

Trebuchet

University of Florida
Department of Computer and Electrical Engineering

EEL 5666
Intelligent Machine Design Laboratory

Steven Theriault

TA: Uriel Rodriguez
Jason Plew

Instructor: A. A. Arroyo

December 10, 2002

 2

Table of Contents

Abstract …………………………………………………………………… 3

Executive Summary …………………………………………………………… 4

Introduction …………………………………………………………………… 5

Mobile Robot …………………………………………………………………… 6

Integrated System …………………………………………………… 6

Platform …………………………………………………………… 8

Actuation …………………………………………………………… 10

Sensors …………………………………………………………… 11

Stationary Castle …………………………………………………………… 16

 Platform …………………………………………………………… 16

 Electronics …………………………………………………………… 16

Behaviors …………………………………………………………………… 18

Experiment Layouts and Results …………………………………………… 19

Documentation …………………………………………………………… 21

Appendix A …………………………………………………………………… 22

 3

Abstract

Trebuchet is a model of a 13th century, French-built trebuchet. It searches for a castle and
attempts to throw projectiles at it.

 4

Executive Summary

Trebuchet is a simulation of a 13th century, French-built trebuchet. The trebuchet was an

advancement on the catapult. It utilizes a counterweight and a sling to throw projectiles

much farther and more accurately than its predecessor.

My robot trebuchet will have two wheels to move around and attempt to locate a castle.

It does this by using two infrared (IR) detectors to locate a beacon located on the top of

the castle.

Once the trebuchet has found the castle it will move forwards or backwards to the exact

distance the projectile will be thrown. It uses sonar to do this.

To avoid obstacles while doing its function, it uses IR and bump switches.

 5

Introduction

Trebuchet is an autonomous robot that replicates a 13th century trebuchet. Its job is to

locate a castle and throw projectiles at it. In this report the trebuchet’s platform,

electronics, and behaviors are discussed. The castle’s platform and electronics are also

discussed.

 6

Mobile Robot

The mobile robot is the trebuchet. It contains the electronics to move around, locate and

avoid, and launch the projectile.

Integrated System

Trebuchet is based around the Atmel ATmega163. The bump switches and IR devices

use the analog-to-digital converters, the sonar uses the input capture, the solenoid uses a

port, and the servos use the output compare.

ATmega163

Bump
Switches

44kHz IR
Emitter/Detector

56kHz IR
Detector

Sonar

Solenoid

Servos

IC ADC

OC

Figure 1: Block Diagram of the Trebuchet’s Electronics

 7

Development Board

A development board is used in the design to eliminate the need of creating a PCB for the

robot. The development board was purchased from Progressive Resources and is the

MegaAVR-Dev board.

Figure 2: Progressive Resources MegaAVR-Dev Development Board

This board runs the microcontroller at 8Mhz. It has RS232 communication implemented

on the board, so that was very beneficial in debugging. The LEDs seen on the right side

of figure 2, were used for user feedback.

 8

Platform

The trebuchet (Figure 3) stands about 9 ½ inches tall from the ground to the top of the A-

Frames. If the pendulum is released then the trebuchet stands 16 inches.

The Body that contains the electronics and holds up the pendulum is 5x7 inches. The A-

Frames are 6 inches tall and the pendulum is 9 ½ inches long.

Figure 3: Picture of the Trebuchet

The bucket shown in Figure 3 is the counterweight for the trebuchet. When the

pendulum is released, the counterweight pulls the sling, connected to the other end of the

pendulum, and throws the projectile.

 9

The sensor placement was well thought out. In the front, there are 2 IR detectors, 2 IR

emitter/detectors, and the sonar (Figure 4).

IR Detectors

IR Emitter/Detector

Sonar

Figure 4: Front of Trebuchet

In the rear of the trebuchet are the solenoid and the third IR emitter/detector (Figure 5).

