

Written Report

Vilija Baublyte
EEL 5666
12/12/2003

Table of Contents

ABSTRACT.. 3

EXECUTIVE SUMMARY .. 4

INTRODUCTION .. 5

INTEGRATED SYSTEM .. 5

FIGURE 1: HARDWARE INTERFACE... 6

PLATFORM ... 6

ACTUATION ... 7

Feeding Mechanism.. 7
Water Level Sensing ... 8
Timer Mechanism ... 9

SENSORS ... 10

PH Sensor.. 10
Temperature Sensor .. 11

BEHAVIORS.. 11

CONCLUSION... 12

DOCUMENTATION.. 13

APPENDIX A... 14

APPENDIX B... 25

Abstract

Hoodie And The Blowfish is a fish feeding robot. He is designed to feed the fish
every morning, turn on the aquarium light in the morning and off at night, check
water level in the aquarium tank and if needed at more water from the backup tank
reserve. The robot will also check the pH level and temperature of the water and
display these values on LCD screen.

Executive Summary

Hoodie And The Blowfish is a fish feeding robot. Hoodie and the Blowfish will feed
the fish and turn on the aquarium light at user preset time. The aquarium light will
be automatically turned off at 11pm at night. The robot will also check the water
level in the aquarium and if water level is low, it will add more water to the aquarium
from the water reserve tank. The temperature and pH of the water will be checked
and displayed on LCD screen.

Hoodie and the blowfish uses ATMega8 microcontroller, EMP7032SLC-10 CPLD
and EMP7128SLC-7 CPLD. Microcontroller is used for main routine set up, A/D
interface for temperature sensor, PWM for servo control used in feeding mechanism
and LCD set up. EMP7032SLC-10 CPLD is used for the decoding of pH sensor and
water level detection / water pump control. EMP7128SLC-7 CPLD is used for a
clock mechanism set up to keep track of time, to allow user to input morning feeding
time, to determine when fish should be fed and light should be turned on and send out
control signals to turn on the light and feed the fish. This CPLD also allows user to
set the timer and to manually turn on and off the aquarium light and feed the fish.
Moreover CPLD saves the last time that the fish were fed and allows user to access
this information. Note that due to shortage of I/O pins on ATMega8, serial interface
between ATMega8 and EMP7128SLC-7 CPLD was implemented.

Feeding mechanism is designed as a food container with a cylinder containing a
groove attached at the bottom. The cylinder is free to rotate and by rotating dispense
flakes/granules to fall into the aquarium set up beneath the mechanism. The
mechanism utilizes one servo used to rotate the cylinder. Timer device built in
CPLD allows the system to determine when feeding mechanism should be turned on
and when aquarium light should be turned on and off.

Water level detection is achieved through the use of wires and idea of difference of
resistance between the wires in air and in water. Two separate water level detection
devices are set up, one to determine water level in the aquarium and one to determine
water level in the reservoir tank. From the water level detection mechanisms the
control equation for the water pump is set up in CPLD to turn on the water pump
when more water is needed in the aquarium.

To determine temperature of the water LM34DZ temperature sensor is used. The
temperature outputted by the sensor is passed through A/D on ATMega8 and
outputted on LCD screen.

PH of the water is determined using a digital pH sensor. The sensor has
ICL7126A/D which is directly interfaced to seven segment LED screen. The 7
segment LED outputs were taken and decoded in the CPLD and then sent to LCD
screen.

Introduction

Hoodie And The Blowfish is a robot witch will feed the aquarium fish when you are
busy or away. It was inspired by hassle that one has to go through of finding
someone to take care of the fish when you’re not available. The robot will feed the
fish at set time in the morning and turn on the aquarium light, turn the aquarium light
off at night, check water level in the fish tank and add more water if needed.
Moreover Hoodie and the Blowfish will check the quality of the water by checking
temperature and pH level and display these values on the LCD screen.

Integrated System

Hoodie and the Blowfish uses ATMega8 as its main controller with EMP7032SLC-
10 and EMP7128SLC-7 CPLD’s for decoding and other controls. Due to shortage of
Input / Output pins on ATMega8, serial interface between the EMP7128SLC-7 CPLD
and ATMega8 was set up. Figure 1 displays the general hardware interface with all
the sensors.

ATMega8 microcontroller receives temperature input to A/D port and generates
PWM signal for the servo to actuate feeding mechanism. Microcontroller also
interfaces LCD display and serial input from the CPLD.

EMP7032SLC-10 CPLD contains the pH sensor decoder. Decoded 7 segment LED
lines are combined into one 8 bit value and sent to 7128 CPLD where it is then sent to
ATMega8 through serial interface. 7032 CPLD controls the pump on/off signal
through a logic equation depending on what values are received by water level
detection lines.

