Written Report

Vilija Baublyte
EEL 5666
12/12/2003

Table of Contents

F N = IS 7N O [OOSR 3
EXECUTIVE SUMMARY ...ttt ettt e sttt e s s s aae e s s e sata e e s s sabaes e s s eabasessabbeeessssbseeessssaenssns 4
INTRODUGTION ...ooiiiiitiiee et esitree e et e e s eitbeeesasbseeeesbseeessabseeesassbaeesaassseesssasssesesassseeesanssreesssnsses 5
INTEGRATED SYSTEM ...ttt ettt e sttt e e s st e s e e e s s saba e e s s sbbaeessenbbeeesasbaeesssanens 5
FIGURE 1: HARDWARE INTERFAQCE. ... ottt ettt e e e savee e s s s aaea e s senaaee e 6
TN I | Y TR 6
F AN O 11 7N I L N 7

(S0 (] 1o Y=o 7= o ST 7

WELEr LEVE SENSINGceiitiriiiiiiiieiee ettt e e b sn b b e aneene e s 8

L0 A Lo 17 T 1RO 9
S NN O 10

[IS 1o 10

TEMPEIELUIE SENSOK ...ccuvieiiiieeiieeesiee e stee st e e sre e e e ssa e e s sbs e e sbe e e sbeeesabeeesabeeesabeeesabeeesnseeennns 11
Y TN A 1@ 11
CONGCLUSIONeeiiicttiee ettt erbre e e et e e s et a e e s e sabe e e e e aabseeessassseeesansseeesaasbbeeasabbaeeesansreeesanreneas 12
DOCUMENTATION.....cc ottt et e et e e e st e e s e eaae e e s s esabe e e e e ssbseeessssbaeessabbseessasbaeesssassresesassreneas 13
APPENDIX A oottt e et e e e et e e e e e b a e e e e et be e e e e e b—eeeeaaaraeeeeabbereeaaarreeeeanraeeeearrreenans 14

APPENDIX B ..o e 25

Abstract

Hoodie And The Blowfish is a fish feeding robot. He is desgned to feed the fish
evey morning, turn on the aguarium light in the morning and off a night, check
water leve in the aguarium tank and if needed a more water from the backup tank
reserve. The robot will also check the pH levd and temperature of the water and
display these values on LCD screen.

Executive Summary

Hoodie And The Blowfish is a fish feeding robot. Hoodie and te Blowfish will feed
the fish and turn on the aguarium light & user presst time. The aguarium light will
be auttomaticaly turned off a 1lpm at night. The robot will dso check the water
level in the aguarium and if water leve is low, it will add more water to the aguarium
from the water reserve tank. The temperature and pH of the water will be checked
and displayed on LCD screen.

Hoodie and the blowfish uses ATMega3 microcontroller, EMP7032SLC-10 CPLD
and EMP7128SL.C-7 CPLD. Microcontroller is used for man routine set up, A/D
interface for temperature sensor, PWM for servo control used in feeding mechanism
and LCD set up. EMP7032SLC-10 CPLD is used for the decoding of pH sensor and
water level detection / water pump control. EMP7128S.C-7 CPLD is used for a
clock mechanism set up to keep track of time, to dlow user to input morning feeding
time, to determine when fish should be fed and light should be turned on and send out
control sgnds to turn on the light and feed the fish. This CPLD dso dlows user to
st the timer and to manudly turn on and off the aguarium light and feed the fish.
Moreover CPLD saves the lagt time that the fish were fed and dlows user to access
this information. Note that due to shortage of /O pins on ATMega8, serid interface
between ATMega8 and EMP7128SLC-7 CPLD was implemented.

Feeding mechanism is desgned as a food container with a cylinder containing a
groove attached a the bottom. The cylinder is free to rotate and by rotating dispense
flakeslgranules to fdl into the aguarium st up benesth the mechanism. The
mechanism utilizes one servo used to rotate the cylinder. Timer device built in
CPLD dlows the sysem to determine when feeding mechanism should be turned on
and when aguarium light should be turned on and off.

Waer level detection is achieved through the use of wires and idea of difference of
resstance between the wires in air and in water. Two Separate water level detection
devices are et up, one to determine water level in the aguarium and one to determine
water leve in the reservoir tank. From the water level detection mechanisms the
control equation for the water pump is set up in CPLD to turn on the water pump
when more water is heeded in the aguarium.

To determine temperature of the water LM34DZ temperature sensor is used. The
temperature outputted by the sensor is passed through A/D on ATMega8 and
outputted on LCD screen.

PH of the water is determined usng a digitd pH sensor. The sensor has
ICL7126A/D which is directly interffaced to seven segment LED screen. The 7
segment LED outputs were taken and decoded in the CPLD and then sent to LCD
screen.

I ntroduction

Hoodie And The Blowfish is a robot witch will feed the aguarium fish when you are
busy or away. It was inspired by hasde that one has to go through of finding
someone to take care of the fish when you're not avalable. The robot will feed the
fish a st time in the morning and turn on the aguarium light, turn the aguarium light
off a night, check water leve in the fish tank and add more water if needed.
Moreover Hoodie and the Blowfish will check the qudity of the water by checking
temperature and pH level and display these vaues on the LCD screen.

