
1

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Billy the Amazing Broom Balancer
Final Written Report

Kristopher Anderson
December 9, 2003

TAs: Uriel Rodriguez, Louis Brandy
Instructor: Dr. A. Arroyo

2

1. Table of Contents

Abstract …………………………………………………………………… 3

Executive Summary ………………………………………………………. 4

Introduction ……………………………………………………………….. 5

Integrated System …………………………………………………………. 6

Mobile Platform …………………………………………………………… 7

Actuation …………………………………………………………………... 8

Sensors …………………………………………………………………….. 9

Behaviors ………………………………………………………………….. 10

Results ……………………………………………………………………... 11

Conclusion …………………………………………………………………. 11

Advice ……………………………………………………………………… 12

Appendix A (Costs) ………………………………………………………… 14

Appendix B (Source Code) ………………………………………………… 15

3

2. Abstract

Billy the Amazing Broom Balancer is a physical implementation of a solution to the
inverted pendulum problem. Billy is fully autonomous; he requires no connection to a
computer to control him and no external power connection. Billy uses a fuzzy controller
to balance his pendulum.

4

3. Executive Summary

Billy the Amazing Broom Balancer is an autonomous robot designed to balance an

inverted pendulum. He utilizes an Atmel Mega128 AVR microcontroller to control his

movement. The balance algorithm is implemented with fuzzy logic.

The angle of the pendulum is measured with an incremental rotary encoder. This encoder

performed well; I have written a special sensor report concerning its performance an

implementation.

The design and construction of the platform proved much more difficult than making the

software for Billy. In fact, Billy was not able to keep the pendulum balanced due to

physical limitations; specifically, the motor is not able to provide enough power to bring

the pendulum upright once it has gone beyond a certain angle.

5

4. Introduction

Balancing an inverted pendulum is a common and well studied problem in control theory.

The inverted pendulum is attached to a cart, which moves in one dimension to keep the

pendulum balanced. The problem is non linear and unstable.

Most physical implementations of this problem and its solution are controlled by an

external computer. These implementations are also usually built on tracks with an

external motor moving the platform. Billy is totally self-contained; he runs on batteries

and is controlled by an on-board processor.

Billy is actually a cart with an inverted pendulum on top. He moves back and forth using

a DC motor driven by batteries. Billy’s control system consists of an Atmel AVR

microcontroller.

This report gives an overview of Billy the Amazing Broom Balancer.

6

5. Integrated System

The control system has one external input, the angle of the pendulum. The output of the

control system is the force Billy’s motor must exert to move either forward or backwards.

Past input data will be used to determine the pendulum’s angular velocity. These two

values are used by the control system to determine the output.

A fuzzy control system is used to balance the pendulum. This system will be explained

in more detail later in the report.

Billy uses a BDmicro MAVRIC board with an Atmel Mega128 processor. The Processor

has 4K EEPROM and 4K SRAM on the chip. The MAVRIC board has an additional

128K SRAM, but that memory is not used for this project; the memory expansion ports

are used for I/O. The Atmel AVR Mega128 can run at up to 16MHz; Billy’s processor

runs at 14.7 MHz. This processor provides ample memory and speed for this application.

7

6. Mobile Platform

A platform is required that is strong enough to handle the forces generated by the quick

back and forth movement necessary to balance the pendulum. A large motor and heavy

batteries are required for Billy to be fast enough to keep the pendulum balanced.

Billy’s main platform is made from plywood [A1]. Figure 1 shows a sketch of Billy’s

main platform.

Designing the mobile platform was kind of a paradox. A stronger frame is required to

hold the motor and batteries and to stand up to the large forces; but as the frame gets

larger and stronger, more batteries and a larger motor are required to move it. I chose to

build the platform out of plywood for its low cost and because it is easy to work with. A

strong plastic would most likely provide better performance.

The motor needs to turn one of the axles to move the robot. Billy’s motor turns the axle

through gears [A9]. The gears are the part of the system that must handle the most stress;

8

they must also fit together precisely. I would suggest to someone using a similar design

to have a few spare sets of gears and a way to easily change them. Acceleration is more

important then top speed, so I would also suggest a high gear ratio. Billy’s gear ratio is

5:2, but 5:1 might provide better results.