EMP7128SLC-7 CPLD houses the main timer device. Timer device contains 7
buttons for timer control:

- Timer Reset
- Hour increment
- Minute increment
- Select Timer
- Select Alarm
- Set Timer or Alarm
- Set Timer

These buttons allow the user to set the time, set the alarm value, reset timer and view
the last time that the fish were fed.
Timer itself determines when fish should be fed and controls the light turn on/off
signal. There are also three buttons for manual light control and feeding mechanism.

Figure 1: Hardware Interface

Platform

The Platform for Hoodie and the Blowfish consists of simple aquarium hood frame
design which will house aquarium light right below the hood facing the water. All
electronic components will be mounted above the hood in a set water resistant box.

ATMega8

A/D

PWM

LCD
Display

Temperature
Sensor

Servo
(Feeding
Mechanism)

EMP7032SLC-10:
- Pump

Control
- PH Sensor

Decoder

PH Sensor
7 segment LED

Water Level
Detection Pump

Decoded
PH

EMP7128SLC-7
- Serial Interface with
 ATMega8
- Timer Mechanism
- Manual On/Off light
 switch and feeding
- buttons for timer
 control
- Feeding controll

7 buttons
for timer
controll

3 buttons
for manual
Light and
feeding

3 Serial Interface
lines

Light
On/Off

Feeding
Signal

LCD
Display

Frame itself will be built using 1/8 inch thick balsa wood. Below is the picture of the
platform with the fishtank:

Picture 1: Aquarium with Hoodie and the Blowfish Platform on top.

Actuation

Feeding Mechanism

The feeding mechanism will consist of flake (fish food) reservoir which will dispense
a set amount of food. A “toothpick” dispensing design may be used. The flake
reservoir would have a cylinder bellow it containing a carved out space for flakes. As
cylinder rotates, a set amount of flakes will fall be dispensed to fall into the water
beneath.

 Figure 2 : Feeding Mechanism

 As displayed in Figure 2, the cylinder will be rotated 180 degrees using an un-
 hacked servo controlled by ATMega8.

Water Level Sensing

The water level in the aquarium will be approximated using two wires and resistance
between them. If both wires are in the water, the resistance between them would be
much smaller than in air. Note Figure 3 below showing the circuit used for water
level detection. Two Mega Ohm resistor was used to increase the voltage of Water
Level Signal. With this set up the Water Level Signal had value of 4.7 to 4.9 volts
when two wires were in the water, and 0 volts when two wires were in the air. The
Water Level Signal was sent straight to CPLD to be used for pump controls.

Figure 3 : Water Level Detection Circuit

The actual pump control was set up in CPLD logic. Original set up contained two
water level detection circuits in the main tank and one water level detection circuit in
back up tank. This set up was later changed to only one water level detection circuit
in main tank for simplicity purposes. See appendix for VHDL code for water level
detection.

Timer Mechanism

Timer mechanism is an essential part of Hoodie and the Blowfish, for it determines
when the fish should be fed and when the lights should be turned on and off. The
timer mechanism also allows user to set current time and to check when the fish were
last fed. In all timer mechanism contains 7 control buttons:

- Timer Reset
- Hour increment
- Minute increment
- Select Timer
- Select Alarm
- Set Timer or Alarm
- Set Timer

To set the current time user would hold timer select button and increment hour and
minute sections of time through hour increment and minute increment buttons. When
desired time is set user latches the time in a register by pressing set timer or alarm
button. To transfer the latched time to the actual clock set timer button is pressed.

Alarm is set similarly as time, but here Select alarm button is pressed while adjusting
time. Set Timer or Alarm button latches the alarm signal to alarm register.
Whenever the alarm register and current time registers hold same value, a signal is
sent to microcontroller to feed the fish and lights are turned on. Lights are
automatically turned off at 23:00.

Timer also features a register for holding time of last feeding. This register has input
from current time, which is latched using “feed” signal, thus when accessed, this
register would contain the time when fish were fed.

Note that only one signal is sent to serial interface from the timer mechanism. The
selection between different times is set up through a mux to automatically select time
register which is being altered and display it to LCD screen depending on which
buttons are pressed. For example, when Select Alarm is pressed, mux selects alarm
register and sends it to LCD screen so that user could view minutes and hours being
incremented at real time.

Timer mechanism also has three separate switches to control the feeding and light
on/off signal. The “feed the fish” switch signal is passed through an or gate before it
goes to a microcontroller so that microcontroller would receive the signal when
switch is pressed or when signal is sent from timer mechanism to feed the fish. This
way two signals would never collide and cause problems. Similarly switch is set up
to turn on the light and to turn off the aquarium light.

Sensors

PH Sensor

HI 98106 Champ PH sensor was interfaced with ATMega8 to measure the PH of the
aquarium water. PH sensor has ICL7126 A/D converter which is interfaced directly
to 7 segment LED display (See figure 4 below). To obtain the pH reading and
display it on LCD where the rest of the information is shown, the pH had to be
transferred to ATMega8. The simplest way to obtain the pH was to take the 7
segment LED signals from A/D on pH sensor and to decode them in the CPLD.
Decoded pH values were then transferred through serial interface to the ATMega8
where the pH value was separated into two digits and outputted to LCD display. All
of the code and decoding VHDL may be found in the appendix.