Integrated System

Hoodie and the Blowfish uses ATMega8 as its main controller with EMP7032SLC-
10 and EMP7128SL.C-7 CPLD’s for decoding and other controls. Due to shortage of
Input / Output pins on ATMega8, serid interface between the EMP7128SL.C-7 CPLD
and ATMega8 was set up. Figure 1 displays the generd hardware interface with dl
the sensors.

ATMega8 microcontroller receives temperature input to A/D port and generates
PWM ggnd for the servo to actuate feeding mechanism. Microcontroller aso
interfaces LCD display and serid input from the CPLD.

EMP7032SLC-10 CPLD contains the pH sensor decoder. Decoded 7 segment LED
lines are combined into one 8 bit value and sent to 7128 CPLD where it is then sent to
ATMega8 through serid inteface. 7032 CPLD controls the pump on/off signd
through a logic equation depending on what vaues are receved by water leve
detection lines.

EMP7128SLC-7 CPLD houses the man timer device Time device contans 7
buttons for timer control:

- Time Rext

- Hour increment

- Minute increment

- Sdect Timer

- Sdect Alaam

- Sa Timer or Alam

- SaTimer
These buttons dlow the user to set the time, set the darm vaue, reset timer and view
the lagt time that the fish were fed.
Timer itsdf determines when fish should be fed and controls the light turn on/off
sgnd. There are dso three buttons for manud light control and feeding mechaniam.

Figure 1. Hardware Interface

Platform

EMP7032SLC-10: Water Leve
Pump) - Pump 4/ Detection
Contral
Decoded - PH Sensor
PH Decoder —— | PHSensor
7 ssgment LED
» EMP7128SL.C-7)
E— - Sord Inefeve with |y L
for timer ATMegsb
b . .
controll - Timer Mechaniam
- Manud On/Off light 3 Seridl Interf
switch and feading oo e
3 buttons - buttonsfor timer s
foomanud |— control
Light and - Feeding contrall :
feeding Fgedl ng
Sgnd
Temperature ATMega3
Sensor \
A/D
Servo «—— | PWM <
(Feeding
Mechanism) LCD
Display <
Display

The Plaform for Hoodie and the Blowfish condsts of smple aguarium hood frame
desgn which will house aguarium light right below the hood facing the water. All
electronic components will be mounted above the hood in a set water resstant box.

Frame itsdf will be built usng 1/8 inch thick basa wood. Bedow is the picture of the
platform with the fishtank:

Picture 1: Aquarium with Hoodie and the Blowfish Platform on top.

Actuation

Feeding M echanism

The feeding mechanism will conagt of flake (fish food) reservoir which will dispense
a st amount of food. A “toothpick” dispensing design may be used. The flake
reservoir would have a cylinder bellow it containing a carved out space for flakes. As
cylinder rotates, a set amount of flakes will fal be dispensad to fdl into the water
beneath.

Figure 2 : Feeding M echanism

Asdisplayed in Figure 2, the cylinder will be rotated 180 degrees using an un-
hacked servo controlled by ATMega8.

Water Level Sensing

The water level in the aquarium will be gpproximated using two wires and resstance
between them. If both wires are in the water, the resistance between them would be
much smdler theninar. Note Figure 3 below showing the circuit used for water
level detection. Two Mega Ohm resistor was used to increase the voltage of Water
Level Signd. With this set up the Water Level Signd had value of 4.7 to 4.9 volts
when two wires were in the water, and 0 volts when two wireswerein theair. The
Water Level Signal was sent straight to CPLD to be used for pump controls.

Wigter Level Signal (To CPLDN

MOk —‘— I

Figure3: Water Level Detection Circuit

The actud pump control was set up in CPLD logic. Origind set up contained two
water level detection circuitsin the main tank and one water level detection circuit in
back up tank. This set up was later changed to only one water level detection circuit
in main tank for smplicity purposes. See gppendix for VHDL code for weter leve
detection.

Timer Mechanism

Timer mechaniam is an essentid part of Hoodie and the Blowfish, for it determines
when the fish should be fed and when the lights should be turned on and off. The
timer mechanism aso alows user to set current time and to check when the fish were
lagt fed. Indl timer mechanism contains 7 control buttons:

- Timer Rest

- Hour increment

- Minute increment

- Sdect Timer

- Sdect Alam

- Sat Timer or Alarm

- SaTimer
To st the current time user would hold timer select button and increment hour and
minute sections of time through hour increment and minute increment buttons. When
desred timeis st user latchesthetimein aregister by pressng set timer or darm
button. To transfer the latched time to the actuad clock set timer button is pressed.

Alamisset amilarly astime, but here Sdlect darm button is pressed while adjugting
time. Set Timer or Alarm button latches the darm sgnd to darm regidter.
Whenever the darm register and current time registers hold same vaue, asgnd is
sent to microcontroller to feed the fish and lights are turned on. Lights are
automaticaly turned off at 23:00.

Timer dso features aregiger for holding time of last feeding. This register has input
from current time, which is laiched using “feed” sgnd, thus when accessed, this
register would contain the time when fish were fed.

Note that only one sgnd is sent to serid interface from the timer mechanism. The
selection between different times is set up through amux to automatically select time
register which is being dtered and display it to LCD screen depending on which
buttons are pressed. For example, when Select Alarmis pressed, mux seectsadarm
register and sendsit to LCD screen so that user could view minutes and hours being
incremented & red time.

