

David Winkler
12/10/02

EEL 5666 – Intelligent Machines Design Lab
Dr. A Antonio Arroyo
TAs: Uriel Rodriguez

Jason Plew
Final Report

EEL 5666 Intelligent Machines Design Lab Page 2 of 38
Fall 2002 Final Report 12/13/2002

Table of Contents

I. Abstract………………………………………….3
II. Executive Summary……………………………..4
III. Introduction……………………………………..5
IV. Integrated System……………………………….6
V. Mobile Platform…………………………………7
VI. Actuation………………………………………...9
VII. Sensors…………………………………………..9
VIII. Behaviors……………………………………25
IX. Conclusion……………………………………..28
X. Appendix……………………………………….29

EEL 5666 Intelligent Machines Design Lab Page 3 of 38
Fall 2002 Final Report 12/13/2002

Abstract

 This document is the final report for Chester: the autonomous waiter bot. In this
report, I intend to discuss my goals for Chester and what I achieved, including the robots
behaviors and the sensors and electronics that were used. The ultimate goal for Chester
was to use voice recognition to respond to a human request for service, find the human
target, and serve him a drink and a snack. The project met all these objectives.

EEL 5666 Intelligent Machines Design Lab Page 4 of 38
Fall 2002 Final Report 12/13/2002

Executive Summary

This report describes the design and implementation of an autonomous mobile waiter
robot named Chester. The robot is capable of responding to human voice command,
finding the human, and then serving them a gumball. The robot is also capable of chasing
around a red ball on command.

An Atmel AVR ATMega323 is used to control the behaviors of Chester. Chester sees his
environment with four types of sensors including bump switches, IR detectors, a
CMUcam, and a Voice Direct 364 Kit. These sensors are easily interfaced with the
ATMega323 with plenty of room to spare.

The mobile platform for chester is made up of a 9 inch diameter circle supported by two
3” wheels and a rear castor. A bridge extends across the center of the platform and
several devices are conveniently mounted on this bridge including the voice kit, speaker,
microphone, and CMUcam. Actuation for the robot is achieved by two hacked Futaba
S3003 servos that provide 42 oz- in of torque. Timer 1 output compare is in PWM mode
to generate the necessary signals to drive the robot.

The bump sensors and IR detectors proved ample for the robot to perform obstacle
avoidance. However, objects not directly in front of the robot and objects extremely close
present problems for the IR. The bump switches compensate for this, but the robot could
use more of them. The voice recognition kit is about 60% accurate if trained in the used
environment and if the speaker is consistent in his/her speaking of the key words.

The CMUcam works well if used properly and can detect bright colored objects from
distances up to 9 feet away. However, lighting plays a large factor in the success of this
sensor. Florescent lighting seems to work best.

Overall the project was a success and the objective was achieved.

EEL 5666 Intelligent Machines Design Lab Page 5 of 38
Fall 2002 Final Report 12/13/2002

Introduction

 I came up with my idea for Chester: the autonomous waiter bot while I was
enjoying one of my favorite pastimes: being a couch potato. I thought to myself wouldn’t
it be great if I had a robot that was capable of responding to me and serving me drinks
and snacks without any effort on my own part.
 This report will outline my proposal for an autonomous waiter bot that will do
exactly what I dreamed of: a robot capable of responding to a human request for service,
finding the human, and providing a snack.
 The brain of Chester is the Atmel AVR ATmega323 microcontroller. It is the duty
of the ATmega323 to control the actuation of the robot, voice activation, obstacle
avoidance, and the image processing features of the robot. Voice activation was realized
with the Voice Direct 364 Kit, while image processing and human recognition was
achieved with the CMUcam developed by researchers at Carnegie Mellon University.

EEL 5666 Intelligent Machines Design Lab Page 6 of 38
Fall 2002 Final Report 12/13/2002

Integrated Systems

 Figure 1. Integrated Systems of Chester

Chester is comprised of four main systems:

• Object avoidance system
• Voice recognition system
• Human recognition system
• Object dispensing sytem

Three of those systems are controlled by the onboard microcontroller. The

microcontroller I used for control was the Atmel AVR ATmega323.