7. Actuation

To balance the pendulum, Billy must be able to move in two directions: forward and

backward. Movement in more than one dimension is not desirable, as it adds to the

complexity of the problem.

Billy’s 12V DC motor is controlled by a forward/reverse-proportional DC motor

controller [A4]. This controller has a fairly high output capability, but it proved to be too

little for this application. During a test run, two of the MOSFETs in the H-bridge were

blown. They were replaced with better ones, and heat sinks were installed on both sides

of the MOSFETs.

8. Sensors

Billy will need to measure 2 outside variables

1. The angle of the pendulum

2. If the pendulum has swung too far

The angle of the pendulum is measured by a rotational encoder [A5]. The encoder sends

out pulses as it turns. These pulses are converted into clock pulses by a quadrature to

up/down counter converter chip [A6] which are then used by two 4-bit up/down counters

9

[A7] to measure the angle of the pendulum. The encoder has 2048 positions, but the

pendulum can only swing in a small arc so not all of the positions are used.

The encoder’s index is positioned so that it is active when the pendulum is approximately

straight up. The index resets the counters when it is active. This helps to keep the

counters accurate, because the index position is passed often during balancing. More

information on the encoder can be found in my special sensor report.

There are bump switches on the supports on either side of the pendulum. These switches

are pressed when the pendulum leans on them. If the pendulum is leaning on one of these

switches, it has traveled too far and Billy needs to start over. The switches create an

interrupt when they are pressed.

Some additional sensors would have been useful for this design, but were not

implemented. Billy will collide with any objects in his path while he is balancing the

pendulum. Infrared or sonar sensors that detect obstacles in Billy’s path would solve this

problem.

9. Behaviors

Before he can start balancing the pendulum, Billy needs to know when the pendulum is

straight up. The index output of the encoder is useful here. When the pendulum is

approximately straight up, the index is active and the counters are reset. This gives Billy

a reference angle. When Billy starts up, he asks you to balance the pendulum so that he

can calibrate the balance position. As the pendulum is balanced for five seconds, the

position of the pendulum (the counter values) are measured and averaged together. This

10

value is remembered and when it is subtracted from the position value of the pendulum it

gives the correct value.

Note that the angles and velocities are not in any specific units, they are just the

measurements from the sensors.

Angle measurements are taken approximately every 4ms. The velocity is calculated by

differentiating the angle values.

To keep the pendulum balanced, a fuzzy controller is used. The membership functions

are shown in the figure below.

The percent power to send to the motors is determined from these two functions. The

membership value in each category is then used with the table below to determine the

power.

Velocities
-100 -100 -100 -100 -100 -100 -100
-100 -95 -90 -85 -80 -60 -50

-85 -75 -50 -35 -15 0 10

Positi
ons

11

-70 -40 -5 0 10 45 75
-5 0 20 40 55 80 90
50 60 85 95 100 100 100

100 100 100 100 100 100 100

This is done as follows:

1. Make two arrays that are as long as the number of memberships in each category.
One array is for position and one is for velocity. So each array has a length of
seven.

2. Fill each array with the membership values. For example, if the velocity is 7, the
velocity array would be [0.0 0.0 0.0 0.0 0.3 0.2].

3. Multiply the matrix above by each array, and then add all of the values in the
result. This gives the weighted average.

This algorithm takes about 3 milliseconds to run. The power delivered to the motor is
updated every 35 milliseconds. This is about twice the length of the PWM period.

The code in Appendix B will probably explain the algorithm better.

10. Results

Billy can almost balance the pendulum. The motors do not provide enough power to

keep the pendulum balanced very long. The voltage regulator circuit and the motor

driver start to overheat fairly rapidly. I plan to remove the regulator circuit and see how

Billy performs.

11. Conclusion

Before I started work on this project, I expected to spend more time programming the

balance algorithms than building the robot. I actually spent much more time building the

robot.

12

12. Advice

Anyone attempting this project in the future should focus on first designing a strong but

lightweight platform. This platform should, like Billy’s platform, be large; about

18”x10”. A tall pendulum, about four or five feet, will make the task of balancing it

easier. Be sure to use a lightweight metal, such as aluminum, for the pendulum. Wood is

not acceptable as it will bend. A weight at the end of the pendulum is necessary as well.