Timer mechanism aso has three separate switches to control the feeding and light
on/off sgndl. The“feed thefish” switch Sgnd is passed through an or gate before it
goes to amicrocontroller so that microcontroller would receive the sgna when
switch is pressed or when sgnd is sent from timer mechaniam to feed the fish. This
way two signals would never collide and cause problems. Similarly switch is set up
to turn on the light and to turn off the aguarium light.

Sensors

PH Sensor

HI 98106 Champ PH sensor was interfaced with ATMega3 to measure the PH of the
aquarium water. PH sensor has ICL7126 A/D converter which isinterfaced directly
to 7 segment LED display (See figure 4 below). To obtain the pH reading and
display it on LCD where the rest of the information is shown, the pH had to be
transferred to ATMega8. The smplest way to obtain the pH wasto take the 7
segment LED signds from A/D on pH sensor and to decode them in the CPLD.
Decoded pH vaues were then transferred through serid interface to the ATMega8
where the pH value was separated into two digits and outputted to LCD display. All
of the code and decoding VHDL may be found in the gppendix.

Pinout
ICL7126 (PDIP)

TOP VIEW
v+ [T ~ 40] osc 1
[D1 [Z] 53] osc 2
c1 5] 58] osc 3
B1 [&] 57] TEST
{1s) ¢ a1 [T} [36] REF Hi
F1 [E] [3%] REF LO
e1 [7] 34] Crer+
| E1 [&] 53] Crer-
o2 [E] 52] common
cz [0 [37] IN HI
o] 2 O m e
az [9] A-Z
F2 [13] 28] BUFF
| E2 [13] [27] INT
D3 [0 Z5] v-
(1005} ¢ 83 [T5 Z5] &2 (10s)
F3 7] 23] c3
| E3 [15] 23] A3 § (100s)
{1000y AB4 [19] 22] -:33}
roL [20] [21] BP/GND
(MINUS)

Figure 4: pH sensor A/D Pinout

Temperature Sensor

LM34DZ temperature sensor was used for temperature detection. The temperature
sensor chip was glued to the aguarium side to read the temperature of the water.
Temperature sensor chip was configured to measure Fahrenheit temperature and for
every degree it would output 0.01V thus it was interfaced directly to A/D converter
on ATMega8 microcontroller and results were outputted to LCD screen.

Behaviors

The behaviors of Hoodie and the Blowfish include feeding the fish, adding more
water if needed, turning aguarium light on and off, checking temperature of the water
and checking pH of the water and displaying these valuesto LCD screen.

The routine of Hoodie and the Blowfish includes to continudly display current time.
Every minute or so Hoodie and the Blowfish will check the temperature and pH of

the water and display these vadues on LCD streen. The timer mecheniam
continuoudy checks time and compares it agang dam regiger, when these two
vaues are equd; the robot will turn on the aguarium light and will feed the fish. The
aquarium light will be automaticdly turned off & 23:00. Hoodie and the Blowfish
adso continudly checks the water levd in the fish tank. When the water levd in the
fishtank fals below certain level, more water will be added given that there is enough
water in the backup tank. Note that if there isn't enough water in backup tark, the
pump will never be turned on.

Conclusion

There is one mgor problem in Hoodie and the Blowfish actuation which redtricts the
demondration of completdy functiond robot. The aguarium lights used for al
aquariums are fluorescent lights, just like the one | have used. These lights require a
darter which is a trandformer to gart up the light, without it, the light would not turn
on. The transformer created the problem of cresting massve spikes in the power
lines that appeared to reset the cpld and microcontroller boards, thus whenever the
light was turned on, the boards were reset. Attempted fix was to use optoisolators
and st the power supplies for relays for the fluorescent light and water pump
separately from microcontroller and CPLD’s. This solution did not seem to work
snce the spikes were trangmitted through the power lines themsdves. Another
solution proposed was to use the 12 volt battery to power CPLD's and
microcontroller, this way no spikes could directly get to the microcontroller through
the power lines. When this solution was implemented the board was Hill observed to
reset but not as often as previoudy. When light was turned on, the board ill reset
mogt of the time, but now when light was turned off the boards would not reset most
of the time. The oscilloscope was used again to view power and ground planes of
microcontroller and spikes were gill observed when light was turned on and off. The
phenomena of the board resetting when light was turned on and off with the two
devices having no common power supply or common ground connections was then
atributed to dectric or magnetic fidd. The proposed solution &fter this finding was
to build a Faraday cage to enclose dl dectronics of Hoodie and the Blowfish in order
to shidd agang dectric fidd. Aluminum foil was used to wrap dl dectronic
components of the robot and the foil was grounded to the battery powering the
electronics of Hoodie and the Blowfish. This proposed solution did not appear to
solve the problem, for the board was Hill resetting most of the time when light was
turned on. The next solution proposed was now to eiminae fluorescent light from
the desgn and replace it with dternative lighting containing no trandformers. This
solution has not been implemented as of yet but in theory should fix the problem.

All individuad components of Hoodie and the Blowfish work correctly, and even dl
interfaced components work correctly if lignt and water pump ae eiminated and
replaced with LED’s or different components containing no transformers.

Specid Thanks to Urid, Kevin, Greg, Brian, Louis, Carl, Will and Dr. Arroyo for
their suggestions and support.