AAttmmeell AATTmmeeggaa332233
((MMeeggaa AAVVRR--DDeevvee llooppmmeenntt BBooaarrdd))

 PWM 1

UART

PWM 2

Left Wheel
Servo

Right Wheel
Servo

CCMMUUccaamm

VVooiiccee
DDiirreecctt 336644

IR Sensor 1

IR Sensor 2

Bump
Sensors

Port D0 and D1

EEL 5666 Intelligent Machines Design Lab Page 7 of 38
Fall 2002 Final Report 12/13/2002

Following the KISS principle the object dispensing system was controlled by the

microcontroller. The human is able to dispense the objects he/she desires and notify the

robot via a voice command that they have taken what is desired from the robot.

The Object avoidance system is comprised of two Sharp GP2D12 IR detectors and bump

switches. The Voice recognition system is built upon the Voice Direct 364

(www.voiceactivation.com). Some of the features of the Voice Direct 364 (courtesy of

the www.sensoryinc.com) are

• Seaker-Dependent and Continuous Listening speech
recognition technologies

• Minimal external components
• Recognizes up to 60 words or phrases in slave mode, or 15 in

stand-alone mode (broken in to 1, 2 or 3 sets)
• Over 99% recognition accuracy with proper design
• Phrase recognition up to 2.5 seconds
• User-friendly speech prompting

The human recognizing system was achieved by using the CMUcam. The CMUcam is

capable of detecting and tracking bright colors. The camera detects a human by tracking a

brightly colored object placed next to the human requesting service from Chester.

Mobile Platform

For the mobile platform, I ended up modifying the Talrik Pro platform because of my

limited experience and to keep things as simple as possible. The platform is circular in

shape and is 9” in diameter. It rolls along on two Du-Bro 3” diameter wheels powered by

two hacked Futaba S3003 servos. Spanning across the center of the platform is a bridge

on which is mounted the voice kit and the CMU cam. A small bump skirt surrounds the

EEL 5666 Intelligent Machines Design Lab Page 8 of 38
Fall 2002 Final Report 12/13/2002

platform and provides a contact mechanism with four bump switches placed strategically

around the periphery of platform. The gumball dispensing machine is placed on the rear

of the platform and is secured with velcro. A small caster wheel is mounted on the rear of

the platform. For power, I used 8 1700mAh NiMH batteries. The batteries were secured

to the bottom of the platform with a velcro tie. Figures 2,3, and 4 show the layout of the

platform.

Figure 2. Rear view of Chester

EEL 5666 Intelligent Machines Design Lab Page 9 of 38
Fall 2002 Final Report 12/13/2002

Figure 3. Bottom view of platform

Figure 4. Front view

EEL 5666 Intelligent Machines Design Lab Page 10 of 38
Fall 2002 Final Report 12/13/2002

Actuation

For movement the robot rolls around on two 3” Du-Bro wheels that are powered by two

hacked Futaba S3003 servos connected to the ATmega323’s PWM channels.

Timer/Counter 1 was used to generate the PWM. Only two noticeable speeds were

generated by varying the PWM. castor wheel on the back provided support for the

platform, but it kept the robot from moving in a straight line. Perhaps a ping-pong ball or

something else would support the platform and not interfere with the direction trying to

be imposed by the movement of the wheels. I also had a problem with the hacked servos.

Initially they were calibrated to not move for a given PWM, but they eventually became

misaligned and would move slightly when given the stop PWM. The servos unfortunately

were glued to the platform and could not be removed. To compensate for this, I just

disabled the PWM whenever the robot came to a stop.

The CMUcam also has a servo port capable of using a servo to track a color. This could

add another level of actuation to the robot. However, this would add complexity to the

object tracking code so this feature was not used.

Sensors

There are four different types of sensors used in Chester.

1.) Infrared (IR) detectors

EEL 5666 Intelligent Machines Design Lab Page 11 of 38
Fall 2002 Final Report 12/13/2002

2.) Voice Recognition

3.) Bump Switches

4.) Image Processing Camera – CMUcam

IR Sensors

Chester uses two Sharp GP2D12 IR detectors mounted on the top of the platform for

obstacle avoidance. The GP2D12 sensors measure distances of 4” to 30” and return an

analog voltage. The analog voltage from Chester’s IR sensors are sent to PortB0 and

PortB1, which are channels 0 and 1 of the Atmel ATMega323 A/D converter. The

analog voltage is then converted into a number between 0 and 255 and various decisions

can be made based on the converted values.