Try to get strong gears; they need to withstand a lot of stress.

The motor should be as powerful as possible. Something greater than 12 volts is

recommended. The motor driver is a critical piece of the design. It will need to be

actively cooled (with a fan). Don’t be surprised if you blow a 60 amp MOSFET. You

might even want to replace the MOSFETs in your motor driver with ones designed to

handle 100 amps or more.

Something has to provide all of this power. Billy uses four 7.2V NiMH batteries; two

parallel pairs are connected in series to provide 14.4V. If possible, you might even want

to use six batteries. There’s a reason that most physical implementations of the inverted

pendulum problem are externally powered. The batteries add weight, but they are

necessary. Be sure to isolate the motor circuit from the other electronics. The abrupt

changes in the motors will create voltage spikes.

Billy has a 12 volt regulator circuit between the batteries and the motor. This is because

the voltage should be constant so that the controller will know what PWM value

corresponds to what acceleration. It is kind of a waste of battery power though, as it cuts

the voltage and it requires a fan to cool it. Maybe there is some way that this circuit

13

could be omitted. You could just assume fully charged batteries, or you could monitor

the voltage somehow. The latter solution would be difficult due to the spikes induced by

the motor; you wouldn’t want to just connect the battery output to the A/D converter on

your processor.

Now to the software; if you planned well and built a good outstanding platform, this

should be easy. You could make it hard by trying to model the robot on your computer

and then using nonlinear control theory. A fuzzy controller is a much better way to go.

14

12. Appendices

Appendix A: Billy’s parts and prices
 Description Purchased From Price

1. ¼” plywood. Lowes $10.00

2. 12v DC motor. (Unknown manufacturer) EBay $6.00

3. 4 Green Dot Sumo Tires and hubs www.lynxmotion.com $30.00

4. Vantec RET 411 www.lynxmotion.com $50.00

5. Rotary Encoder S2-2048-IB US Digital $78.00

6. Quadrature to up/down counter LS7083 US Digital $3.00

7. 2 4-bit up/down counters Texas Instruments Free

8. 2 small lever switches Radio Shack $5.00

9. Plastic Gears www.jameco.com $8.00

10. MAVRIC AVR board www.bdmicro.com $109.00

11. 2 5V voltage regulators Texas Instruments Free

12. 4 12V (5A) voltage regulators Texas Instruments Free

13. 6 TO-220 heat sinks Radio Shack $10.00

14. Various Dowels Lowes $10.00

15. Aluminum rod (pendulum) Lowes $6.00

16. 2 Threaded rods (axles) Lowes $5.00

17. 16X2 LCD Home Free

18. Ribbon Cable IMDL Lab Free

19. Male and Female Headers www.jameco.com $12.00

20. AA battery holder Radio Shack $3.00

21. 8 AA NiMH batteries Wal-Mart $15.00

22. 4 3000mAh 7.2V NiMH battery packs www.batteryspace.com $40.00

23. 4 6mm bearings www.towerhobbies.com $8.00

 Total

 $408.00

15

Appendix B: Source code

//#DEFINES:

#define ANGLE_PORT PINC
#define MOTOR_MAX_POS 160
#define MOTOR_MIN_POS 96
#define MOTOR_STOP 88
#define MOTOR_MIN_NEG 75
#define MOTOR_MAX_NEG 1
#define ANGLE_ARRAY_SIZE 20
#define NUM_POS_MEM 7
#define NUM_VEL_MEM 7

/***
Chip type : ATmega128
Program type : Application
Clock frequency : 14.745600 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/

#include <mega128.h>

// Alphanumeric LCD Module functions
#asm
 .equ __lcd_port=0x1B
#endasm
#include <lcd.h>
#include <stdio.h>
#include <delay.h>