Documentation

Microcontroller: ATMega8 :
Compliments of Urid Rodriguez

PH Sensor : Champ PH Meter

Purchased from: http:/Mmww.aguama lusa.com/champhmet114.html
Datasheet for sensor: http://mwww.hannainst.com/downl oads/instr/hi 98106. pdf
A/D Datashedt: http://www.intersl.com/datalfn/fn3084.pdf

Temperature Sensor: LM34DZ
http://Amwww.all € ectronics.com/cgi-
bin/category.cqgi ?category=search& item=L M 34D Z & type=store

CPLD’s

EMP7128SL.C-7 : UP2 Board
EMP7032SLC-10 3701 Board

CPLD’s can be purchased at www.arrow.com

Reays
WWW.jameco.com

Water Pump: 30HP water fountain pump
Lowesin Butler Plaza, Gainesville

FlourescentAquarium Light
Aquatropics on 34" street in Kash' nCarry plaza, Gainesville

Appendix A

ATMega8 Code:
/*

4 bit LCD code
*/

#include <inttypesh>
#include <stdarg.h>
#include <avrfio.h>

//****************function Prototyp%**********************//
void LCD _initidize(void);

int cac_len(int);

char * int_to_str(int);

void int_to LCD(int);

void dday_1mg(uint8 t);

void delay_1us(uint8 t);

void SeectADCMux(uint8 t);
void dday_100ms(uint8 t);
void LCDWrite(void);
uint1l6 t ReadADCY();

void SetupADC();

void LCD _initidize(void);

void LCDOutput(uint8 _t a);
void LCD_String(char *s);
uint8_t GetCPLD(uint8 t);
void LCD_Clear(void);

void LCD_CursorHome(void);
void get_ph(void);

void get_temp(void);

void init_pwm(void);

void set_pwm(unsigned char);
//**************** End Functlon Prototyp§ *****************//

int main(void)

{
DDRD=0xBF;
DDRB=0xFE;
LCD _initidize();
PORTD = 0x00;
LCDWrite();
delay_1mg(25);
PORTD= Ox0F;

LCDWrite();
dday 1mg(25);
init_pwm();
uint8 t servo;
while(1)
{
get_ph();
dday 100mg(2);
get_temp();
delay 100ms(2);
uint8 ta, b;
a=GetCPLD(2);
b=GetCPLD(1);
int_ to LCD(b);
LCD_String(":");
int to LCD(a);
delay 100mg(15);
LCD_Clear();
LCD_CursorHome();
PORTD &=0xBF;
servo = PIND;
/lint_to_LCD(servo);
servo &= 0x40;
int_ to LCD(servo);
if (servo==64)
{
feed fish();
delay 100ms(20);
}
LCD_Clear();
LCD_CursorHome();
}

return O;

void feed fish(void)

{

LCD_Clear();
LCD_CursorHome();
LCD_Siring("Feeding Fidh");
init_pwm();

st pwm(10);

delay _100ms(18);

st pwm(200);
delay 100mg(18);
set_pwm(0);

}

void init_pwm(void)
{

DDRB = OxFF; //PB0-3 = motor direction, OCO = PB4, OC2 = PB7

IITCCRO=0x66; //125Hz PWM: 16Mhz clk, Phase correct, non inverting, 256
prescaler

TCCR2=0X64; //125Hz PWM: 16Mhz clk, Phase correct, non inverting, 64 prescaler

//0110 0100

}

void set_pwm(unsigned char a)

{
OCR2=3;
//OCR2=3;

}

void get_temp(void)
DDRC=0x00;
LCD_Clear();
LCD_CursorHome();
SetupADCY();
uintl6 tvaueH;

uint8 tval, vaz;
delay_100ms(10);
SelectADCMux(0);
delay 100mg(1);
vaueH=ReadADC();
vaueH=vaueH*25;
vaueH=vaueH*5;
va ueH=va ueH/256;
LCD_String("Temperaure: ");
int_to LCD(vaueH);
LCD_String(" ");
delay_100mg(70);

}
void SetupADC(void)
{
DDRC = 0x00;
ADCSR |= (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0); //Set for lowest speed (1/128)

ADCSR |= (1<<ADFR);

ADMUX = 0x00;

ADCSR |= (1<<ADEN);
ADCSR |= (1<<ADSC);

IIADCSR |= (1<<ADIE);

}

uintl6 t ReadADC(void)
{

/IFree running ADC

/IOnly reading channel O (right adjust)
l[Enable the ACD itsdlf
//And start the first conversion

IIAnd enable interrupts (when complete)

uintl6 t vaue /ivaueisonly 10 bit though.

vaue=ADCL;

vaue += (ADCH & 0x03)<<8;

return vaue

}

void SdectADCMux(uint8 t i)

{

if (1 ==0)
ADMUX &=0xFO;

dseif (i == 1)

{
ADMUX &=0xFO;
ADMUX [=0x01;

}

dseif (i==2)

{
ADMUX &=0xFO;
ADMUX |=0x02;

}

dseif (i==3)

{

ADMUX &=0xFO;
ADMUX |=0x03;

}

dseif (i==4)

{
ADMUX &=0xFO0;
ADMUX |=0x04;

}

dseif (i==5)

{
ADMUX &=0xFO0;
ADMUX |=0x05;

}

dseif (i ==6)

{
ADMUX &=0xF0;
ADMUX |=0x06;

}

dse

{
ADMUX &=0xFO0;
ADMUX |=0x07,;

}

}
void get_ph(void)

{

uint8_t vauel, vaue2, vaues;
LCD_Clear();
LCD_CursorHome();