The IR detectors are placed at 15 degree angle inward and are placed on opposite sides of

the platform. For two IR sensors, this arrangement works well as Chester has been able to

avoid obstacles with the current obstacle avoidance routine that I have written. The only

problem I’ve had with this configuration is in the case when objects are not directly in

front of Chester, yet they are still in the path of the robot. In the current configuration of

the IR sensors it will not be possible for this situation to be detected. However, with the

addition of a couple of bump sensors this problem can be eliminated. The following

diagram shows the placement of the IR detectors:

EEL 5666 Intelligent Machines Design Lab Page 12 of 38
Fall 2002 Final Report 12/13/2002

Figure 1. IR Placement

There may be a more optimal placement of the IR sensors. I’ve been experimenting with

different configurations to see if it improves my obstacle avoidance algorithm.

Bump Sensors

Four bump switches are placed on the perimeter of Chester’s platform. These provide

another means of obstacle avoidance given that the IR sensors fail. The following is the

placement of the bump sensors on the platform.

EEL 5666 Intelligent Machines Design Lab Page 13 of 38
Fall 2002 Final Report 12/13/2002

Figure 2. Bump Switch placement on mobile platform.

To save analog ports, I used a voltage divider network and sent its output to Port B2 or

channel 2 of the a/d converter. Table 1 summarizes the different digital values for the

bump sensors and what they mean.

To make obstacle avoidance more robust, adding a left and right bump sensor may be

necessary.

Voice Recognition

Front

EEL 5666 Intelligent Machines Design Lab Page 14 of 38
Fall 2002 Final Report 12/13/2002

For voice recognition, I used the Voice Direct 364 (VD364) kit from Sensory Inc. The

kit has two main modes, slave mode and stand-alone mode. Slave mode allows the

microcontroller.to have complete control over the entire operation of the voice kit.

However, slave mode require that the voice kit use the Serial Peripheral Interface (SPI)

via a UART. This is problematic b/c the CMU cam will use the UART. In addition, the

complexity of programming for the voice kit is exponentially greater than stand-alone

mode.

Because of its simplicity, I’ve decided to use stand-alone mode for Chester. In stand-

alone mode, there are three different options:

• Speaker-Dependent

• Single Word Continuous Listening

• Multi Word Continuous Listening

Chester will use single word continuous listening. In this mode, the voice kit listens for a

single gateway word which will activate listening for any of 15 words which you can

train. When a word is recognized, it activates an output pin for one second. This output

will be a digital I/O on the Atmel chip and will be sampled by software to detect the

presence of a command.

EEL 5666 Intelligent Machines Design Lab Page 15 of 38
Fall 2002 Final Report 12/13/2002

The circuitry for the voice circuit is very simple as can be found in the voice direct kit

manual. Using Protel, I have prototyped this circuit and mated it with the VD364 kit. The

following figure shows the final product.

 Figure 6. Voice Circuit

One thing to note about the VD364, is the choice of word for the recognition set. The

performance of the kit depends highly upon what is chosen for a command set. The

manual recommends choosing words that sound dissimilar and that vary in syllables.

Also, intonation of the voice when training the kit is very important. I’ve had situation

where I trained a the kit in a monotone voice, but when I go to give it a command, I get

excited and change the intonation of my voice. The kit then has a hard time recognizing

the word as part of its command set.

EEL 5666 Intelligent Machines Design Lab Page 16 of 38
Fall 2002 Final Report 12/13/2002

CMU Cam

Chester uses the CMUcam to find the human giving it the command. Using the CMU

Cam’s color tracking abilities, Chester will find the human which is giving it the

command. The CMUcam communicates with the Atmel microprocessor via the USART.

Using Codevision C compiler this is made easy. To send a command, you simply use the

printf() function. For example, to send put the camera into poll mode you would just

write the C code “printf(“PM 1\r”);” It is important, however to delay between

commands to give the camera ample time to return from a command. One thing to note

about Codevision is that the evaluation version is free, but if you want write larger

programs you’ll need the full version. Since the printf() command uses stdio.h, I ran into

this problem very late into the semester. Luckily, I was able to share a license with my

workplace. I probably would recommend sticking with GCC and AVR Studio unless you

are willing to pay $150 for a Codevision license.

Camera settings that were altered were polling mode and raw data mode.

The camera uses polling mode which sets the camera to send only one data packet back

after each command rather than a constant stream of data. Raw data mode is used to put

the returned data packets into raw data rather than printable ASCII characters. Raw data

mode is nice because it allows the data to be easily processed. The two main commands

that will be used are the Track Window (TW) and Track Color (TC) commands. TW used

with no arguments is used to adjust the camera to the color found at the center of the

tracking window. The data obtained from the TW command is sent to subsequent calls to

EEL 5666 Intelligent Machines Design Lab Page 17 of 38
Fall 2002 Final Report 12/13/2002

TC with no arguments. The TC command returns a data packet which is then used to

make decisions as to how to position the robot. The following is the structure of a packet

returned from TC.