/******************** Global variables **/
char angle_bias; // This is the bias to account for floor tilt, etc.
char motor_speed = 0; // This is the speed of the motor [-100 to 100]
char prev_speed = 0; // This is the previous speed of the motor
char curr_angle = 0; // This is the current angle of the pendulum
char ang_velocity = 0; // The angular velocity of the pendulum
char current_angle_index = 0; //
unsigned char angle_port_var; // This is updated with the value of the angle port
bit accepting_bump_int = 0; // 1=true, 0=false
bit pendulum_rest_side = 0; // The last side the pendulum was on [0=FAR, 1=NEAR]

char pendulum_angles[ANGLE_ARRAY_SIZE];// These are the 20 most recent angle measurements

char lcd_buffer[33]; // The LCD buffer

int pos_member_funcs[NUM_POS_MEM][3] = {{-9500,-20,-12},
 {-15,-10, -5},
 { -7, -3, 0},
 { -2, 0, 2},
 { 0, 3, 7},
 { 5, 10, 15},
 { 12, 20, 9500}
 };
int vel_member_funcs[NUM_VEL_MEM][3] = {{-9500,-35,-20},
 {-30,-15, -5},
 {-10, -2, -1},
 { -2, 0, 2},
 { 1, 2, 10},
 { 5, 15, 30},
 { 20, 35, 9500}
 };
int speed_matrix[NUM_POS_MEM][NUM_VEL_MEM] = {
 {-100,-100,-100,-100,-100,-100,-100},
 {-100, -95, -90, -85, -80, -60, -50},
 { -85, -75, -50, -35, -15, 0, 10},

16

 { -70, -40, -5, 0, 10, 45, 75},
 { -5, 0, 20, 40, 55, 80, 90},
 { 50, 60, 85, 95, 100, 100, 100},
 { 100, 100, 100, 100, 100, 100, 100}
 };

char angle_conv[256]; // This array is used to convert from the angle sensor
 // reading to the angle reading. It is initialized in main.
/**/

/******************** Function prototypes ***/
//UPDATE_ANGLE;
interrupt [TIM1_OVF] void timer1_ovf_isr(void);
interrupt [EXT_INT4] void ext_int4_isr(void);
interrupt [EXT_INT5] void ext_int5_isr(void);
void set_bias(void);
char average(char samples[], unsigned char num_samples);
void update_motor(void);
void swing_pendulum_up(void);
void update_ang_velocity(void);
void calculate_speed(void);
/**/

/********************** UPDATE_ANGLE ***/

// Function to convert ANGLE_PORT (angle) value into a valid angle

// I made it a macro because it is called often, and it doesn't return anything

#define UPDATE_ANGLE \
 angle_port_var = ANGLE_PORT;\
 curr_angle = angle_conv[angle_port_var] - angle_bias;
/**/

/*************************** TIMER1_OVF_ISR ***/

// Timer 1 overflow interrupt service routine (Updates angle array)

#pragma savereg-
interrupt [TIM1_OVF] void timer1_ovf_isr(void)
{
 #asm
 push r26
 push r27
 push r30
 push r31
 in r30,SREG
 push r30
 #endasm
 UPDATE_ANGLE
 pendulum_angles[current_angle_index] = curr_angle;
 current_angle_index++;
 if(current_angle_index == ANGLE_ARRAY_SIZE)
 {
 current_angle_index = 0;
 }
 #asm
 pop r30
 out SREG,r30
 pop r31
 pop r30
 pop r27
 pop r26
 #endasm
}
#pragma savereg+

/**/

/*************************** EXT_INT4_ISR ***/

17

// External Interrupt 4 service routine (Far side bump switch)

interrupt [EXT_INT4] void ext_int4_isr(void)
{
 unsigned char i;

 pendulum_rest_side = 0;

 if(accepting_bump_int == 1)
 {
 accepting_bump_int = 0;

 motor_speed = 0;
 update_motor();

 lcd_clear();
 delay_ms(20);
 lcd_putsf("Pendulum hit far");
 delay_ms(2000);

 lcd_clear();
 for(i=5; i>0; i--)
 {
 sprintf(lcd_buffer, "Trying Again %2d", i);
 lcd_gotoxy(0,0);
 lcd_puts(lcd_buffer);
 delay_ms(1000);
 }

 swing_pendulum_up();
 }
}
/**/

/************************** EXT_INT5_ISR **/

// External Interrupt 5 service routine (Near side bump switch)

interrupt [EXT_INT5] void ext_int5_isr(void)
{
 unsigned char i;