L CDOutput(0x50);

delay 1mg(50);

L CDOutput(0x48);

delay 1mg(50);

L CDOutput(0x20);
vaueO=GetCPLD(0);
vauel=vauel & OxFO;
vauel=vauel>>4;
value2=vaue0 & OxOF;
valuel = 0x30+valuel,
value2 = 0x30 + vauez;
LCDOutput(vaue?);
delay_1mg(10);

L CDOutput(0x2E);

delay 1mg(10);
LCDOutput(vauel);

delay 100mg(70);

}
void ddlay_100ms(uint8 t a)

{
unt8 ti;
for (i=0; i<a; i++)
{
dday_1ms(100);
}

void LCD_String(char *s)

while (*s) LCDOutput(* s++);

}
void LCD_Clear(void)
{
PORTD = 0x00;
LCDWrite();
delay 1mg(50);
PORTD= 0x01;
L CDWrite();
delay 1mg(50);
}
void LCD_CursorHome(void)
{
PORTD = 0x00;
LCDWrite();
delay 1mg(50);
PORTD= 0x02;
L CDWrite();
delay 1mg(50);
}
void LCDOutput(uint8_t a)
{
delay _1mg(50);
uint8 t temp=g;
a>>=4, /lsend firgt nibble to port D
a|= 0x20;
PORTD =g;
LCDWrite();

delay 1mg(50);

temp & =0xO0F;
temp |=0x20;
PORTD= temp;
LCDWrite();
delay 1mg(50);

uint8 t GetCPLD(uint8 t x)

{

//PB2 = Enable latch

//PB1=clock

//PBO=data

//IPB4 =0

[/ph5 =s1

DDRB & =0xFE; /b7, b6 b3-> leave aone ; b5, b4, b2, bl -> output ; bO -> input
DDRB |=0x36;

//set which data to receive
uint8 tser, i, a
if (x==0) lIreceive ph
{
PORTB & =0xCF;
PORTB |=0xOE;
}
dseif (x==1) {Ireceive hours
{
PORTB &=0xCF;
PORTB |-0x10;
}
dseif(x==2) [/Ireceive minutes
{
PORTB & =0xCF;
PORTB |F0x20;
}
dse
{
PORTB &=0xCF; /by default set to ph
PORTB |=0xOE;
}
ser=0;

PORTB |=0x04; //set pb2
PORTB &=0xFD; //set clock low

PORTB |=0x02; //set clock hi
PORTB &=0xFB; //clear pb2

PORTB &=0xFD;
PORTB |=0x02;
for (1=0; i<7; i++)
{
PORTB &=0xFD; //set clock low
a=PINB,;
a&=0x01;
ser=ser+a; //read port PBO and shift it into data register
ser=(ser<<l);
PORTB |=0x02; /Iset clock hi
}
PORTB &=0xFD; //set clock low
a=PINB;
a&=0x01;
ser=ser+a; //read port PBO and shift it into data register
PORTB [=0x02; /et Clock Low
return ser;
}
void dday_luquint8 ti) /Imethod which waitsi us.
{
uint8 tj;
while (i)
{
for j=0; j<4;j++);
i--;
}
}
void LCDWrite(void)
{
PORTD = (PORTD | 0x80); //Set LCD enable low
delay 1us(2);
PORTD = (PORTD & Ox7F); /st LCD endble high
}
void dday _1mg(uint8 t i) /Imethod which waitsi ms.
{
uint8 tj, k;
while (i)

{

for (j=0;j<200; j++)

{
for (k=0; k < 2; k++);
}
i--;
}

}

void LCD _initidlize(void)

{

/*****************************

LCD*************************

Hardware Set up information for

PA7 =EnableonLCD PIN 6onLCD

PAG6 = Not connected
PA5=RSdggnd PindonLCD
PA4=RW pin5onLCD
PA3..PAO=LCD7.4

/*****************************

****************************/

delay 1mg(17);

PORTD= 0x03;

LCDWrite();
low to write

dday 1mg(6);
PORTD = 0x03;
LCDWrite();

delay_1us(150);
PORTD = 0x03;
LCDWrite();

delay 1mg(6);
PORTD = 0x02;
LCDWrite();

delay 1ug(60);
PORTD = 0x02;
L CDWrite();

delay 1ug(60);

PORTD = 0x08;
LCDWrite();

End of LCD Hardware Set up Info

[lwait at least 15ms on power on
//IRSR/\W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
/[0 00011 X x X X x=dontcare, st E

//IRS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
/000011 Xx x X X

{/IRSR/\W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
/000011 Xx Xx X X

//IRSR/\W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
/000010 X X X X

lI<Wait 4.1ms>

I/IRS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
/00001 0NFX X

/14-bit operation

/IN=Number of “lines

/10 for 1/8 duty cycle-- 1 'ling

/1 for 1/16 duty cycle-- 2 ‘lines

delay 1ug(60);

dday 1us(80);
PORTD = 0x00;
LCDWrite();

dday 1ug(70);
PORTD = 0x08;
LCDWrite();

delay 1ug(50);

delay 1us(70);
PORTD = 0x00;
LCDWrite();

delay 1us(70);
PORTD = 0x01;
LCDWrite();

delay 1ug(60);

dday 1mg(4);
PORTD = 0x00;
LCDWrite();

delay 1ug(70);
PORTD = 0x06;

screen

char * int_to_gr(int val)