The M indicates that the camera is returning a middle mass TC packet. Mx is the middle

mass x coordinate of the tracked region and My is the middle mass y coordinate. The

next four bytes give the coordinates of the tracked rectangle. Pixels is the # of pixels in

the tracked region capped at 255. Confidence indicates how well the camera has a lock on

the desired color. A confidence > 50 indicates a good lock, while a confidence < 10

indicates a poor lock.

 Chester uses an interrupt service routine to periodically check the confidence level for

color tracking data and is able to determine if the colored object is nearby. For proximity

measurements, # of pixes will be used to determine if the object is close or far away to

Chester. Mx will be used to align the robot with the object and will keep the robot from

veering of to one side.

For more information, see the CMUcam user manual (http://www-

2.cs.cmu.edu/~cmucam/Downloads/CMUcamManual.pdf). It describes the entire serial

command set and what all the extrapolated data means.

EEL 5666 Intelligent Machines Design Lab Page 18 of 38
Fall 2002 Final Report 12/13/2002

Experimental Layout and Results

The following PCB is what I used to connect the sensors to my microprocessor board:

First, I will discuss the tests I did on the IR sensors. To test the IR sensors I wrote a

program which would get data from the IR sensors and print them to the computer screen

EEL 5666 Intelligent Machines Design Lab Page 19 of 38
Fall 2002 Final Report 12/13/2002

through the UART. I placed several different objects in front of Chester and read off the

values of the IR sensors for different distances. I obtained the following results.

IR Readings for Shoe Object

0

20

40

60

80

100

120

140

4 5 6 7.5 9.5 11 13 14 16 18.5 20 23 25

Distance (Inches)

A
tm

el
 A

/D
 R

ea
di

ng

Right IR Sensor

Left IR Sensor

EEL 5666 Intelligent Machines Design Lab Page 20 of 38
Fall 2002 Final Report 12/13/2002

IR Readings for Box Object

0

20

40

60

80

100

120

140

3.5 4.5 5.5 7 8 9.5 11 12
.5 14 17 19 21 24

.5

Distance (Inches)

A
tm

el
 A

/D
 V

al
u

es

Right IR Sensor
Left IR Sensor

IR Readings for Dresser Object

0

20

40

60

80

100

120

4 5 7 9.5 11.5 14 16 19.5 21.5 24

Distance (Inches)

A
tm

el
 A

/D
 V

al
u

e

Right IR Sensor

Left IR Sensor

EEL 5666 Intelligent Machines Design Lab Page 21 of 38
Fall 2002 Final Report 12/13/2002

The program used to test the IR sensors was also used to test the bump sensors. The code

for this program is provided in the appendices. The following voltage divider circuit was

used to distinguish between the different bump sensors.

The following table describes the analog values obtained for the different combinations

of bump switches.

Sensors Hit Atmel A/D Value (+-1)
Front 46
Back 88
Front Left 131
Front Right 24
Front and Front Left 144
Front and Front Right 62

EEL 5666 Intelligent Machines Design Lab Page 22 of 38
Fall 2002 Final Report 12/13/2002

For some of the bump switch combinations, the A/D reading would not stabilize at any

one value. Instead, it would toggle between the value +/- 1. This is probably because of

the lack of resolution for the A/D result. The A/D was configured for only 8 bits of

resolution and the bump sensors were sampled at 23 kHz.

The circuit used to test the voice kit is shown below.

EEL 5666 Intelligent Machines Design Lab Page 23 of 38
Fall 2002 Final Report 12/13/2002

This circuit configures the voice chip for single word continuous listening mode. In this

mode, the circuit is continuously listening for the gateway word. Once the gateway word

is spoken, the voice kit listens for any of 15 different words. To test this configuration, I

trained the word “Chester” for the continuous listening and trained the speaker dependent

words “come here” and “go away”. These I trained at three different distances and then I

tested the recognition accuracy at various positions. The results of these tests are given by

the following table.

Training Distance Accuracy at 3 ft Accuracy at 6 ft Accuracy at 9ft Accuracy at 12 ft
3ft 70 % 60% 60% 40%
6ft 60 % 70% 50 % 40%
9ft 40% 40% 60% 50%
12ft 30% 30% 40% 50%

Note: Accuracy based on 10 trials

The CMUcam comes with a Graphical User Interface written in Java. Using this interface

I tested the various capabilities of the camera. I was able to track various colored object

such as my hand and a blue ball. The camera also dumped the mean color and the

variance. Dumping frames is also possible and I used this feature to properly focus the

lens.