 pendulum_rest_side = 1;

 if(accepting_bump_int == 1)
 {
 accepting_bump_int = 0;

 motor_speed = 0;
 update_motor();

 lcd_clear();
 delay_ms(20);
 lcd_putsf("Pendulum hit near");
 delay_ms(2000);

 lcd_clear();
 for(i=5; i>0; i--)
 {
 sprintf(lcd_buffer, "Trying Again %2d", i);
 lcd_gotoxy(0,0);
 lcd_puts(lcd_buffer);
 delay_ms(1000);
 }

 swing_pendulum_up();
 }
}
/**/

/******************* SET_BIAS ***/

18

// This function is called on reset to determine what is straight up

void set_bias(void)
{
 unsigned char i, j;
 char samples[100];

 delay_ms(20);
 lcd_clear();
 delay_ms(20);
 lcd_putsf("Balance pendulum please..");

 delay_ms(3000);

 lcd_clear();
 delay_ms(20);

 for(i=5; i>0; i--)
 {
 sprintf(lcd_buffer, "Calibrating %2d", i);
 lcd_gotoxy(0,0);
 lcd_puts(lcd_buffer);
 for(j=0; j<10; j++)
 {
 UPDATE_ANGLE
 samples[(10-i)*10+j] = curr_angle;
 delay_ms(100);
 }
 }

 angle_bias = average(samples, 100);
 lcd_clear();
 sprintf(lcd_buffer, "Bias = %2d", angle_bias);
 lcd_puts(lcd_buffer);
 delay_ms(1000);
 lcd_clear();

}
/**/

/************************** AVERAGE ***/

// This function returns the average of the array

char average(char samples[], unsigned char num_samples)
{
 unsigned char i;
 int total = 0;

 for(i=0;i<num_samples;i++)
 {
 total += samples[i];
 }

 return ((char)(total / num_samples));
}
/**/

/*************************** UPDATE_MOTOR ***/

// This function converts the global variable 'motor_speed' into a PWM value and
// sets it

void update_motor(void)
{
 float m_speed;
 float neg_diff;
 float pos_diff;

19

 m_speed = motor_speed + 0.0;
 neg_diff = (MOTOR_MIN_NEG-MOTOR_MAX_NEG) + 0.0;
 pos_diff = (MOTOR_MAX_POS-MOTOR_MIN_POS) + 0.0;

 if((prev_speed > 0 && motor_speed < 0) || (prev_speed < 0 && motor_speed > 0))
 {
 prev_speed = 0;
 OCR0 = MOTOR_STOP;
 return;
 }
 if(motor_speed == 0)
 {
 prev_speed = 0;
 OCR0 = MOTOR_STOP;
 return;
 }
 if(motor_speed > 0)
 {
 prev_speed = motor_speed;
 OCR0 = (unsigned char) MOTOR_MIN_NEG - (unsigned
char)(neg_diff*(m_speed/100.0));
 return;
 }
 if(motor_speed < 0)
 {
 prev_speed = motor_speed;
 OCR0 = (unsigned char) MOTOR_MIN_POS + (unsigned char)(pos_diff*(-
m_speed/100.0));
 return;
 }

// OCR0 = MOTOR_STOP + curr_angle;

}
/**/

/************************* SWING_PENDULUM_UP **************************************/

// This function gets the robot to swing the pendulum from resting on one of
// The bump switches to balancing. It uses 'pendulum_rest_side' to determine
// which way to go. NOT IMPLEMENTED

void swing_pendulum_up(void)
{

 lcd_clear();
 lcd_putsf("Ready");

 delay_ms(1000);

 lcd_clear();
 accepting_bump_int = 1;
}
/**/

/************************ UPDATE_ANG_VELOCITY *************************************/

//

void update_ang_velocity(void)
{
 char index_1_a;
 char index_1_b;
 char index_2_a;
 // and current_angle_index

 index_1_a = (current_angle_index-1);

20

 index_1_b = (current_angle_index+1);
 index_2_a = (current_angle_index-2);