{

LCDWrite();
dday 1us(50);

int len = cac_len(va);

char dr[len+1];
inti;

for(i=len-1;i>=0;i--)

{

/[F=font,
/1 for 5x11 dot matrix
/10 for 5x8 dot matrix

/I<Wait 40us or till BF=0>
/IRSR/W DB7 DB6 DB5 DB4
/0 000O0O
/001000

/ldisplay off, cursor off, blink off

//[<Wait 40us or till BF=0>
/IRSR/W DB7 DB6 DB5 DB4
/0 0O00O0O

/[0 000O01

//Clear screen, cursor home

[I<Wait 40us or till BF=0>

//IRSR/W DB7 DB6 DB5 DB4

/0 000O0O

/000110

Ilincrement cursor to theright when writing, dont shift

/nitidization complete

str[i] = va%10 + 0x30; //converts digit to ASCII equivaent by adding 0x30

vd /= 10;
}
grilen] ="\0';
return(str);

voidint_to LCD(int va)
{
int len = cac_len(va);
char str[len+1];
inti;
for(i=len-1;i>=0;i--)
{
arli] = va%10 + 0x30; //converts digit to ASCII equivaent by adding 0x30
vd /= 10;

srilen] ="\0';
for(1=0; i<len; i++)

{
}

LCDOutput(stri]);

}

int cac_len(int va) //cdculates length of integer...cannot be greater than 5 digits (16bit
int)

{

int done=0;
int length=1;
while(!done)
{

if(va>10)

{

length++;
va=va/10;

}

dse

{

done=1;

}

}
return(length);

Appendix B

Pump and PH decoder in EMP7032SLC-10 CPLD:

E PHSENSOR

14, .00 :

—r206. .01 QL7.. a]-—|—|i UTPUT IIIIIIIIIII S PHOWZ.0)
—BP L
1

TAHK1

TAHKZ PUMFOH

R

VHDL Code:

PHSensor:

library ieee;

useieeedtd logic 1164.4dl;

USE IEEE.STD_LOGIC ARITH.ALL;

entity PHsensor is

port(
al, a2 :in STD_LOGIC_VECTOR(6 downto 0);
bp :inSTD_LOGIC;
q > out td_logic_vector(7 downto 0)
);
END PHsensor;

ARCHITECTURE behavior of PHsensor IS
Sgnd b, z1, 22 : STD_LOGIC_VECTOR(6 downto 0);
Signd m1, m2: STD_LOGIC VECTOR(3 downto 0);
BEGIN
latchl : process(bp)
begin
if(bp'event and bp="1) then
b<=bp& bp& bp& bp& bp & bp & bp;
zl<=(alxorb);
z2<=(a2xorb);
end if;
end process,
WITH z1 SELECT
ml<= "0000" when"1111110",
"0001" when "0110000",
"0010" when "1101101",
"0011" when "1111001",
"0100" when "0110011",
"0101" when "1011011",
"0110" when "1011111",
"0111" when "1110000",
"1000" when "1111111",
"1001" when "1111011",
"1111" when others;
WITH z2 SELECT
m2 <= "0000" when "1111110",
"0001" when "0110000",
"0010" when "1101101",
"0011" when "1111001",
"0100" when "0110011",
"0101" when "1011011",

"0110" when "1011111",
"0111" when "1110000",
"1000" when "1111111",
"1001" when "1111011",
"1111" when others;

lat: process(bp)

begin
if (bp'event and bp="1") then
g<=mlé& mz,
end if;

end process,

END behavior;

PumpContral:

library ieee;
useieeedd logic 1164.4dl;

entity pumpControl is
port(
tank1, tank2, r

pumpOn
end pumpContral;

ingd logic;
:out &d _logic);

ARCHITECTURE behavior of pumpControl 1S

signd temp : gd_logic;
BEGIN

pumpOn <= not tank1 and r;
END behavior;

EMP7128SL C CPLD GDF Diagram:

CLOCK THEDEY >
W Dﬁ':—“ : oLs lhaubrll..ﬂ%
H AEALE |) p— e 2
L] |:’—.:v¢ nmmid—mubuts..n ".l:tu..oq—nlﬂ
Jﬂ—ﬂ_ HEuRLA. @y ST ——
Hall [—r—— AET
ot wr T i
o ﬁﬂ -
LATCHT IHE
ok [|';.' HousEl .lllh'nﬂa PP .
TieE: wn . Sellmed T HIHETELE ﬂ%i
: e ——————— (s TRl T NHE—L
o E m"‘ '{1‘* e L .,,_"I’r;_i_
- e SN T I T T ..~
T i A = nzucat e _ag
il [e AT
1r4
Simr ! 5
L] E:}—%T—JHL-
HIMUTELORD
&:Mh m-r]m[:..mmull
I ke
————— i esTISTIE. 0
:':: "HEWETEE HETIST[A. NJ'M‘ i
BoaIRL
mr
e, VIL LIAHUSSE

ry T 8
-'-EDEF_.,.,.,,,.]
i ape 8y rape

5.0
L. . #]

0 ..:E T

VILTJAHUEZ 4
= L |

FefTd]
RELE
Shewssd 0 Jr ot
LT]
L

fate]
4

Tt sl |

e ——]]