Once I had the camera in focus, and was able to see data with the CMUcamGUI I began

interfacing the camera with the microprocessor board. To interface the CMUcam, I found

EEL 5666 Intelligent Machines Design Lab Page 24 of 38
Fall 2002 Final Report 12/13/2002

that removing the max232 chip and taking non- level shifted serial data from the camera

to the non- level shifted pins of the ATMega323 worked the best.

The following psuedocode is what I used to test the CMUcam:

Reset CMUcam
Put camera into poll mode and turn on raw data mode for returned packets from camera
Call Track Window
LOOP_START
Call Track Color
If # of Pixels > 250 And Confidence > 50 Then Go Backward
If Middle Mass X > 55 And Confidence> 25 Then Go Right
If Middle Mass X< 35 And Confidence > 25 Then Go Left
If # of Pixels < 120 And Confidence > 25 Then Go Fwd
GOTO LOOP START

To test this algorithm I used the setup shown in the image below:

What I discovered when testing this code was that lighting is vital to the success of the

CMUcam. Standard incandescent lighbulbs worked ok, but florescent lighting such as

that in the lab works much better. In the lab environment, Chester recognizes objects

EEL 5666 Intelligent Machines Design Lab Page 25 of 38
Fall 2002 Final Report 12/13/2002

from 7-9 feet away while in my apartment Chester will recognize objects from only 3-5

feet away. These results were much better than several other people in the class perhaps

b/c I bought my camera from Acroname rather than Seattle Robotics. The camera from

Acroname comes with an IR filter already installed while I believe it’s a special order

from Seattle Robotics.

Behaviors

Chester will perform the following behaviors:

• Listening behavior

• Obstacle avoidance behavior / human tracking behavior

• Human tracking behavior

• Dispensing / pause nehavior

• Ball chasing behavior

The following flow-chart relates all the behaviors and gives an overview of the

operation of Chester:

EEL 5666 Intelligent Machines Design Lab Page 26 of 38
Fall 2002 Final Report 12/13/2002

Listening behavior

When Chester is first turned on it will immediately enter listening behavior. In this state,

Chester is awaiting a voice command to commence serving. Once the human gives the

voice command to serve, Chester will enter Obstacle Avoidance / Human tracking

behavior. While in this behavio r, Chester is calibrated to his environment. To calibrate

the camera, the object to be tracked is placed about 5 inches away from the CMUcam.

Listening For Serve
Command

Serve
Command?

Human Finding /
Obstacle Avoidance

Human
Found?

N

Y

Serve human and
wait for voice

command

N

Y

Leave
Command

N

Y

Initial State

Ball Chase
Behavior

Chase
Command

EEL 5666 Intelligent Machines Design Lab Page 27 of 38
Fall 2002 Final Report 12/13/2002

The rear bumper is then pressed and the camera captures the color of the object with the

track window command. It is also very important in this behavior to train the voice sensor

to the environment that it will be used in. If the voice sensor is not trained the robot likely

will not operate properly.

Obstacle Avoidance / Human tracking behavior

The obstacle avoidance behavior was taken from Eric Donnelly’s WOMAN Robot final

report Spring 2002. The algorithm, based on random numbers, seemingly gives the robot

a mind of its own when avoiding obstacles. Chester will turn in random directions at

random speeds for random amounts of time. This makes the robot more interesting and

gives the robot better coverage of an area. While in obstacle avoidance mode, Chester’s

senses are checked in a priority fashion. The following is the order of priority from

highest to least:

• Object Tracking

• Bump Switches

• IR Detectors

While Chester is in obstacle avoidance mode, he is collecting data from the IR detectors

and bump sensors to avoid obstacles. Meanwhile, Chester uses the CMUcam to try to

track the brightly colored object placed at the feet of the human. If the object is not

immediately visible to Chester, he will turn 360 degrees looking for the object. If Chester

still does not see the object, he will move in a random pattern around the room and then

EEL 5666 Intelligent Machines Design Lab Page 28 of 38
Fall 2002 Final Report 12/13/2002

spin in place again looking for the object. This will continue until Chester finds the

desired object.

Once Chester locates the object, he will move towards the object until he reaches a

certain distance. Once Chester has reached the desired distance from the brightly colored

object he will enter the dispensing / pause behavior. In this behavior, Chester rotates 180

degrees and aligns the gumball machine with the tracked object.