 // Wrap around the array
 if(index_1_a == -1)
 {
 index_1_a = (ANGLE_ARRAY_SIZE-1);
 index_2_a = (ANGLE_ARRAY_SIZE-2);
 }
 else if(index_2_a == -1)
 {
 index_2_a = (ANGLE_ARRAY_SIZE-1);
 }
 else if(index_1_b == ANGLE_ARRAY_SIZE)
 {
 index_1_b = 0;
 }

 ang_velocity = ((pendulum_angles[index_1_a] -
pendulum_angles[index_1_b])+(pendulum_angles[index_2_a] -
pendulum_angles[current_angle_index]))/2;
}
/**/

/************************** CALCULATE_SPEED ***************************************/

// This is the big function that implements the fuzzy controller

void calculate_speed(void)
{
 char i,j;

 float curr_pos_mem, curr_vel_mem;

 float vel_memberships[NUM_VEL_MEM];
 float pos_memberships[NUM_POS_MEM];
 float speed_m[NUM_POS_MEM][NUM_VEL_MEM];
 float total_speed;
 float total_vel, total_pos;

 // Disable angle measurement interrupts
 TIMSK=0x00;

 UPDATE_ANGLE
 update_ang_velocity();

 // Get memberships in velocity and position
 for(i=0; i< NUM_VEL_MEM; i++)
 {
 if(ang_velocity >= vel_member_funcs[i][0] && ang_velocity <=
vel_member_funcs[i][2])
 {
 if(ang_velocity < vel_member_funcs[i][1])
 {
 vel_memberships[i] = (float)((1000*(ang_velocity-
vel_member_funcs[i][0]))/(vel_member_funcs[i][1]-vel_member_funcs[i][0]));
 }
 else
 {
 vel_memberships[i] = (float)((1000*(vel_member_funcs[i][2]-
ang_velocity))/(vel_member_funcs[i][2]-vel_member_funcs[i][1]));
 }
 }
 else
 {
 vel_memberships[i] = 0.0;
 }
 }
 for(i=0; i< NUM_POS_MEM; i++)
 {

21

 if(curr_angle >= pos_member_funcs[i][0] && curr_angle <=
pos_member_funcs[i][2])
 {
 if(curr_angle < pos_member_funcs[i][1])
 {
 pos_memberships[i] = (float)((1000*(curr_angle-
pos_member_funcs[i][0]))/(pos_member_funcs[i][1]-pos_member_funcs[i][0]));
 }
 else
 {
 pos_memberships[i] = (float)((1000*(pos_member_funcs[i][2]-
curr_angle))/(pos_member_funcs[i][2]-pos_member_funcs[i][1]));
 }
 }
 else
 {
 pos_memberships[i] = 0.0;
 }
 }

 // Normalize the memberships
 total_pos = 0.0;
 for(i=0; i<NUM_POS_MEM; i++)
 {
 total_pos += pos_memberships[i];
 }
 total_vel = 0.0;
 for(i=0; i<NUM_VEL_MEM; i++)
 {
 total_vel += vel_memberships[i];
 }
 for(i=0; i<NUM_POS_MEM; i++)
 {
 pos_memberships[i] /= total_pos;
 }
 for(i=0; i<NUM_VEL_MEM; i++)
 {
 vel_memberships[i] /= total_vel;
 }

 // Get the speed from the matrix
 for(i=0; i<NUM_POS_MEM; i++)
 {
 curr_pos_mem = pos_memberships[i];
 for(j=0; j<NUM_VEL_MEM; j++)
 {
 speed_m[i][j] = speed_matrix[i][j] * curr_pos_mem;
 }
 }
 total_speed = 0.0;
 for(i=0; i<NUM_VEL_MEM; i++)
 {
 curr_vel_mem = vel_memberships[i];
 for(j=0; j<NUM_POS_MEM; j++)
 {
 total_speed += speed_m[j][i] * curr_vel_mem;
 }
 }

 motor_speed = (short) total_speed;

 // Enable angle measurement interrupts
 TIMSK=0x04;
}
/**/

void main(void)
{
 // local variables
 unsigned char i;

22

 // Input/Output Ports initialization
 // Port A initialization
 // Func0=Out Func1=Out Func2=Out Func3=Out Func4=Out Func5=Out Func6=Out
Func7=Out
 // State0=0 State1=0 State2=0 State3=0 State4=0 State5=0 State6=0 State7=0
 PORTA=0x00;
 DDRA=0xFF;

