

University of Florida

Department of Electrical and Computer Engineering

EEL 5666

Intelligent Machines Design Laboratory

Written Report 3: “Beverly Crusher”

Jean-François A. Kamath

12/08/03

Table of Contents Page
Abstract 1
Executive Summary 2
Introduction 3
Integrated System 3
Mobile Platform 3
Actuation 4
Sensors 6
Behaviors 9
Experimental Layout and Results

-Sensors 11
-Actuators 11
-Crusher 12
-Obstacle Avoidance 13

Conclusion 15
Documentation
Appendices

-A-1. C++ code for search algorithm.
-A-2. Schematics

Abstract

Beverly Crusher has seen great progress and several key objectives were reached.
While she does not have the capacity to drive around searching for cans due to problems
with the power supply and time constraints, the rest of the system performs admirably.
The core of the project was the crusher system, which works extremely well, far better
than I had expected. Beverly is able to detect the presence of soda cans, pick them up,
crush them, and clear the crusher reliably. Overall this project was a success since the
primary goal of crushing cans was accomplished.

Executive Summary

Beverly Crusher is a robot that can detect the presence of a can, pick it up, and

crush it. The original design called for her to actively seek out cans in her environment,

but this proved to be problematic and difficult for several reasons. The first limiter on

Beverly’s performance was the power supply; quite simply, the Ni-MH battery packs that

were being used could not handle the current requirements of the entire system, which

will be discussed shortly. The second limiter was the sensitivity of the IR sensors and

their tendency to give wildly fluctuating readings. This problem was only corrected a

couple of days before the final demonstration and could not be effectively incorporated

into the system.

The crushing system shows excellent performance with the ability to easily and

consistently pick up the cans and crush them with no effort. The cans are detected using

a break sensor constructed from a CDS-cell and an LED. This seems to work quite well

even in bright lighting, requiring only minor calibration depending on the environment.

The crusher is a screw press capable of exerting nearly 500 lbs of force on whatever is

placed into it. The U-shaped frame anchors the power screw and holds all of the pieces

together. An aluminum plate serves to crush the cans and is attached to both the power

screw as well as three slider rods which keep the plate lined up. A motor capable of

exerting 70 oz-in of torque is run through a 30:1 gear ratio to exert the crushing force.

The collector and clearer mechanisms are made of wood and are controlled by

three servos. The collector grips the cans with a moveable arm and then flips them

upside down into the crusher. The clearer arm is used to push crushed cans out of the

crusher to prepare it for the next cycle.

Introduction

 Beverly Crusher will be a robot designed to locate discarded soda cans, crush

them, and dispose of them in a receptacle that she carries. She will need to navigate a

simple environment that will consist of several bounding walls as well as the soda cans.

A major focus of this project will be design and construction of the retrieval mechanism

and the can crusher. This paper will cover the ideas and designs in development of this

robot. The basic designs for the frame and various mechanisms will be discussed

followed by a description of the actuators and sensors that may be used in development.

The behavior of the robot will also be covered.

Integrated System

 The robot will consist of several main systems: the can retriever, the crusher,

dispenser, sensor array, and drive system. The sensor array will be used for many tasks

including wall avoidance, can location, and crusher maintenance. Beverly needs to avoid

hitting walls, partly to prevent damage to various parts, but also to continue her search for

cans. Sensors will be used to locate cans and determine when they are in a position to be

picked up and crushed.

Mobile Platform

 The platform must be able to navigate a somewhat restricted environment while

carrying potentially heavy retrieval and crushing apparatuses. It may also be required to

withstand high stresses during the crushing process, so materials other than balsa wood

may become necessary. The design of the platform is still being worked on since several

possibilities exist for the arrangement. However, the designs for the crusher and retriever

are nearing completion and should allow the structure of the platform to be finalized

soon.

Actuation

 Two kinds of actuators will be used, servos for positioning of the gripper and for

movement of the platform, and a motor with gearing system for the crusher. Hacked

servos are being used to move the platform since high speed is of minimal concern.

Three servos will be required to operate the collector and clearer: one will open and close

the “hand” and one will raise the can and flip it over. The third servo will be used to

move the clearer arm to prepare the crusher for the next can. The servos used for

actuation of the collector and clearer are Hitec HS-311 standards. The drive servos are

Hitec HS-805 ¼ scale giant servos that provide an enormous 300 oz-in of torque. These

can be purchased at www.servocity.com.

 To control the servos, a pulsed signal of variable length must be implemented.

All of the servos require a pulse in the range of 0.9 to 2.1 ms followed by approximately

20 ms dead time. The length of the pulse determines the position the servo will move to,

or in the case of the hacked drive servos, how fast and in what direction they will turn.

Since implementing PWM would have been difficult considering my limited

programming background, I instead wrote a function that controls all of the servos

simultaneously. It could easily be modified to handle up to 64 servos, the maximum

number of pins on the processor board.

 The crusher will use a single motor geared down by 30:1. A worm gear is being

used due to the simplicity of setting up the gearing. Using standard spur gears would

have required a far more complex system and significantly higher costs, possibly as much

as an extra $200. A pair of relays is used to control the motor which is on a separate

circuit from the processor and sensors. This avoids the problems of power spikes and

feedback in the system. The crush plate will be moved by a ½ in diameter power screw

that is turned by the worm gear. Crush time will be approximately 24 sec at 20 V and the

crusher will zero itself at approximately 8 in above the base plate.

