi temp1,$30
 add temp,temp1 ;add $30 to temp

waitTX:
 sbis UCSRA,UDRE ;wait until tx reg is empty
 jmp waitTX

 out UDR,temp ;send data

 push temp3 ;push return addr
 push temp2

 ret ;return from subroutine

 9

;Method to send EOL to UART
;
;
sendEOL:
 ldi temp,$a ;send Line Feed

waitTX2:
 sbis UCSRA,UDRE ;wait until tx reg is empty
 jmp waitTX2

 out UDR,temp ;send data

 ldi temp,$d ;send Carriage Return

waitTX3:
 sbis UCSRA,UDRE ;wait until tx reg is empty
 jmp waitTX3

 out UDR,temp ;send data

 ret ;return from subroutine