 // Port B initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=Out Func5=In Func6=In Func7=In
 // State0=T State1=T State2=T State3=T State4=0 State5=T State6=T State7=T
 PORTB=0x00;
 DDRB=0x10;

 // Port C initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
 // State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
 PORTC=0x00;
 DDRC=0x00;

 // Port D initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
 // State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
 PORTD=0x00;
 DDRD=0x00;

 // Port E initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
 // State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
 PORTE=0x00;
 DDRE=0x00;

 // Port F initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
 // State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
 PORTF=0x00;
 DDRF=0x00;

 // Port G initialization
 // Func0=In Func1=In Func2=In Func3=In Func4=In
 // State0=T State1=T State2=T State3=T State4=T
 PORTG=0x00;
 DDRG=0x00;

 // External Interrupt(s) initialization
 // INT0: Off
 // INT1: Off
 // INT2: Off
 // INT3: Off
 // INT4: On
 // INT4 Mode: Low level
 // INT5: On
 // INT5 Mode: Low level
 // INT6: Off
 // INT7: Off
 EICRA=0x00;
 EICRB=0x00;
 EIMSK=0x30;
 EIFR=0x30;

 // Timer/Counter 0 initialization
 // Clock source: TOSC1 pin
 // Clock value: TOSC1/128
 // Mode: Fast PWM top=FFh
 // OC0 output: Non-Inverted PWM
 //ASSR=0x08;
 //TCCR0=0x6D;
 //TCNT0=0x00;
 //OCR0=0x00;
 TCCR0=0x6D;

23

 OCR0 = MOTOR_STOP;

 // Timer/Counter 1 initialization
 // Clock source: System Clock
 // Clock value: 14745.600 kHz
 // Mode: Normal top=FFFFh
 // OC1A output: Discon.
 // OC1B output: Discon.
 // OC1C output: Discon.
 // Noise Canceler: Off
 // Input Capture on Falling Edge
 TCCR1A=0x00;
 TCCR1B=0x01;
 TCNT1H=0x00;
 TCNT1L=0x00;
 OCR1AH=0x00;
 OCR1AL=0x00;
 OCR1BH=0x00;
 OCR1BL=0x00;
 OCR1CH=0x00;
 OCR1CL=0x00;

 // Timer(s)/Counter(s) Interrupt(s) initialization
 TIMSK=0x04;
 ETIMSK=0x00;

 // LCD module initialization
 lcd_init(16);
 lcd_clear();
 lcd_putsf("Initialize angle array");

 // Initialize the array that holds the angle conversions
 for(i=0; i <= 127; i++)
 {
 angle_conv[i] = i;
 }
 angle_bias = -128; // Just used temporarily, it gets set later
 for(i=128; i < 255; i++)
 {
 angle_conv[i] = angle_bias;
 angle_bias++;
 }
 angle_conv[255] = angle_bias;

 lcd_clear();
 lcd_putsf("Hi!");
 delay_ms(1000);

 // First find the balance point
 set_bias();

 // Count down to start
 lcd_clear();
 for(i=3; i>0; i--)
 {
 sprintf(lcd_buffer, "Starting in %2d", i);
 lcd_gotoxy(0,0);
 lcd_puts(lcd_buffer);
 delay_ms(1000);
 }

 // Initialize the angle array
 for(i=0; i<ANGLE_ARRAY_SIZE; i++)
 {
 UPDATE_ANGLE
 pendulum_angles[i] = curr_angle;
 }

24

 current_angle_index = 0;

 // Global enable interrupts
 #asm("sei")

 // Now swing the pendulum up
 swing_pendulum_up();

 // The main loop
 while (1)
 {
 sprintf(lcd_buffer,"ang=%3d vel=%4d", curr_angle, ang_velocity);
 lcd_gotoxy(0,0);
 lcd_puts(lcd_buffer);
 i = OCR0;
 sprintf(lcd_buffer,"motr=%3d pwm=%3d ", motor_speed, i);
 lcd_gotoxy(0,1);
 lcd_puts(lcd_buffer);

 delay_ms(30);

 calculate_speed();

 update_motor();
 }
}