Solenoid

IR Emitter/Detector

Figure 5: Rear of Trebuchet

 10

Actuation

The Trebuchet uses two GWS servos for movement. They are hacked to allow

continuous turning. The wheels where purchased from the Mark III robotics store, and fit

well on the axle of the GWS servo. A furniture mover is used to hold the backend up.

 11

Sensors

Bump Switches

The bump switches are used to avoid obstacles. They are triggered when the robot fails

to detect the object with the IR modules and runs into the obstacle. The bump switches

use a voltage divider network (Figure 6) to use the analog-to-digital converter on the

microcontroller. Three resister values are used 10k, 22k, and 47k ohms.

10k

10k

22k 47k

ADC

5V

SW1 SW2 SW3

Figure 6: Bump Switch Resister Network

With SW1 closed, 2.5V is present on the ADC line, 3.4V with SW2 closed, and 4.1V

with SW3 closed.

 12

Sharp GP2D12

IR emitter/detectors (Figure 7) were used to locate obstacles that the robot may run into.

Three Sharp GP2D12 modules were used, two on the front and one on the back. They are

modulated at 44kHz and have a viewing angle of about 15 degrees from center. They

give an analog signal back which is proportional to the distance to the object.

Figure 7: Sharp GP2D12

LITEON IR Detectors

Two LITEON IR detector modules are used to locate an IR beacon located on top of the

castle and line up with it. They are modulated at 56kHz so that they do not interfere with

the Sharp IR modules. They have been hacked to output an analog voltage rather than a

digital voltage. The hack was provided by Michael Hattermann in Spring of 2002’s

IMDL.

 13

The two IR modules are collimated with about 2 inches of black heat shrink tubing. This

allows the trebuchet to line up very straight with the castle. It does this by turning

towards the IR detector with the higher voltage which relates to where the IR beacon is

located.

Devantech SRF04 Sonar

To find the correct distance from the castle, the robot will use a sonar system. The

SRF04 ultrasonic range finder (Figure8) from Devantech will be the sonar used. The

specifications say that it is able to detect a 3 cm pole at 2 meters, with a range from 3 cm

to 3 m.

Figure 8: SRF04 Ultrasonic Range Finder

The sonar works by sending out a sound pulse at a frequency above the human hearing

range. When the sound hits an object, the pulse is sent back to the sonar where is can be

heard. The sonar measures the time it took for the sound to return to the sonar and can be

used to calculate the distance to the object.

 14

The SRF04 has four connections to use the sonar. Two of them are power and ground.

There is an input line for initiating a sonar ping, and an output line to receive a pulse.

The width of the pulse is determined length of time it takes for the sound to return to the

sonar.

To initiate a sonar ping, bring the input line high for 10µs and then back low. This will

send a sonic burst out (see Figure 9). After 100µs the output will go high and will remain

high for 100µs to 18ms. If an echo is not detected, the sonar will time out after 18ms and

the output line will go low. To initiate another pulse, the controller must wait 10ms.

Figure 9: SRF04 Timing Diagram

The sonar has a resolution of about 2.5 inches and a useful range of 3 inches to 7 feet.

After 7 feet the output is not steady, and an accurate reading cannot be obtained. Shown

below (Figure 10) is a graph of the distance vs. the delay of the pulse.

 15

Distance vs. Delay

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Distance (inches)

D
el

ay
 (µ

s)

Delay (µs)

Linear (Delay (µs))

Figure 10: Distance vs. Delay

Solenoid

A solenoid is used to release the pendulum thus releasing the projectile. The circuit for

controlling the solenoid is optoisolated to eliminate noise near the microcontroller and

other ICs. Below is the circuit used (Figure 11).

to MCU
1k

1k

solenoid

optoisolator

12V

0V

Figure 11: Circuit for Isolating the Solenoid

 16

Stationary Castle

Platform

The castle is 3 ½ inches tall and 7x7 inches long. An IR beacon is located in the center to

signal the trebuchet. The top of the castle is a bump switch to detect when a projectile

has hit the castle.