Figure 4: pH sensor A/D Pinout

Temperature Sensor

LM34DZ temperature sensor was used for temperature detection. The temperature
sensor chip was glued to the aquarium side to read the temperature of the water.
Temperature sensor chip was configured to measure Fahrenheit temperature and for
every degree it would output 0.01V thus it was interfaced directly to A/D converter
on ATMega8 microcontroller and results were outputted to LCD screen.

Behaviors

The behaviors of Hoodie and the Blowfish include feeding the fish, adding more
water if needed, turning aquarium light on and off, checking temperature of the water
and checking pH of the water and displaying these values to LCD screen.

The routine of Hoodie and the Blowfish includes to continually display current time.
Every minute or so Hoodie and the Blowfish will check the temperature and pH of

the water and display these values on LCD screen. The timer mechanism
continuously checks time and compares it against alarm register, when these two
values are equal; the robot will turn on the aquarium light and will feed the fish. The
aquarium light will be automatically turned off at 23:00. Hoodie and the Blowfish
also continually checks the water level in the fish tank. When the water level in the
fishtank falls below certain level, more water will be added given that there is enough
water in the backup tank. Note that if there isn’t enough water in backup tank, the
pump will never be turned on.

Conclusion

There is one major problem in Hoodie and the Blowfish actuation which restricts the
demonstration of completely functional robot. The aquarium lights used for all
aquariums are fluorescent lights, just like the one I have used. These lights require a
starter which is a transformer to start up the light, without it, the light would not turn
on. The transformer created the problem of creating massive spikes in the power
lines that appeared to reset the cpld and microcontroller boards, thus whenever the
light was turned on, the boards were reset. Attempted fix was to use optoisolators
and set the power supplies for relays for the fluorescent light and water pump
separately from microcontroller and CPLD’s. This solution did not seem to work
since the spikes were transmitted through the power lines themselves. Another
solution proposed was to use the 12 volt battery to power CPLD’s and
microcontroller, this way no spikes could directly get to the microcontroller through
the power lines. When this solution was implemented the board was still observed to
reset but not as often as previously. When light was turned on, the board still reset
most of the time, but now when light was turned off the boards would not reset most
of the time. The oscilloscope was used again to view power and ground planes of
microcontroller and spikes were still observed when light was turned on and off. The
phenomena of the board resetting when light was turned on and off with the two
devices having no common power supply or common ground connections was then
attributed to electric or magnetic field. The proposed solution after this finding was
to build a Faraday cage to enclose all electronics of Hoodie and the Blowfish in order
to shield against electric field. Aluminum foil was used to wrap all electronic
components of the robot and the foil was grounded to the battery powering the
electronics of Hoodie and the Blowfish. This proposed solution did not appear to
solve the problem, for the board was still resetting most of the time when light was
turned on. The next solution proposed was now to eliminate fluorescent light from
the design and replace it with alternative lighting containing no transformers. This
solution has not been implemented as of yet but in theory should fix the problem.

All individual components of Hoodie and the Blowfish work correctly, and even all
interfaced components work correctly if light and water pump are eliminated and
replaced with LED’s or different components containing no transformers.

Special Thanks to Uriel, Kevin, Greg, Brian, Louis, Carl, Will and Dr. Arroyo for
their suggestions and support.

Documentation

Microcontroller: ATMega8 :
Compliments of Uriel Rodriguez

PH Sensor : Champ PH Meter
Purchased from: http://www.aquamallusa.com/champhmet114.html
Datasheet for sensor: http://www.hannainst.com/downloads/instr/hi98106.pdf
A/D Datasheet: http://www.intersil.com/data/fn/fn3084.pdf

Temperature Sensor: LM34DZ
http://www.allelectronics.com/cgi-
bin/category.cgi?category=search&item=LM34DZ&type=store

CPLD’s:
EMP7128SLC-7 : UP2 Board
EMP7032SLC-10 3701 Board
CPLD’s can be purchased at www.arrow.com

Relays:
www.jameco.com

Water Pump: 30HP water fountain pump
Lowes in Butler Plaza, Gainesville

FlourescentAquarium Light
Aquatropics on 34th street in Kash’nCarry plaza, Gainesville