Dispensing / pause behavior

In this behavior, the robot will be positioned in front of the brightly colored object. The

human can now dispense the gumballs from the robot at his/her leisure. Once the human

has been served, he /she gives Chester either the leave command or the ball chase

command. If the ball chase command is given, Chester turns around faces the ball and

will chase the ball around.

Ball Chasing Behavior

In this behavior, Chester will turn around and face the ball or object and will follow the

object as long as the object is held in view of the camera tracking window.

Conclusion

This concludes my final report for Chester the autonomous waiter robot. The robot

worked as specified and was a success. This project has given me the confidence to

EEL 5666 Intelligent Machines Design Lab Page 29 of 38
Fall 2002 Final Report 12/13/2002

pursue other projects and I now feel well equipped to solve more difficult engineering

problems.

Appendices

The following is the final version of the code for Chester. The program was written using
CodevisionAVR C compiler:

/***
Project : Chester Final Code
Version : 3.0
Date : 12/05/2002
Author : David Winkler

Chip type : ATmega323
Clock frequency : 6.000000 MHz
Internal SRAM size : 2048
External SRAM size : 0
Data Stack size : 512
***/

/**
Trying to get the robot to spin in place to look for red ball...
also attempting to get the robot to stop once it thinks it finds the ball,
spin in place and then back up towards ball to dispense gumballs
***/

// INCLUDES
#include <mega323.h>
#include <delay.h>
#include <stdio.h>

// CONSTANTS
#define ADC_VREF_TYPE 0xE0
#define L_EYE_TOLERANCE 50
#define R_EYE_TOLERANCE 50
#define FIRST_ADC_INPUT 0
#define LAST_ADC_INPUT 4
#define BACK_BUMP 88
#define FLEFT_BUMP 131

EEL 5666 Intelligent Machines Design Lab Page 30 of 38
Fall 2002 Final Report 12/13/2002

#define FRIGHT_BUMP 24
#define CENTER_BUMP 46

// GLOBAL VARIABLES
unsigned int adc_data[LAST_ADC_INPUT-FIRST_ADC_INPUT+1];
unsigned int count=5;
short int speed_temp_l=0;
short int speed_temp_r=0;
short int speed_val_l=0;
short int speed_val_r=0;
int temp;
bit sense=0;
bit initiated=0;
unsigned char random_num;
unsigned char cpacket[10];
bit homelock=0;
int count1=0;
bit camera_init=0;
bit ball_chasing=0;
bit stopped=0;
bit skip=0;

void check_ir(void);
void drive(int,int);
int random(char);
void bumper(void);

void disable_pwm()
{
 TCCR1A=0x01;
}

void enable_pwm()
{
 TCCR1A=0xA1;
}

void check_camera(void)
{

 PORTC.0=0;
 count1=0;
 printf("TC\r");

EEL 5666 Intelligent Machines Design Lab Page 31 of 38
Fall 2002 Final Report 12/13/2002

 while (count1<11) {
 cpacket[count1]=getchar();
 count1++;
 }
 PORTC.0=1;
 if (cpacket[9]>40) homelock=1;

 if (homelock)
 {
 // 45 is H center
 if (cpacket[8] > 250 && cpacket[9] > 50) {
 drive(-1,-1);
 if (!ball_chasing) {
 delay_ms(300);
 drive(-1,1);
 delay_ms(1600);
 drive(-1,-1);
 delay_ms(400);
 drive(0,0);
 delay_ms(10);
 disable_pwm();
 stopped=1;
 } // robot stops and waits for voice command
 else {
 delay_ms(300);
 drive(0,0);
 delay_ms(10);
 disable_pwm();
 }
 }
 if (cpacket[2] > 55 && cpacket[9] > 25) drive(0,1); //Right
 if (cpacket[2] < 35 && cpacket[9] > 25) drive(1,0); //Left
 if (cpacket[8] < 120 && cpacket[9] > 25)drive(1,1); //Fwd
 if (cpacket[9] <=25 && !skip) {
 drive(0,0); //Stop
 delay_ms(10);
 disable_pwm();
 }
 }
 delay_ms(25);
}

// Timer 1 overflow interrupt service routine
interrupt [TIM1_OVF] void timer1_ovf_isr(void)
{