Figure 12: Sketch of the Castle

Electronics

The electronics on the castle is an IR beacon that is able to be turned on and off by

switches. The top plate of the castle is a large bump switch (actually four bump

switches), so when the top of the castle is hit, the beacon turns off.

 17

Reset SW

Bump SW1

Bump SW2

Bump SW3

Bump SW4

S

R

Q

Output

5V

5V

GND

Trigger

Output

Control

Thresh

Disch

V+

Ra

Rb

.1uF

.1uF

Output

Reset

Figure 13: Schematic for Castle Electronics

In Figure 13, you can see how a 555 timer and an SR latched are used in combination to

turn on and off the IR beacon. Ra and Rb are two leads from a potentiometer, so that it

works as a variable resister. This allows me to use an oscilloscope to get exactly 56kHz.

When the reset switch is pressed, the beacon is on, and when any of the bump switches

are pressed, the beacon turns off.

Up to 8 IR LEDs can be used in parallel with my design, but for the most accuracy only

one will be used.

 18

Behaviors

The main goal of the trebuchet it to hit a castle with a projectile, but a lot is involved in

doing so. Below is the software flow of the trebuchet (Figure 14).

Spin &
Look for
Castle

Wander

Reverse/Forward
to Distance

Release
Projectile

Claim Victory

Castle Found

Timeout

Castle
Found

Distance
Found

Castle
Hit

Cannot Reverse

Castle Missed Ram
Castle

Start

Figure 14: Software Flowchart

When the trebuchet starts, it waits for a user to press any of the bump switches on the

trebuchet. Once a bump switch is pressed it begins by spinning and searching for the

castle with the IR detectors. If it cannot find the castle and times out, it begins to wander.

Wandering is just moving along the floor with random turns while looking for a signal

from the castle.

 19

Once it gets a signal, it again spins and tries to line up with the castle. When it is lined up

with the castle, the trebuchet goes either forward or reverse to a correct distance to hit the

castle and launches the projectile. It then looks for the beacon, if the beacon is still

present, the trebuchet knows that it missed the castle and attempts to ram it. If the beacon

is no longer running, it retreats.

Experiment Layouts and Results

All of the code was written in Atmel AVR assembly language, and the final codes takes a

little more than 1kbyte of space.

Every sensor was tested as soon as it arrived at my house. I wrote assembly code for

each, and then wrote other programs to integrate several components together. This

made it very easy when it came to the end, because all of the parts were written and just

needed to be put into one file.

I experimented with different distances to throw the projectile and different thresholds for

certain values. It turns out that if I do not have enough weight in the counterweight

bucket, the solenoid will not release the pendulum reliably, and having too much weight

means that it will throw the projectile very far, but not very accurately.

 20

At first the trebuchet did a terrible job lining up with the castle. At times it would be up

to 90 degrees off. After much playing with the code, it turns out to be very accurate 90%

of the time.

The most common problem with the trebuchet is throwing the projectile too long or too

short. I expect that these difference are caused by the way I set up the pendulum and the

sling each time I fire the trebuchet.

One thing that I have learned is that change is bad. Two days before the trebuchet was

due, I decided to rebuild the castle, moving it from a bread board to a wooden castle and

a perforated board. It turns out that even thought I created the castle the exact same way

as it was on the bread board, it did not produce the same results. I spent a few nights not

getting sleep trying to get my robot working again. Change that late in the game is just

not good.

 21

Documentation

- The LITEON hack was provided by Michael Hattermann’s robot in the Spring of 2002.

- I would like to thank the T.A.s for their help in the lab.

- Thanks to Radio Shack, where the employees there now know my name.