FEL

Clock Device VHDL:

library ieee;
useieeedd logic 1164.4dl;
useiecedd logic unsgnedadl,

entity clockingdev is

port (
dk
m

ingd logic;
ingd logic;

minute : instd logic vector(5 downto 0);

hour

Qhr

sec

ingd logic_vector(4 downto 0);

Qminut : out std logic_vector(5 downto 0);
:out std_logic_vector(4 downto 0);
:out std _logic vector(1 downto 0);

FEEDERCOMTH

sk A [=
e HTEALARHIE. 31
w—-n;mnn. .ay
ﬁlﬂlrI-[I . uy
CHoarspd ¥ o=ty
0 i1 DHC (4. .] Fibg————————] rbe! rped
o ::;:: ny I.llHr_.—|__-'L|:: . [
et
———LITESrT
Bl s L
[ELS
[e] D—.'Pi
; THEUIIREY
rifeE0
——{rrrmmy HINTES. . 8] pree
misFEOC. . Ep EOLEDE cg—#—l—
—lurressa. o
1%
el Ty, Meow :_l:—m"
redeil: W
coa SHIFTRECIETER
al—-s-uruu
—a o—— T Carial)

oY .l

secClk :out &d logic;
rst ingd logic);
end clockingdev;

architecture behavior of clockingdev is

ggnd Asec @ std logic vector(10 downto 0);
sgnd Amin: std logic_vector(5 downto 0);
ggnd A : std logic vector(4 downto 0);
ggnd Csec : 4d logic;

sgnd Cmin : &d logic;

begin

mySecond : process(clk, r<t)
begin
if (dk'event and clk="1") then
if rst ="1"then
Asec <= "00000000001";
Csec <='0
elsf Asec ="11000001010" then
Asec <= "00000000001";
Csec<="1
dse
Asec <= Asec+1;
Csec <='0;
endif;
end if;
secClk <=Asec(5);
sec <= Asec(10) & Asec(9);
end process mySecond,

myMinutes : procesy(Csec, rst)
begin
if re="1' then
Amin<="000000";
cmin <=0}
egf (m="1) then
Amin <= minute
elsf (Csec'event and Csec='1) then
if Amin="111011" then
Amin <="000000";
cmin<="'1";
dse
Amin<=Amin+1;
cmin<="'0;
ed if;
end if;

Qminut <= Amin;
end process myMinutes,

myHour : process(cmin)
begin
if rse="1" then
A <="00000";
edgf (m="1) then
A <=hour;
dsif (cmin‘event and cmin="1") then
if A="10111" then
A <="00000";
dse
A<=A+1;
end if;
end if;
end process myHour;
Qhr<=A;
end behavior;

Latching Time VHDL:

library ieee;
useieeedd logic 1164.4dl;
useieeestd logic_undgnedall;

entity laichtimeis
port(
daml :indd logic;
timer :indd logic;
stTimel . indd logic;
minCntA :ingd logic_vector(5 downto 0);
hrCntA :ingd logic_vector(4 downto 0);
minCntT . ingd logic vector(5 downto 0);
hrCntT :ingd logic_vector(4 downto 0);
minOutA :out std logic_vector(5 downto 0);
hrOutA :outstd logic vector(4 downto 0);
minOutT :out td logic_vector(5 downto 0);
hrOutT :outstd logic_vector(4 downto 0));
end latchtime;

architecture behavior of latchtimeis
begin

ST :procesy(setTimel)
begin

if(setTimel'event and setTimel = '1") then
if (darml="1) then
MIiNOUA <= minCntA;
hrOutA <= hrCntA;
egf (timer ='1) then
mMiNOUtT <= MiNCntT;
hrOutT <= hrCntT;
end if;
end if;
end process s&tT;

end behavior;

Loading Timeinto Timer VHDL:
library ieee;

useiecesd logic 1164.dl;
useieeedd logic unsgnedal,

entity minuteLoad is

port(
darm . indd logic;
dk . indd logic;
timer :indd logic;
minutel :indd logic;
hourl :indd logic;
minimA :out td logic_vector(5 downto 0);
hrtimA : outstd logic_vector(4 downto 0);
minimT :outstd logic vector(5 downto 0);
hrimT :outstd logic vector(4 downto 0));

end minuteLoad,

architecture behavior of minuteLoad is
Sgnd minCntA : sd logic_vector(5 downto 0);
Sgnd hrCntA : dd logic_vector(4 downto 0);
Sgnd minCntT . dd logic_vector(5 downto 0);
Sgnd hrCntT : sd logic_vector(4 downto 0);
sgnd temp2 . &d logic_vector(1 downto 0);
signd temp3 : &d logic vector(1 downto 0);
Sgnd minute . dd logic;
sgnd hour : sd logic;

begin

debounceminute : process(clk)
begin

if (ck'event and clk="1") then
temp2(1) <= temp2(0);
temp2(0) <= minutel;
end if;
minute <= minutel and temp2(0) and temp2(1);
end process debounceminute;

debouncehour : process(clk)
begin
if (ck'event and clk="1") then
temp3(1) <= temp3(0);
temp3(0) <= hourl,
end if;
hour <= hour1 and temp3(0) and temp3(1);
end process,

min3 : procesgminute)

begin
if (minuteevent and minute="1") then
if (@darm="1") then
if (minCntA ="111011") then
minCntA <= "000000";
dse
minCntA <= minCntA + 1;
ed if;
end if;
end if;

end process min3;