Appendix A

ATMega8 Code:
/*
4 bit LCD code
*/

#include <inttypes.h>
#include <stdarg.h>
#include <avr/io.h>

//****************function Prototypes **********************//
void LCD_initialize(void);
int calc_len(int);
char * int_to_str(int);
void int_to_LCD(int);
void delay_1ms(uint8_t);
void delay_1us(uint8_t);
void SelectADCMux(uint8_t);
void delay_100ms(uint8_t);
void LCDWrite(void);
uint16_t ReadADC();
void SetupADC();
void LCD_initialize(void);
void LCDOutput(uint8_t a);
void LCD_String(char *s);
uint8_t GetCPLD(uint8_t);
void LCD_Clear(void);
void LCD_CursorHome(void);
void get_ph(void);
void get_temp(void);
void init_pwm(void);
void set_pwm(unsigned char);
//****************End Function Prototypes *****************//

int main(void)
{
 DDRD=0xBF;
 DDRB=0xFE;
 LCD_initialize();
 PORTD = 0x00;
 LCDWrite();
 delay_1ms(25);
 PORTD= 0x0F;

 LCDWrite();
 delay_1ms(25);
 init_pwm();
 uint8_t servo;
 while(1)
 {
 get_ph();
 delay_100ms(2);
 get_temp();
 delay_100ms(2);
 uint8_t a, b;
 a=GetCPLD(2);
 b=GetCPLD(1);
 int_to_LCD(b);
 LCD_String(":");
 int_to_LCD(a);
 delay_100ms(15);
 LCD_Clear();
 LCD_CursorHome();
 PORTD &=0xBF;
 servo = PIND;
 //int_to_LCD(servo);
 servo &= 0x40;
 int_to_LCD(servo);
 if (servo == 64)
 {
 feed_fish();
 delay_100ms(20);
 }
 LCD_Clear();
 LCD_CursorHome();
 }
 return 0;

}

void feed_fish(void)
{
LCD_Clear();
LCD_CursorHome();
LCD_String("Feeding Fish");
init_pwm();
set_pwm(10);
delay_100ms(18);

set_pwm(200);
delay_100ms(18);
set_pwm(0);
}

void init_pwm(void)
{
 DDRB = 0xFF; //PB0-3 = motor direction, OC0 = PB4, OC2 = PB7
 //TCCR0=0x66; //125Hz PWM: 16Mhz clk, Phase correct, non inverting, 256
prescaler
 TCCR2=0X64; //125Hz PWM: 16Mhz clk, Phase correct, non inverting, 64 prescaler
 //0110 0100
}

void set_pwm(unsigned char a)
{
 OCR2=a;
 //OCR2=a;
}

void get_temp(void)
{
 DDRC=0x00;
 LCD_Clear();
 LCD_CursorHome();
 SetupADC();
 uint16_t valueH;
 uint8_t val1, val2;
 delay_100ms(10);
 SelectADCMux(0);
 delay_100ms(1);
 valueH=ReadADC();
 valueH=valueH*25;
 valueH=valueH*5;
 valueH=valueH/256;
 LCD_String("Temperature: ");
 int_to_LCD(valueH);
 LCD_String(" ");
 delay_100ms(70);
}
void SetupADC(void)
{
 DDRC = 0x00;
 ADCSR |= (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0); //Set for lowest speed (1/128)

 ADCSR |= (1<<ADFR); //Free running ADC

 ADMUX = 0x00; //Only reading channel 0 (right adjust)

 ADCSR |= (1<<ADEN); //Enable the ACD itself

 ADCSR |= (1<<ADSC); //And start the first conversion

 //ADCSR |= (1<<ADIE); //And enable interrupts (when complete)

}

uint16_t ReadADC(void)
{

 uint16_t value; //value is only 10 bit though.

 value = ADCL;

 value += (ADCH & 0x03)<<8;

 return value;

}

void SelectADCMux(uint8_t i)
{
 if (i == 0)
 ADMUX &=0xF0;
 else if (i == 1)
 {
 ADMUX &=0xF0;
 ADMUX |=0x01;
 }
 else if (i == 2)
 {
 ADMUX &=0xF0;
 ADMUX |=0x02;
 }
 else if (i == 3)
 {
 ADMUX &=0xF0;
 ADMUX |=0x03;

 }
 else if (i == 4)
 {
 ADMUX &=0xF0;
 ADMUX |=0x04;
 }
 else if (i == 5)
 {
 ADMUX &=0xF0;
 ADMUX |=0x05;
 }
 else if (i == 6)
 {
 ADMUX &=0xF0;
 ADMUX |=0x06;
 }
 else
 {
 ADMUX &=0xF0;
 ADMUX |=0x07;
 }
}

void get_ph(void)
{

 uint8_t value1, value2, value0;
 LCD_Clear();
 LCD_CursorHome();
 LCDOutput(0x50);
 delay_1ms(50);
 LCDOutput(0x48);
 delay_1ms(50);
 LCDOutput(0x20);
 value0=GetCPLD(0);
 value1=value0 & 0xF0;
 value1=value1>>4;
 value2=value0 & 0x0F;
 value1 = 0x30+value1;
 value2 = 0x30 + value2;
 LCDOutput(value2);
 delay_1ms(10);
 LCDOutput(0x2E);
 delay_1ms(10);
 LCDOutput(value1);
 delay_100ms(70);