Data Sheets

Devantech SRF04 sonar and Sharp GP2D12

http://www.junun.org/MarkIII/Store.jsp

LMC7805 and LMC555

 http://www.national.com

 22

Apendix A – Code for Trebuchet

;Trebuchet.asm
;code used to implement the behavior of Trebuchet
;
;Written by: Steven Theriault
;
;December 2002
;

.nolist
.include "C:\Program Files\Atmel\AVR Tools\AvrAssembler\Appnotes\m163def.inc"

;register definitions
.def capturel=r1
.def captureh=r2
.def bump=r3
.def leftIR=r4
.def rightIR=r5
.def rearIR=r6
.def IRleft=r7
.def IRright=r8
.def timeout=r9

.def temp=r16
.def temp1=r17
.def temp2=r18
.def temp3=r19
.def subret=r20
.def subarg0=r21
.def rwsl=r22
.def rwsh=r23
.def lwsl=r24
.def lwsh=r25

;equates
.equ lwfh=$06
.equ lwfl=$27
.equ rwfh=$02
.equ rwfl=$A3

.equ lwrh=$02
.equ lwrl=$A3
.equ rwrh=$06

 23

.equ rwrl=$27

.equ lwph=$04
.equ lwpl=$6f
.equ rwph=$04
.equ rwpl=$6f

;macros
.listmac
.macro outi @0,@1
 ldi temp,@1
 out @0,temp
 .endmacro

.list

;interrupt vectors
.org 0
 jmp main
.org $00c
 jmp T1OCA_ISR
.org $00e
 jmp T1OCB_ISR
.org $012
 jmp T0_OVR_ISR

;main routine
.org $24
main:
 outi SPH,high(ramend) ; Stack Pointer Setup
 outi SPL,low(ramend)

;set data direction
 outi ddrc,$ff
 outi ddrb,$05
 outi DDRD,0b10110000 ;pins7,5,4 as outputs
 cbi portb,2 ;clear portb pin 2

;init T1
 outi TCCR1B,0b10000010 ;prescaler clk/8

 24

 ;enable input noise filter
 ;falling edge input capture
 outi TIMSK,0b00011000 ;enable interrupt for T1OCA and T1OCB

;set Timer 0 prescaler to 1024
 outi TCCR0,5

;init ADC
 sbi admux,adlar ;left adjust result

 sbi adcsr,aden ;enable ADC

;wait for user to start by pressing any bump switch
waitbump:
 outi admux,$20
 sbi adcsr,adsc ;start A2D conversion
wait4bump:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp wait4bump
 in temp,adch ;move adc data to temp
 andi temp,$E0
 breq waitbump ;if zero then loop

 sei

spinInit:
;init values for wheels forward
 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwrh
 ldi lwsl,lwrl

;start wheel and enable interrupts
 outi TCCR1A,0b01010000 ;set to toggle pins T1OCA and T1OCB

;set T0 OVR interrupt
 outi TIMSK,0b00011001 ;set Timer 0 Overflow interrupt enable

 clr timeout

 25

 ;user feedback
 ldi temp,$1
 com temp
 out portc,temp

spin:

 call wait100ms

;get a2d for IRdetLeft
 outi admux,$24
 sbi adcsr,adsc ;start A2D conversion
waitADC4:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC4
 in IRleft,adch ;move adc data to bump

;get a2d for IRdetRight
 outi admux,$25
 sbi adcsr,adsc ;start A2D conversion
waitADC5:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC5
 in IRright,adch ;move adc data to bump

;if timeout goto wanderInit
 ldi temp,$F0
 cp timeout,temp
 brlo testIR

 outi TIMSK,0b00011000 ;disable T0_OVR
 jmp wanderInit

testIR:
;if IRright && IRleft < $70, jmp mainloop
 ldi temp,$70
 cp IRleft,temp
 brsh greaterThanSixty

 cp IRright,temp
 brlo spin

greaterThanSixty:

 26

;if IRleft == IRright, stop turning
 cp IRleft,IRright
 breq stop

;if IRright-6 < IRleft < IRright+6, stop turning
 ldi temp,$6
 sub IRright,temp ;IRright - 6
 cp IRright,IRleft
 brsh alterDirection

 add IRright,temp ;IRright-6+6+6=IRright+6
 add IRright,temp
 cp IRleft,IRright
 brsh alterDirection

;stop wheels and wait .5 sec and jump to toDistance
stop:
 ldi rwsh,rwph
 ldi rwsl,rwpl
 ldi lwsh,lwph
 ldi lwsl,lwpl
 call wait500ms ;wait 500ms
 outi TCCR1A,0b00000000 ;stop wheels
 jmp toDistance

;turn towards the higher IR reading
alterDirection:
 cp IRright,IRleft
 brsh turnRight

;turn left
 outi TCCR1A,0b01010000 ;start wheels
 ldi rwsh,rwfh+$100
 ldi rwsl,rwfl+$100
 ldi lwsh,lwrh+$100
 ldi lwsl,lwrl+$100
 jmp spin

;turn right
turnRight:
 outi TCCR1A,0b01010000 ;start wheels
 ldi rwsh,rwrh-$100
 ldi rwsl,rwrl-$100
 ldi lwsh,lwfh-$100
 ldi lwsl,lwfl-$100

 27

 jmp spin

toDistance:
 ;user feedback
 ldi temp,$3
 com temp
 out portc,temp

 outi TIMSK,0b00011000 ;disable T0_OVR
 sbi PORTB,0 ;initialize sonar ping

 ldi temp,20 ;wait 10us
wait10us:
 dec temp
 brpl wait10us

 ldi temp,0b00100100 ;clear overflow flag 1
 out TIFR,temp ;clear IC flag

 in capturel,TCNT1L ;store timer1 value
 in captureh,TCNT1H

 cbi PORTB,0 ;start sonar ping

;while sonar pinging, check for room behind robot
;get a2d for rearIR
 outi admux,$23
 sbi adcsr,adsc ;start A2D conversion
waitADC3:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC3
 in rearIR,adch ;move adc data to bump

;wait IC flag
chk_ic_flg:
 in temp,TIFR
 sbrs temp,ICF1 ;wait for IC flag
 rjmp chk_ic_flg

 28

 in temp,ICR1l ;load capture registers
 in temp1,ICR1h

 cp temp,capturel ;test original time with new capture time
 cpc temp1,captureh

 brsh captSub ;if new>original branch

;$FFFF - original time + new time
 ldi temp2,$ff ;use temp3:temp2 for accumulator
 ldi temp3,$ff

 sub temp2,capturel ;$FFFF - original time
 sbc temp3,captureh

 add temp2,temp ; + new time
 adc temp3,temp1

 mov capturel,temp2 ;move acculmulator back to
captureh/capturel
 mov captureh,temp3

 jmp wait10m

captSub:
 sub temp,capturel ;subtract 16bit time
 sbc temp1,captureh

 mov capturel,temp ;move acculmulator back to
captureh/capturel
 mov captureh,temp1

wait10m:
 ldi temp,$4F ;wait 10ms
wait10ms:
 ldi temp1,$FF
wait10msa:
 dec temp1
 brne wait10msa
 dec temp
 brne wait10ms

;test if captureh < $1D && >1B
 mov temp,captureh

 29

 cpi temp,$1C
 brlo reverse

 cpi temp,$1D
 brsh forward

;stop wheels and shoot
 ldi rwsh,rwph
 ldi rwsl,rwpl
 ldi lwsh,lwph
 ldi lwsl,lwpl

 call wait100ms

 outi TCCR1A,0b00000000 ;stop wheels

 sbi portb,2 ;set portb pin 2

;user feedback release
 ldi temp,$4
 com temp
 out portc,temp

wait1000ms:
 ldi temp,$10
wait1000msa:
 ldi temp1,$FF
wait1000msb:
 ldi temp2,$FF
wait1000msc:
 dec temp2
 brne wait1000msc
 dec temp1
 brne wait1000msb
 dec temp
 brne wait1000msa

