

Special Sensor Report:
CMUcam

David Winkler
12/10/02

Intelligent Machines Design Lab
Dr. A. A. Arroyo

TAs: Uriel Rodriguez
Jason Plew

Introduction

This report covers the CMUcam and how I was able to use its color tracking features in
my project. My robot, Chester, used the CMUcam to find a bright red ball placed at the
feet of a human requesting service from the robot. I purchased my CMUcam from
Acroname. The total cost of the kit was about 115 after shipping and it came
unassembled. There was one discrepancy between Acroname’s part lists and the diagram
of the built system in the CMUcam Manual. To build it correctly, just follow the diagram
in the manual. Seattle Robotics also sells the camera for the same price and it comes
preassembled. The figure below shows the assembled board. One thing to note though is
that the camera from Acroname comes with an IR filter already install over the lens. I
believe the IR filter is available from Seattle Robotics also, but you must mention it when
you order. I had success with the camera from Acroname, so I would recommend it over
Seattle Robotics’ version.

Camera Features and Settings

CMUcam is a low-cost, low-power sensor for mobile robots. The camera has several
real-time image processing features and is easily compatible with many microcontrollers
via the serial port.
At 17 frames per second, CMUcam can:

• track the position and size of a colorful or bright object
• measure the RGB or YUV statistics of an image region
• automatically acquire and track the first object it sees
• physically track using a directly connected servo
• dump a complete image over the serial port
• dump a bitmap showing the shape of the tracked object
• supports multiple cpu boards on one camera for parallel processing

Some things to note about the CMUcam is that it is a special purpose camera whose
primary function is basic image processing. Some people have tried to use it as a regular
camera to acquire images and have been greatly disappointed. If you want to take
pictures, consider another camera. Some additional features from the CMUcam manual
include:

• Arbitrary image windowing
• Adjust the camera's image properties
• Dump a raw image
• 80x143 Resolution
• 115,200 / 38,400 / 19,200 / 9600 baud serial communication
• Slave parallel image processing mode off a single camera bus
• Automatically detect a color and drive a servo to track an object upon startup
• Ability to control 1 servo or have 1 digital I/O pin

The only settings of the camera I changed were the Polling mode and Raw Data mode
settings. I tried messing with the auto gain and auto while balance settings but I found
that these worked best in their default state. Polling mode is useful because it reduces the

overhead on a processor. When a camera is sent to the camera with polling mode off the
camera will continuously send data packets at 17fps if the camera is operating at 115,200
baud. This can exhaust most of the processor resources. Instead, in polling mode, the
camera only sends back one packet of information. Thus, the processor has time to do
other operations and can control exactly when it wants to receive a packet of information
from the camera. Another nice setting is raw data mode. Raw data mode configures the
camera to return packets in raw data bytes rather than in printable ASCII characters. This
again saves time because you don’t have to go to the trouble of converting the ASCII to a
raw data byte because in raw data mode this has already been done for you.

Camera Command Set and Commands Used

The camera has several different serial commands which are well documented in the
CMUcam manual. For my robot, the camera is fixed onto the front of the robot so there is
no need for servo movement. The only commands I ended up using besides setting
polling mode and raw data mode were the track window and track color commands. I
used the track window command with no arguments. Track window with no arguments
calls the get mean command for the center of the currently set window. The get mean
then extrapolates the color information and statistics and passes this to the track color
command. The next time you call the track color command, it has memory of the
parameters used in a previous call. So calling a track window command with no
parameters followed by a track color command with no parameters allows you to easily
track a defined colored blob at the center of the window.

For Chester, I put the object I want to track 5 inches in front of the camera. Then, I
initiate the track window command with a back bumper press. This essentially trains the
robot to see the object which is being held in front of the camera. Now subsequent calls
to track color with no parameter will return a data packet of the following format:

The M indicates that the camera is returning a middle mass TC packet. Mx is the middle
mass x coordinate of the tracked region and My is the middle mass y coordinate. The
next four bytes give the coordinates of the tracked rectangle. Pixels is the # of pixels in
the tracked region capped at 255. Confidence indicates how well the camera has a lock on
the desired color. A confidence > 50 indicates a good lock, while a confidence < 10
indicates a poor lock.

Chester uses an interrupt service routine to periodically check the confidence level for
color tracking data and is able to determine if the colored object is nearby. For proximity
measurements, # of pixes will be used to determine if the object is close or far away to
Chester. Mx will be used to align the robot with the object and will keep the robot from
veering of to one side.

The following pseudo code is essentially what I used to track and follow the bright red
ball.

Reset CMUcam
Put camera into poll mode and turn on raw data mode for returned packets from camera
Call Track Window
LOOP_START
Call Track Color
If # of Pixels > 250 And Confidence > 50 Then Go Backward
If Middle Mass X > 55 And Confidence> 25 Then Go Right
If Middle Mass X< 35 And Confidence > 25 Then Go Left
If # of Pixels < 120 And Confidence > 25 Then Go Fwd
GOTO LOOP START

To test this algorithm I used the setup shown in the image below:

Results

One thing I learned from this project was the importance of lighting in image processing
applications. Chester’s performance varied greatly depending on the lighting where the
experiments were performed. Standard incandescent lighbulbs worked ok, but florescent
lighting such as that in the lab works much better. In the lab environment, Chester
recognizes objects from 7-9 feet away while in my apartment Chester will recognize
objects from only 3-5 feet away. Also, the color red seemed to work the best. I tried
bright yellow objects and orange objects, but the robot would get confused and would
sometimes recognize the wrong object.

The following code written in CodevisionAVR may be of some help please reference the
Seattle Robotics website also as they have written a very similar example.

EXAMPLE:

printf("RS\r"); // Reset the camera
delay_ms(100); // must delay …can delay less than 100ms
printf("\r");
delay_ms(100);
printf("PM 1\r"); // turn poll mode on
delay_ms(100);
printf("RM 3\r"); // turn on raw data mode for packets received from camera
delay_ms(100);
printf("SW 1 1 80 143\r"); // not necessary this is default window
while(adc_data[2]!=47 || adc_data[2]!=46){}; // wait for front bumper press
printf("TW\r"); // track color of object directly in front of robot
while(adc_data[2]!=88); // wait for back bumper press to begin
while (UCSRA.7) temp=UDR; //flush the receive buffer
while (cpacket[9]<15) {
 count=0;
 drive(1,-1);
 delay_ms(100);
 drive(0,0);
 printf("TC\r"); // track color obtained from TW command
 // see manual for packet description..11 bits per data packet
 while (count<11) {
 cpacket[count]=getchar();
 count++;
 }
 PORTC=~cpacket[9];
}
while (UCSRA.7) temp=UDR; //flush the receive buffer… very important!
delay_ms(100);
while (1) {
 count=0;
 printf("TC\r"); // track color obtained from TW command
 // see manual for packet description..11 bits per data packet
 while (count<11) {
 cpacket[count]=getchar();
 count++;
 }
 PORTC=~cpacket[9]; //show confidence value on portC

 // 45 is H center
 if (cpacket[8] > 250 && cpacket[9] > 50) {
 drive(-1,-1);

 drive(0,0); //Bwd
 }
// if (cpacket[2] > 55 && cpacket[9] > 15) drive(0,1); //Right
// if (cpacket[2] < 35 && cpacket[9] > 15) drive(1,0); //Left
// if (cpacket[8] < 120 && cpacket[9] > 15) drive(1,1); //Fwd
// else drive(0,0);
 delay_ms(100);

}