hr3 : process(hour)
begin
if (hour'event and hour="1") then
if (darm ="1) then
if (hrCntA ="10111") then

hrCntA <="00000";
dse
hrCntA <= hrCntA + 1;
endif;
end if;
end if;

end process hr3;

minT : process(minute)
begin
if (minutéevent and minute="1") then
if (timer ='1") then

if (MinCntT ="111011") th
minCntT <= "000000";

dse
minCntT <= minCntT + 1;
ed if;
end if;
end if;

end process minT;

hrT : process(hour)
begin
if (hour'event and hour="1") then
if (timer ='1) then
if (hrCntT ="10111") then

hrCntT <= "00000";
dse
hrCntT <= hrCntT + 1;
endif;
end if;
end if;

end process hrT;
mintimA <= minCntA;
hrtimA <= hrCntA;
mintimT <= minCntT;
hrtimT <= hrCntT;
end behavior;

Feeder Controll:

library ieee;
useieeedd logic 1164.4dl;
useieeedtd logic undgnedadl;

entity feederControl is

port(
minAlam :instd_logic_vector(5 downto 0);
hrAlarm : insgtd _logic_vector(4 downto 0);
minTime :ingd_logic_vector(5 downto 0);
hrTime : instd_logic_vector(4 downto 0);
mysec : insd _logic_vector(1 downto 0);
feednow . ingd logic;
Igh :indd logic;
liteoff . indd logic;
dk . indd logic;
feed . outgd logic;

lightOn :outsd logic

end feederControl:

architecture behavior of feederContral is

Sgnd hrAlamL : std logic_vector(4 downto 0);
Sgnd minAlarmL : &d logic_vector(5 downto 0);
Sgnd tmp © dd logic;

begin

fd : procesy(clk)

begin

if (clk'event and clk="1") then
if (hrTime = hrAlarm) and (minTime = minAlarm)) and ((mysec ="11") or
(mysec="10"))) then
feed <="1"
lightOn <="1';
elsf (feednow = '1") then
feed <='1";
edgf (liteoff="1") then
lightOn <='0;;
edgf (Igh="1) then
lightOn <="1}
egf ((hrTime= "10111") and (minTime = "000000"))) then
lightOn <='0;;
dse
feed <="0;
end if;
end if;
end processfd;
end behavior;

Muxesfor Minutesand Hours:
library ieee;
useieeedd logic 1164.4dl;

entity VilijaMux35 is

port(
a3, a2, al, a0 :inSTD_LOGIC VECTOR(5
downto 0);
S :in STD_LOGIC_vector(1 downto
0);
Z1 :out STD_LOGIC_VECTOR(5

downto 0)

);
END VilijaMux35;

ARCHITECTURE behavior of VilijaMux35 IS

BEGIN

WITH s SELECT

Z1<= a3when"11",
a2 when"10",
al when"00",
a when"01",
al when others;

END behavior;

library ieee;
useieeedd logic 1164.4dl;

entity VilijaMux34 is
port(
a3, a2, al, a0
downto 0);
S
0);
Z1
downto 0)
);
END VilijaMux34;

ARCHITECTURE behavior of VilijaMux34 1S

BEGIN

WITH s SELECT
Z1<= a3when"11",
a2 when "10",
al when"00",
a when"01",
al when others;

END behavior;

Codeto display when fish werelast fed :

library ieee;
useieeedd logic 1164.4dl;

:in STD_LOGIC VECTOR(4
:in STD_LOGIC_vector(1 downto

- out STD_LOGIC VECTOR(4

useieeedd logic unsgnedadl,

Entity inquiry is

port (
dk :ingd logic;
feednow : indd logic;
minFed : ingd logic vector(5 downto 0);
hrFed : indd logic vector(4 downto 0);
mint :out std_logic_vector(5 downto 0);
hour :out std logic_vector(4 downto 0));

end inquiry;

architecture behavior of inquiry is

begin

process(clk)

begin

if (clk'event and clk="1") then
if (feednow = '1) then
mint <= minFed;
hour <= hrFed:;
ed if;
end if;
end process,
end behavior;

Mux to select appropriate time:

library ieee;
useieeedd logic 1164.4dl;

entity VilijaMux2is

port(
a2, al, a0 :in STD_LOGIC_VECTOR(7 downto 0);
S :in STD_LOGIC_Vector(1 downto
0);
yal :out STD_LOGIC VECTOR(7
downto 0)
);
END VilijaMux2;

ARCHITECTURE behavior of VilijaMux2 IS
BEGIN

WITH sSELECT

Z1<= awhen"11",
a2 when"10",
al when"01",
a when"00",
a0 when others;

END behavior;

Said Inteface:

library ieee;
useieeedd logic 1164.4dl;

entity shiftRegigter is

port(

shiftdk: insd logic;

en:indd logic

d: instd_logic_vector(7 downto 0);
g: out &td_logic);

end shiftRegiger;

architecture archregistered of shiftRegigter is
ggndtemp : sd logic vector(7 downto O);
begin
reg: process (shiftclk)
begin
if (shiftclk'event and shiftclk="1") then
if (en="1) then
temp<=d;
dse
q <= temp(7);
temp(7) <=temp(6);
temp(6) <= temp(5);
temp(5) <= temp(4);
temp(4) <= temp(3);
temp(3) <= temp(2);
temp(2) <= temp(1);
temp(1) <=temp(0);

end if;
end if;
end process reg;

end archregistered;