EEL 5666 Intelligent Machines Design Lab Page 32 of 38
Fall 2002 Final Report 12/13/2002

 if (!camera_init || !initiated) return;
 if (count--==0) {
 check_camera();
 if (homelock) {
 count=3;
 return;
 }
 check_ir();
 bumper();

 if (sense==1) {
 drive(speed_temp_l,speed_temp_r);
 delay_ms(175*(random(7)+2));
 sense=0;
 }
 count=3;
 }
}

#pragma savereg-
interrupt [ADC_INT] void adc_isr(void)
{
#asm
 push r26
 push r27
 push r30
 push r31
 in r30,sreg
 push r30
#endasm
register static unsigned char input_index=0;
// Read the AD conversion result
adc_data[input_index]=ADCH;
// Select next ADC input
if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT))
 input_index=0;
ADMUX=(FIRST_ADC_INPUT|ADC_VREF_TYPE)+input_index;
// Start the AD conversion
ADCSR|=0x40;
#asm
 pop r30
 out sreg,r30
 pop r31
 pop r30

EEL 5666 Intelligent Machines Design Lab Page 33 of 38
Fall 2002 Final Report 12/13/2002

 pop r27
 pop r26
#endasm
}

/**
Function: drive
Inputs: Two integers between -2 and 2 representing
the speed of the motors. A speed > 0 is forward,
while a speed < 0 is backward. The greater the
magnitude of the inputs the faster the motors will
turn.
Outputs: none
Notes: A 100 ms delay is implemented when changing
motor speeds to protect the motors from burnout.
**/
void drive(short int speedl, short int speedr){
 enable_pwm();
 if(speedl > 2) //can't overdrive servos
 speedl =2; //.8 sec max total to change speeds
 if(speedl < -2)
 speedl = -2;
 if(speedr > 2)
 speedr = 2;
 if(speedr < -2)
 speedr = -2;
 while(speed_val_l != speedl || speed_val_r != speedr){
 if(speed_val_l > speedl){
 OCR1BL = OCR1BL -1;
 speed_val_l--;
 }
 if(speed_val_l < speedl){
 OCR1BL = OCR1BL +1;
 speed_val_l++;
 }
 if(speed_val_r > speedr){
 OCR1AL = OCR1AL +1;
 speed_val_r--;
 }
 if(speed_val_r < speedr){
 OCR1AL = OCR1AL -1;
 speed_val_r++;
 }
 delay_ms(25); //delay on each increment to protect motors
 }

EEL 5666 Intelligent Machines Design Lab Page 34 of 38
Fall 2002 Final Report 12/13/2002

}

int random(unsigned char range){
//generates random numbers between 0-254
 range++;
 return TCNT0 % range;
}

void check_ir(void){
 if(adc_data[1] > L_EYE_TOLERANCE || adc_data[0] >
R_EYE_TOLERANCE){
 sense = 1;
 temp= random(3) - 2; // random speed between -2 and 1
 if(adc_data[1] > adc_data[0] + 10) {
 speed_temp_l= temp;
 speed_temp_r= temp + random(3)+1; // always point away from
obstacle
 }
 else if(adc_data[0] > adc_data[1] + 10) {
 speed_temp_l= temp + random(3)+1;
 speed_temp_r= temp; //always point away from obstacle
 }
 else {
 speed_temp_l = random(4) -2; // straight ahead turn in place
 speed_temp_r = -speed_temp_l;
 }
 }
}

void bumper(void){
 if(adc_data[2]==0 || adc_data[2]==1) return;
 sense =1;
 while(1){
 if(adc_data[2]==45 || adc_data[2]==46 || adc_data[2]==47 ||
 adc_data[2]==143 || adc_data[2]==144 || adc_data[2]==145 ||
 adc_data[2]==61 || adc_data[2]==62 || adc_data[2]==63){ //front
 drive(-1, -1); //back up
 delay_ms(300);
 speed_temp_l = random(4) -2; //turn in place if straight
 speed_temp_r = -speed_temp_l; //forward
 break;
 }
 else if(adc_data[2]==130 || adc_data[2]==131 || adc_data[2]==132){ //left
front
 speed_temp_l= -1; //right will reverse harder

EEL 5666 Intelligent Machines Design Lab Page 35 of 38
Fall 2002 Final Report 12/13/2002

 speed_temp_r= -2;
 break;
 }
 else if(adc_data[2]==23 || adc_data[2]==24 || adc_data[2]==25){ //right
front
 speed_temp_r= -1; //left will reverse harder
 speed_temp_l= -2;
 break;
 }
 else if(adc_data[2]==87 || adc_data[2]==88 || adc_data[2]==89){
//forward!!
 speed_temp_r= random(1)+1;
 speed_temp_l= random(1) +1;
 break;
 }
 else return;
 }
}