}

void delay_100ms(uint8_t a)
{
 uint8_t i;
 for (i=0; i<a; i++)
 {
 delay_1ms(100);
 }
}

void LCD_String(char *s)
{
 while (*s) LCDOutput(*s++);
}

void LCD_Clear(void)
{
 PORTD = 0x00;
 LCDWrite();
 delay_1ms(50);
 PORTD= 0x01;
 LCDWrite();
 delay_1ms(50);
}

void LCD_CursorHome(void)
{
PORTD = 0x00;
 LCDWrite();
 delay_1ms(50);
 PORTD= 0x02;
 LCDWrite();
 delay_1ms(50);
}

void LCDOutput(uint8_t a)
{
 delay_1ms(50);
 uint8_t temp=a;
 a >>=4; //send first nibble to port D
 a |= 0x20;
 PORTD = a;
 LCDWrite();

 delay_1ms(50);

 temp &=0x0F;
 temp |=0x20;
 PORTD= temp;
 LCDWrite();
 delay_1ms(50);

}

uint8_t GetCPLD(uint8_t x)
{
//PB2 = Enable latch
//PB1=clock
//PB0=data
//PB4 =S0
//pb5 =s1
DDRB &=0xFE; //b7, b6 b3-> leave alone ; b5, b4, b2, b1 -> output ; b0 -> input
DDRB |=0x36;
//set which data to receive
uint8_t ser, i, a;
 if (x== 0) //receive ph
 {
 PORTB &=0xCF;
 PORTB |=0x0E;
 }
 else if (x==1) //receive hours
 {
 PORTB &=0xCF;
 PORTB |=0x10;
 }
 else if(x==2) //receive minutes
 {
 PORTB &=0xCF;
 PORTB |=0x20;
 }
 else
 {
 PORTB &=0xCF; //by default set to ph
 PORTB |=0x0E;
 }

ser=0;
PORTB |=0x04; //set pb2
PORTB &=0xFD; //set clock low

PORTB |=0x02; //set clock hi
PORTB &=0xFB; //clear pb2
PORTB &=0xFD;
PORTB |=0x02;
for (i=0; i<7; i++)
 {
 PORTB &=0xFD; //set clock low
 a=PINB;
 a &=0x01;
 ser=ser+a; //read port PB0 and shift it into data register
 ser=(ser<<1);
 PORTB |=0x02; //set clock hi
 }
 PORTB &=0xFD; //set clock low
 a=PINB;
 a &=0x01;
 ser=ser+a; //read port PB0 and shift it into data register
 PORTB |=0x02; //set Clock Low
return ser;
}

void delay_1us(uint8_t i) //method which waits i us.
{
 uint8_t j;

 while (i)
 {
 for (j=0 ; j<4 ; j++);
 i--;
 }
}

void LCDWrite(void)
{
 PORTD = (PORTD | 0x80); //Set LCD enable low
 delay_1us(2);
 PORTD = (PORTD & 0x7F); //set LCD enable high
}

void delay_1ms(uint8_t i) //method which waits i ms.
{
 uint8_t j, k;

 while (i)
 {

 for (j=0 ; j<200 ; j++)
 {
 for (k=0 ; k < 2; k++);
 }
 i--;
 }
}

void LCD_initialize(void)
{

/*****************************Hardware Set up information for
LCD*************************
PA7 = Enable on LCD PIN 6 on LCD
PA6 = Not connected
PA5 = RS signal Pin4 on LCD
PA4 = RW pin5 on LCD
PA3 .. PA0 = LCD7..4
/*****************************End of LCD Hardware Set up Info
****************************/

 delay_1ms(17); //wait at least 15ms on power on
 PORTD= 0x03; //RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 LCDWrite(); //0 0 0 0 1 1 x x x x x=don't care, set E
low to write

 delay_1ms(6); //RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 PORTD = 0x03; //0 0 0 0 1 1 x x x x
 LCDWrite();

 delay_1us(150); //RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 PORTD = 0x03; //0 0 0 0 1 1 x x x x
 LCDWrite();

 delay_1ms(6); //RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 PORTD = 0x02; //0 0 0 0 1 0 x x x x
 LCDWrite();

 delay_1us(60); //<Wait 4.1ms>
 PORTD = 0x02; //RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 LCDWrite(); //0 0 0 0 1 0 N F x x
 delay_1us(60); //4-bit operation
 //N=Number of `lines'
 PORTD = 0x08; //0 for 1/8 duty cycle -- 1 `line'
 LCDWrite(); //1 for 1/16 duty cycle -- 2 `lines'