 cbi portb,2 ;clear portb pin 2

 jmp detectInit

reverse:
 outi TCCR1A,0b01010000 ;start wheels
 ldi rwsh,rwrh
 ldi rwsl,rwrl

 30

 ldi lwsh,lwrh
 ldi lwsl,lwrl

;if no more room in rear goto wanderInit
 mov temp,rearIR
 cpi temp,$70
 brsh wanderInit

 jmp toDistance

forward:
 outi TCCR1A,0b01010000 ;start wheels
 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwfh
 ldi lwsl,lwfl
 jmp toDistance

wanderInit:
;go forward
 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwfh
 ldi lwsl,lwfl

 outi TCCR1A,0b01010000 ;set to toggle pins T1OCA and T1OCB

;user feedback
 ldi temp,$2
 com temp
 out portc,temp

wander:
;get a2d for bump
 outi admux,$20
 sbi adcsr,adsc ;start A2D conversion
waitADC0:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC0

 31

 in bump,adch ;move adc data to bump

;get a2d for left IR
 outi admux,$21
 sbi adcsr,adsc ;start A2D conversion
waitADC1:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC1
 in leftIR,adch ;move adc data to leftIR

;get a2d for right IR
 outi admux,$22
 sbi adcsr,adsc ;start A2D conversion
waitADC2:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC2
 in rightIR,adch ;move adc data to rightIR

;get a2d for IRdetLeft
 outi admux,$24
 sbi adcsr,adsc ;start A2D conversion
waitADC4a:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC4a
 in IRleft,adch ;move adc data to bump

;get a2d for IRdetRight
 outi admux,$25
 sbi adcsr,adsc ;start A2D conversion
waitADC5a:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC5a
 in IRright,adch ;move adc data to bump

;if castle found, goto spinInit
 ldi temp,$70
 cp IRleft,temp
 brsh jumpSpin

 cp IRright,temp
 brlo testbump

jumpSpin:
 jmp spinInit

 32

;test sensors to determine obstance avoidance
testbump:
;if $40 < bump > $60, then reverse and turn randomly
 mov temp,bump
 cpi temp,$40 ;is bump < $40?
 brlo testLeftAndRightIR
 cpi temp,$60 ;is bump > $60
 brsh testLeftAndRightIR

 call reverseAndRandomTurn
 jmp wander

testLeftAndRightIR:
;if LeftIR > $60 and RightIR > $60, then reverse and turn randomly
 mov temp,LeftIR
 cpi temp,$60 ;is LeftIR < $60
 brlo testRightIR
 mov temp,RightIR
 cpi temp,$60 ;is RightIR < $60
 brlo testRightIR

 call reverseAndRandomTurn
 jmp wander

testRightIR:
;if RightIR > $60, then turn left
 mov temp,RightIR
 cpi temp,$60 ;is RightIR < $60
 brlo testLeftIR

 call turnLeftMethod
 jmp wander

testLeftIR:
;if LeftIR > $60, then turn right
 mov temp,LeftIR
 cpi temp,$60 ;is LeftIR < $60
 brlo default

 call turnRightMethod
 jmp wander

default:
;no sensor readings, wait ~100ms
 call wait100ms

 33

 jmp wander

DetectInit:
;set T0 OVR interrupt
 outi TIMSK,0b00011001 ;set Timer 0 Overflow interrupt enable

 clr timeout

 ;user feedback
 ldi temp,$1
 com temp
 out portc,temp

Detect:
 call wait100ms

;if timeout goto ram
 ldi temp,$50
 cp timeout,temp
 brlo againDetect

 outi TIMSK,0b00011000 ;disable T0_OVR
 jmp ram

againDetect:
 ;get a2d for IRdetLeft
 outi admux,$24
 sbi adcsr,adsc ;start A2D conversion
waitADC4b:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC4b
 in IRleft,adch ;move adc data to bump