/***
Function: chester_init()
Input: None
Output: None
Purpose: Set up A/D, I/O Ports, UART, Interrupts, and Timers
**/
void chester_init(void)
{

 // Input/Output Ports initialization

 // Port A initialization
 PORTA=0x00;
 DDRA=0x00;

 // Port B initialization
 PORTB=0x00;
 DDRB=0x00;

 // Port C initialization
 PORTC=0x00;
 DDRC=0xFF;
 // Port D initialization
 PORTD=0x00;
 DDRD=0x30;

EEL 5666 Intelligent Machines Design Lab Page 36 of 38
Fall 2002 Final Report 12/13/2002

 // Timer/Counter 0 initialization
 // Clock source: System Clock
 TCCR0=0x01;
 TCNT0=0x00;

 // Timer/Counter 1 initialization
 // Clock source: System Clock
 // Clock value: 23.438 kHz
 // Mode: Ph. correct PWM top=00FFh
 // OC1A and OC1B output: Non-Inverted
 // Input Capture on Falling Edge
 TCCR1A=0xA1;
 TCCR1B=0x04;
 TCNT1H=0x00;
 TCNT1L=0x00;
 OCR1AH=0x00;
 OCR1AL=0x18;
 OCR1BH=0x00;
 OCR1BL=0x18;

 // Timer 1 Overflow Interrupt Enabled
 TIMSK=0x04;

 // USART initialization
 // Communication Parameters: 8 Data, 1 Stop, No Parity
 // USART Receiver: On; USART Transmitter: On
 // USART Mode: Asynchronous; USART Baud rate: 9600
 UCSRA=0x00;
 UCSRB=0x18;
 UCSRC=0x86;
 UBRRL=0x26;
 UBRRH=0x00;

 // Analog Comparator initialization (Unused)
 ACSR=0x80;
 SFIOR=0x00;

 // ADC initialization
 // ADC Clock frequency: 93.750 kHz
 // ADC Voltage Reference: AREF pin (Internal 2.56 V)
 // Only the 8 most significant bits of
 // the AD conversion result are used
 ADMUX=ADC_VREF_TYPE;
 ADCSR=0xCE;

EEL 5666 Intelligent Machines Design Lab Page 37 of 38
Fall 2002 Final Report 12/13/2002

}
// GLOBAL VARIABLES

void init_camera(void)
{
 printf("RS\r");
 delay_ms(100);
 printf("\r");
 delay_ms(100);
 printf("PM 1\r");
 delay_ms(100);
 printf("RM 3\r");
 delay_ms(5000);

 while(adc_data[2]!=88);
 while (UCSRA.7) temp=UDR; //flush the receive buffer
 printf("TW\r");
 delay_ms(2000);
 while(adc_data[2]!=88); // wait for back bumper press to begin
 camera_init=1;
 PORTC=~PORTC;
 while (UCSRA.7) temp=UDR; //flush the receive buffer
}

void main(void)
{
 // LOCAL Variables

 chester_init(); // Initialize A/D, timers, interrupts, and USART
 disable_pwm();

 delay_ms(1500); // Delay to give the A/D and other systems a chance to warm-up

 #asm("sei")

 init_camera();
 while (adc_data[3]<0xE0){} // Wait until voice command given
 initiated=1;

 drive(-1, 1); //begin moving
 delay_ms(1000);
 while (1) {

EEL 5666 Intelligent Machines Design Lab Page 38 of 38
Fall 2002 Final Report 12/13/2002

 random_num=random(50);
 while(random_num-- != 0 && !homelock){
 drive(2,2);
 delay_ms(100);
 }
 if (!homelock) {
 // drive(random(4)-2, random(4)-2); //change directions
 drive(-1,1); // spin in place looking for objec
 random_num = random(15);
 }
 while(random_num-- != 0 && !homelock) delay_ms(100);
 if (stopped==1) {
 while (adc_data[3]<0xE0 && adc_data[4]<0xE0) {};
 stopped=0;
 if (adc_data[3]>=0xE0) {
 homelock=0;
 drive(1,-1);
 delay_ms(1000);
 }
 else if (adc_data[4]>=0xE0) {
 skip=1;
 ball_chasing=1;
 drive(2,2);
 delay_ms(400);
 drive(1,-1);
 delay_ms(400);
 drive(0,0);
 skip=0;
 }
 }

 }

}