 delay_1us(60); //F=font,
 //1 for 5x11 dot matrix
 //0 for 5x8 dot matrix

 delay_1us(80); //<Wait 40us or till BF=0>
 PORTD = 0x00; //RS R/W DB7 DB6 DB5 DB4
 LCDWrite(); //0 0 0 0 0 0
 delay_1us(70); //0 0 1 0 0 0
 PORTD = 0x08; //display off, cursor off, blink off
 LCDWrite();
 delay_1us(50);

 delay_1us(70); //<Wait 40us or till BF=0>
 PORTD = 0x00; //RS R/W DB7 DB6 DB5 DB4
 LCDWrite(); //0 0 0 0 0 0
 delay_1us(70); //0 0 0 0 0 1
 PORTD = 0x01; //Clear screen, cursor home
 LCDWrite();
 delay_1us(60);

 delay_1ms(4); //<Wait 40us or till BF=0>
 PORTD = 0x00; //RS R/W DB7 DB6 DB5 DB4
 LCDWrite(); //0 0 0 0 0 0
 delay_1us(70); //0 0 0 1 1 0
 PORTD = 0x06; //increment cursor to theright when writing, dont shift
screen
 LCDWrite();
 delay_1us(50); //initialization complete

}

char * int_to_str(int val)
{
 int len = calc_len(val);
 char str[len+1];
 int i;
 for (i = len - 1; i >= 0; i--)
 {
 str[i] = val%10 + 0x30; //converts digit to ASCII equivalent by adding 0x30
 val /= 10;
 }
 str[len] = '\0';
 return(str);
}

void int_to_LCD(int val)
{
 int len = calc_len(val);
 char str[len+1];
 int i;
 for (i = len - 1; i >= 0; i--)
 {
 str[i] = val%10 + 0x30; //converts digit to ASCII equivalent by adding 0x30
 val /= 10;
 }
 str[len] = '\0';
 for(i=0 ; i< len; i++)
 {
 LCDOutput(str[i]);
 }
}

int calc_len(int val) //calculates length of integer...cannot be greater than 5 digits (16bit
int)
{
int done=0;
int length=1;
while(!done)
{
if(val>10)
{
length++;
val=val/10;
}
else
{
done=1;
}
}
return(length);
}

Appendix B

Pump and PH decoder in EMP7032SLC-10 CPLD:

VHDL Code :

PHSensor:

library ieee;
use ieee.std_logic_1164.all;
USE IEEE.STD_LOGIC_ARITH.ALL;

entity PHsensor is
 port(
 a1, a2 : in STD_LOGIC_VECTOR(6 downto 0);
 bp : in STD_LOGIC;
 q : out std_logic_vector(7 downto 0)
);
END PHsensor;

ARCHITECTURE behavior of PHsensor IS
Signal b, z1, z2 : STD_LOGIC_VECTOR(6 downto 0);
Signal m1, m2 : STD_LOGIC_VECTOR(3 downto 0);
BEGIN
latch1 : process(bp)
begin
if(bp'event and bp='1') then
b <= bp & bp & bp & bp & bp & bp & bp;
z1 <=(a1 xor b) ;
z2 <=(a2 xor b) ;
end if;
end process;
WITH z1 SELECT
m1 <= "0000" when "1111110",
 "0001" when "0110000",
 "0010" when "1101101",
 "0011" when "1111001",
 "0100" when "0110011",
 "0101" when "1011011",
 "0110" when "1011111",
 "0111" when "1110000",
 "1000" when "1111111",
 "1001" when "1111011",
 "1111" when others;
WITH z2 SELECT
m2 <= "0000" when "1111110",
 "0001" when "0110000",
 "0010" when "1101101",
 "0011" when "1111001",
 "0100" when "0110011",
 "0101" when "1011011",

 "0110" when "1011111",
 "0111" when "1110000",
 "1000" when "1111111",
 "1001" when "1111011",
 "1111" when others;

lat: process(bp)
begin
 if (bp'event and bp='1') then
 q <= m1 & m2;
 end if;
end process;
END behavior;

PumpControl:

library ieee;
use ieee.std_logic_1164.all;

entity pumpControl is
 port(
 tank1, tank2, r : in std_logic;
 pumpOn : out std_logic);
end pumpControl;

ARCHITECTURE behavior of pumpControl IS
signal temp : std_logic;
BEGIN
pumpOn <= not tank1 and r;
END behavior;

EMP7128SLC CPLD GDF Diagram:

Clock Device VHDL:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity clockingdev is
port (
 clk : in std_logic;
 m : in std_logic;
 minute : in std_logic_vector(5 downto 0);
 hour : in std_logic_vector(4 downto 0);
 Qminut : out std_logic_vector(5 downto 0);
 Qhr : out std_logic_vector(4 downto 0);
 sec : out std_logic_vector(1 downto 0);

 secClk : out std_logic;
 rst : in std_logic);
end clockingdev;

architecture behavior of clockingdev is
signal Asec : std_logic_vector(10 downto 0);
signal Amin : std_logic_vector(5 downto 0);
signal A : std_logic_vector(4 downto 0);
signal Csec : std_logic;
signal Cmin : std_logic;
begin

mySecond : process(clk, rst)
begin
if (clk'event and clk='1') then
 if rst = '1' then
 Asec <= "00000000001";
 Csec <='0';
 elsif Asec = "11000001010" then
 Asec <= "00000000001";
 Csec<='1';
 else
 Asec <= Asec + 1;
 Csec <='0';
 end if;
end if;
secClk <=Asec(5);
sec <= Asec(10) & Asec(9);
end process mySecond;

myMinutes : process(Csec, rst)
begin
 if rst='1' then
 Amin<="000000";
 cmin <='0';
 elsif (m = '1') then
 Amin <= minute;
 elsif (Csec'event and Csec='1') then
 if Amin = "111011" then
 Amin <= "000000";
 cmin <= '1';
 else
 Amin <= Amin + 1;
 cmin <= '0';
 end if;
 end if;

Qminut <= Amin;
end process myMinutes;

myHour : process(cmin)
begin
 if rst='1' then
 A <= "00000";
 elsif (m='1') then
 A <= hour;
 elsif (cmin'event and cmin='1') then
 if A = "10111" then
 A <= "00000";
 else
 A <= A + 1;
 end if;
 end if;
end process myHour;
Qhr <= A;
end behavior;

Latching Time VHDL:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity latchtime is
port(
 alarm1 : in std_logic;
 timer : in std_logic;
 setTime1 : in std_logic;
 minCntA : in std_logic_vector(5 downto 0);
 hrCntA : in std_logic_vector(4 downto 0);
 minCntT : in std_logic_vector(5 downto 0);
 hrCntT : in std_logic_vector(4 downto 0);
 minOutA : out std_logic_vector(5 downto 0);
 hrOutA : out std_logic_vector(4 downto 0);
 minOutT : out std_logic_vector(5 downto 0);
 hrOutT : out std_logic_vector(4 downto 0));
end latchtime;

architecture behavior of latchtime is
begin

setT :process(setTime1)
begin

 if(setTime1'event and setTime1 = '1') then
 if (alarm1 = '1') then
 minOutA <= minCntA;
 hrOutA <= hrCntA;
 elsif (timer = '1') then
 minOutT <= minCntT;
 hrOutT <= hrCntT;
 end if;
 end if;
end process setT;

end behavior;

Loading Time into Timer VHDL:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity minuteLoad is
port(
 alarm : in std_logic;
 clk : in std_logic;
 timer : in std_logic;
 minute1 : in std_logic;
 hour1 : in std_logic;
 mintimA : out std_logic_vector(5 downto 0);
 hrtimA : out std_logic_vector(4 downto 0);
 mintimT : out std_logic_vector(5 downto 0);
 hrtimT : out std_logic_vector(4 downto 0));
end minuteLoad;

architecture behavior of minuteLoad is
 Signal minCntA : std_logic_vector(5 downto 0);
 Signal hrCntA : std_logic_vector(4 downto 0);
 Signal minCntT : std_logic_vector(5 downto 0);
 Signal hrCntT : std_logic_vector(4 downto 0);
 signal temp2 : std_logic_vector(1 downto 0);
 signal temp3 : std_logic_vector(1 downto 0);
 Signal minute : std_logic;
 signal hour : std_logic;
begin

debounceminute : process(clk)
begin

 if (clk'event and clk= '1') then
 temp2(1) <= temp2(0);
 temp2(0) <= minute1;
 end if;
 minute <= minute1 and temp2(0) and temp2(1);
end process debounceminute;

debouncehour : process(clk)
begin
 if (clk'event and clk= '1') then
 temp3(1) <= temp3(0);
 temp3(0) <= hour1;
 end if;
 hour <= hour1 and temp3(0) and temp3(1);
end process;

min3 : process(minute)
begin
 if (minute'event and minute='1') then
 if (alarm = '1') then
 if (minCntA = "111011") then
 minCntA <= "000000";
 else
 minCntA <= minCntA + 1;
 end if;
 end if;
 end if;
end process min3;

hr3 : process(hour)
begin
 if (hour'event and hour='1') then
 if (alarm = '1') then
 if (hrCntA = "10111") then
 hrCntA <= "00000";
 else
 hrCntA <= hrCntA + 1;
 end if;
 end if;
 end if;
end process hr3;

minT : process(minute)
begin
 if (minute'event and minute='1') then
 if (timer = '1') then

 if (minCntT = "111011") then
 minCntT <= "000000";
 else
 minCntT <= minCntT + 1;
 end if;
 end if;
 end if;
end process minT;

hrT : process(hour)
begin
 if (hour'event and hour='1') then
 if (timer = '1') then
 if (hrCntT = "10111") then
 hrCntT <= "00000";
 else
 hrCntT <= hrCntT + 1;
 end if;
 end if;
 end if;
end process hrT;
mintimA <= minCntA;
hrtimA <= hrCntA;
mintimT <= minCntT;
hrtimT <= hrCntT;
end behavior;