;get a2d for IRdetRight
 outi admux,$25

 34

 sbi adcsr,adsc ;start A2D conversion
waitADC5b:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC5b
 in IRright,adch ;move adc data to bump

;if IRright or IRleft > $58, retreat
 ldi temp,$58
 cp IRright,temp
 brlo retreat

 cp IRleft,temp
 brlo retreat

 jmp detect

retreat:
;init values for wheels reverse
 ldi rwsh,rwrh
 ldi rwsl,rwrl
 ldi lwsh,lwrh
 ldi lwsl,lwrl

;start wheel and enable interrupts
 outi TCCR1A,0b01010000 ;set to toggle pins T1OCA and T1OCB

retreata:
 call wait100ms

;get a2d for rearIR
 outi admux,$23
 sbi adcsr,adsc ;start A2D conversion
waitADC3a:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC3a
 in rearIR,adch ;move adc data to bump

 35

;if rearIR > 60, stop
 ldi temp,$60
 cp rearIR,temp
 brlo retreata

 jmp fullspeed

ram:
;init values for wheels reverse
 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwfh
 ldi lwsl,lwfl

;start wheel and enable interrupts
 outi TCCR1A,0b01010000 ;set to toggle pins T1OCA and T1OCB

rama:
 call wait100ms

;get a2d for left IR
 outi admux,$21
 sbi adcsr,adsc ;start A2D conversion
waitADC1a:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC1a
 in leftIR,adch ;move adc data to leftIR

;get a2d for right IR
 outi admux,$22
 sbi adcsr,adsc ;start A2D conversion

 36

waitADC2a:
 sbis adcsr,adif ;wait until A2D conversion complete
 jmp waitADC2a
 in rightIR,adch ;move adc data to rightIR

;if rightIR or leftIR > $60, goto fullspeed
 ldi temp,$60
 cp rightIR,temp
 brsh fullspeed

 cp leftIR,temp
 brlo rama

fullspeed:
 call wait100ms

 outi TCCR1A,0b00000000 ;set to toggle pins T1OCA and T1OCB

 jmp main

reverseAndRandomTurn:
 ldi rwsh,rwrh
 ldi rwsl,rwrl
 ldi lwsh,lwrh
 ldi lwsl,lwrl

 ldi temp,$20
wait2sa:
 ldi temp1,$FF
wait2sb:
 ldi temp2,$FF
wait2sc:
 dec temp2
 brne wait2sc
 dec temp1
 brne wait2sb

 37

 dec temp
 brne wait2sa

 in temp,TCNT1L
 andi temp,$01
 brne goRight
 call turnLeftMethod
 call turnLeftMethod
 ret
goRight:
 call turnRightMethod
 call turnRightMethod
 ret

turnLeftMethod:
 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwrh
 ldi lwsl,lwrl

 ldi temp,$19
wait1sa:
 ldi temp1,$FF
wait1sb:
 ldi temp2,$FF
wait1sc:
 dec temp2
 brne wait1sc
 dec temp1
 brne wait1sb
 dec temp
 brne wait1sa

 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwfh
 ldi lwsl,lwfl
 ret

turnRightMethod:

 38

 ldi rwsh,rwrh
 ldi rwsl,rwrl
 ldi lwsh,lwfh
 ldi lwsl,lwfl

 ldi temp,$19
wait1sd:
 ldi temp1,$FF
wait1se:
 ldi temp2,$FF
wait1sf:
 dec temp2
 brne wait1sf
 dec temp1
 brne wait1se
 dec temp
 brne wait1sd

 ldi rwsh,rwfh
 ldi rwsl,rwfl
 ldi lwsh,lwfh
 ldi lwsl,lwfl
 ret

;method
;wait 100ms
wait100ms:
 ldi temp,$03
wait100msa:
 ldi temp1,$FF
wait100msb:
 ldi temp2,$FF
wait100msc:
 dec temp2
 brne wait100msc
 dec temp1
 brne wait100msb
 dec temp
 brne wait100msa