Feeder Controll:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity feederControl is
port(
 minAlarm : in std_logic_vector(5 downto 0);
 hrAlarm : in std_logic_vector(4 downto 0);
 minTime : in std_logic_vector(5 downto 0);
 hrTime : in std_logic_vector(4 downto 0);
 mysec : in std_logic_vector(1 downto 0);
 feednow : in std_logic;
 lgh : in std_logic;
 liteoff : in std_logic;
 clk : in std_logic;
 feed : out std_logic;
 lightOn : out std_logic

);
end feederControl;

architecture behavior of feederControl is
Signal hrAlarmL : std_logic_vector(4 downto 0);
Signal minAlarmL : std_logic_vector(5 downto 0);
Signal tmp : std_logic;
begin

fd : process(clk)
begin
 if (clk'event and clk='1') then
 if (((hrTime = hrAlarm) and (minTime = minAlarm)) and ((mysec = "11") or
(mysec="10"))) then
 feed <= '1';
 lightOn <='1';
 elsif (feednow = '1') then
 feed <='1';
 elsif (liteoff='1') then
 lightOn <='0';
 elsif (lgh = '1') then
 lightOn <= '1';
 elsif (((hrTime = "10111") and (minTime = "000000"))) then
 lightOn <='0';
 else
 feed <= '0';
 end if;
 end if;
end process fd;
end behavior;

Muxes for Minutes and Hours:

library ieee;
use ieee.std_logic_1164.all;

entity VilijaMux35 is
 port(
 a3, a2, a1, a0 : in STD_LOGIC_VECTOR(5
downto 0);
 s : in STD_LOGIC_vector(1 downto
0);
 Z1 : out STD_LOGIC_VECTOR(5
downto 0)

);
END VilijaMux35;

ARCHITECTURE behavior of VilijaMux35 IS
BEGIN

WITH s SELECT
Z1 <= a3 when "11",
 a2 when "10",
 a1 when "00",
 a0 when "01",
 a1 when others;

END behavior;

library ieee;
use ieee.std_logic_1164.all;

entity VilijaMux34 is
 port(
 a3, a2, a1, a0 : in STD_LOGIC_VECTOR(4
downto 0);
 s : in STD_LOGIC_vector(1 downto
0);
 Z1 : out STD_LOGIC_VECTOR(4
downto 0)
);
END VilijaMux34;

ARCHITECTURE behavior of VilijaMux34 IS
BEGIN

WITH s SELECT
Z1 <= a3 when "11",
 a2 when "10",
 a1 when "00",
 a0 when "01",
 a1 when others;

END behavior;

Code to display when fish were last fed :

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

Entity inquiry is
port (
 clk : in std_logic;
 feednow : in std_logic;
 minFed : in std_logic_vector(5 downto 0);
 hrFed : in std_logic_vector(4 downto 0);
 mint : out std_logic_vector(5 downto 0);
 hour : out std_logic_vector(4 downto 0));
end inquiry;

architecture behavior of inquiry is
begin

process(clk)
begin
 if (clk'event and clk='1') then
 if (feednow = '1') then
 mint <= minFed;
 hour <= hrFed;
 end if;
 end if;
end process;
end behavior;

Mux to select appropriate time:

library ieee;
use ieee.std_logic_1164.all;

entity VilijaMux2 is
 port(
 a2, a1, a0 : in STD_LOGIC_VECTOR(7 downto 0);
 s : in STD_LOGIC_Vector(1 downto
0);
 z1 : out STD_LOGIC_VECTOR(7
downto 0)
);
END VilijaMux2;

ARCHITECTURE behavior of VilijaMux2 IS
BEGIN

WITH s SELECT

Z1 <= a0 when "11",
 a2 when "10",
 a1 when "01",
 a0 when "00",
 a0 when others;
END behavior;

Serial Interface :

library ieee;
use ieee.std_logic_1164.all;

entity shiftRegister is
port(
shiftclk: in std_logic;
en : in std_logic;
d: in std_logic_vector(7 downto 0);
q: out std_logic);

end shiftRegister;

architecture archregistered of shiftRegister is
signal temp : std_logic_vector(7 downto 0);
begin
reg: process (shiftclk)
begin
 if (shiftclk'event and shiftclk= '1') then
 if (en = '1') then
 temp<=d;
 else
 q <= temp(7);
 temp(7) <= temp(6);
 temp(6) <= temp(5);
 temp(5) <= temp(4);
 temp(4) <= temp(3);
 temp(3) <= temp(2);
 temp(2) <= temp(1);
 temp(1) <= temp(0);

 end if;
 end if;
end process reg;

end archregistered;