 39

 ret

;method
;wait 500ms
wait500ms:
 ldi temp,$38
wait500msa:
 ldi temp1,$FF
wait500msb:
 ldi temp2,$FF
wait500msc:
 dec temp2
 brne wait500msc
 dec temp1
 brne wait500msb
 dec temp
 brne wait500msa

 ret

;Interrupt Service Routine to place a correct frequency on the port D pin5
;the period is %3A98 cycles at clk/8
;The duty cycle is determined by rwsh and rwsl
;high time is currentTime+rwsh:rwsl
;low time is currectTime-$3a98+rwsh:rwsl
T1OCA_ISR:
 push temp ;push temp to save contents
 in temp,SREG ;push SREG to save contents
 push temp
 push temp1
 push temp2

 in temp,PIND ;check value of toggle pin
 andi temp,0b00100000
 breq pd5low ;branch if port D pin 5 is low

 in temp,OCR1AL ;OCR1A = OCR1A + right wheel speed
 in temp1,OCR1AH
 add temp,rwsl
 adc temp1,rwsh
 out OCR1AH,temp1 ;must write high byte first
 out OCR1AL,temp
 jmp END_T1OCA_ISR

 40

pd5low: ;pin 5 is low
 ;OCR1A = OCR1A + 15000 - right
wheel speed
 in temp,OCR1AL
 in temp1,OCR1AH

 ldi temp2,$98
 add temp,temp2
 ldi temp2,$3A
 adc temp1,temp2

 sub temp,rwsl
 sbc temp1,rwsh

 out OCR1AH,temp1 ;must write high byte first
 out OCR1AL,temp

END_T1OCA_ISR:
 pop temp2
 pop temp1
 pop temp ;restore register values
 out SREG,temp
 pop temp

 reti ;return from interrupt

;Interrupt Service Routine to place a correct frequency on the port D pin4
;the period is %3A98 cycles at clk/8
;The duty cycle is determined by lwsh and lwsl
;high time is currentTime+lwsh:lwsl
;low time is currectTime-$3a98+lwsh:lwsl
T1OCB_ISR:
 push temp ;push temp to save contents
 in temp,SREG ;push SREG to save contents
 push temp
 push temp1
 push temp2

 in temp,PIND ;check value of toggle pin
 andi temp,0b00010000
 breq pd4low ;branch if port D pin 5 is low

 41

 in temp,OCR1BL ;OCR1A = OCR1A + right wheel speed
 in temp1,OCR1BH
 add temp,lwsl
 adc temp1,lwsh
 out OCR1BH,temp1 ;must write high byte first
 out OCR1BL,temp
 jmp END_T1OCB_ISR

pd4low: ;pin 5 is low
 ;OCR1A = OCR1A + 15000 - right
wheel speed
 in temp,OCR1BL
 in temp1,OCR1BH

 ldi temp2,$98
 add temp,temp2
 ldi temp2,$3A
 adc temp1,temp2

 sub temp,lwsl
 sbc temp1,lwsh

 out OCR1BH,temp1 ;must write high byte first
 out OCR1BL,temp

END_T1OCB_ISR:
 pop temp2 ;restore register values
 pop temp1
 pop temp
 out SREG,temp
 pop temp

 reti ;return from interrupt

;interrupt service routine to overflow every so often
T0_OVR_ISR:
 push temp ;push temp to save contents
 in temp,SREG ;push SREG to save contents
 push temp

 inc timeout

 pop temp ;restore register values

 42

 out SREG,temp
 pop temp

 reti ;return from interrupt