Sensors

 The sensory system, used by Beverly to locate and distinguish cans, consists of

six IR range sensors, a break sensor, and a bump switch. These will be used to detect

potential targets, home in on them, and determine if the object is acceptable for crushing.

The IR sensors are Sharp GP2D12 and can be purchased at www.junun.org for $8.25

each.

Figure S-1. Sensor layout of Beverly Crusher.

As shown in Figure S-1, the robot will utilize five IR range sensors for obstacle

detection. The left and right-hand sensors will be used primarily for obstacle avoidance,

such as walls and other large objects. The three, front-facing sensors are necessary for

target location and obstacle avoidance. Depending on the relative readings of the

sensors, Beverly will be able to distinguish between walls, concave corners, and potential

cans. Table S-1 shows what different combinations of readings represent.

Relative IR Readings
Left Mid Right Meaning
M M M Wall
H M L Wall
L M H Wall
L L M Can/Table leg to the left
L M M Can/Table leg to the left
M H H Can/Table leg to the right
M M H Can/Table leg to the right
M H M Can/Table leg in front
M L M Concave corner

Table S-1. Meanings of sensory reading from front IR range sensors.

 If Beverly determines there might be a can to pick up, she will turn until the

object is directly in front of her. She will then drive forward until one of two events

occurs: the break sensor indicates that an object is in the gripper, or the front bumper

indicates that Beverly has run into something. In the latter case, she will have

encountered either a table leg or a wall corner, and she will proceed to back away and

seek a new route. However, if the break sensor goes off, Beverly will have found a can

and will proceed to pick up and crush said can. The break sensor was constructed from a

CDS-cell and an LED, which were pseudo collimated using heat shrink tubing. These

parts can be purchased at any electronics store.

 The sixth IR sensor that is not shown in Figure S-1 is used to determine the

position of the crush plate. The crush plate will always be zeroed at the same distance

above the platform using the IR sensor and will be operated for an experimentally

determined period of time while crushing the cans.

Behaviors

 Beverly will have a relatively simple search algorithm. She will wander an

environment while avoiding walls until she detects a can. She will then orient herself

such that the can is within the gripper’s effective area, grab it, place it in the crusher,

crush it, and finally clear the crusher. Sensors to detect the presence of crushed cans in

the crusher were deemed unnecessary since it is automatically cleared each time.

Crimping was also eliminated from the final design for a couple of reasons. The first and

most important reason was that designing the collector to crimp the cans would have been

a far more complicated task than simply picking them up. The second issue was that if

the can was crimped improperly, then it would not line up in the crusher and might slide

out of the crusher. Ultimately, the crusher was designed to apply far more force than

would be necessary to crush a non-crimped can.

Experimental Layout and Results

 Several tests had to be performed throughout the course of this project, including

sensors, actuators, the motor, and obstacle avoidance.

IR Sensors

Testing of the IR sensors and the break sensor were performed and showed

excellent results. The IR sensors follow the sensitivity indicated in the documentation

provided by the supplier. Figure Exp-1 shows the sensitivity graph.

Figure Exp-1. IR range sensor readings vs Distance.

 Experimentation showed that the peak reading from these sensors is in the range

of 130-140 depending on exactly which sensor is being used as well as the lighting

conditions. Testing has shown that in the range of 10-30 cm, the readings could be

approximated as linear. This simplified the search algorithm since Beverly only needed

to actively seek out objects near to her.

 The actual testing procedure consisted of placing various objects in front of the

sensors at ranges from 1 in to 10 in to see what readings could be obtained. The sensors

performed equally regardless of the objects used. One issue that came up while working

with the IR was that the readings tended to fluctuate wildly when a large number of

sensors and actuators were connected to the system. At first, this caused extreme

problems when trying to compare readings for obstacle avoidance and target recognition.

This was corrected only a couple of days ago when a suggestion was made on how to

“smooth” the signals. By averaging the readings from a sensor over a certain period of

time, the noise could be reduced. Testing revealed that averaging the sensory readings

over a 300 ms period completely eliminated the fluctuations in the readings and allowed

me to sense differences as small as 1%. Experimentation showed that the difference in

readings between the edge of a can and its vertical midline were on the order of 5%,

indicating that the sensors were sensitive enough for the task.

Actuators

 The servos that move the collector and the clearer behaved slightly differently

from the specified performance. Rather than a pulse width of 0.9-2.1 ms for full left and

right respectively, they required pulses of 0.6-2.2 ms. This may have been due to the

time required to build the signal or possibly the control function that I designed. With the

correct numbers input into the system, the collector and clearer performed perfectly

during every test. The collector had the capacity to grip cans that were off position by as

much as an inch side to side.

Crusher

 The crusher required more testing than the collector and clearer due to its inherent

complexity. The first experiment was designed to determine how well the parts lined up.

The most critical pieces were the power screw and slider rods since any significant

misalignment could lead to jamming of the system. The motor was controlled manually

since it could be stopped quickly if needed. However, this proved to be unnecessary as

the alignment of the system was excellent, showing virtually no resistance to motion

when properly lubricated.

 The second test was used to determine the minimum voltage requirements of the

crusher. Three power supplies were tested: 9.6 V Ni-MH, 12 V lead acid, 19.2 V Ni-MH.

In all three situations, the system crushed the cans with little effort. The only slowdown

was experienced when the crush plate first made contact with the can using the 9.6 V

power supply since the stall force of the system was very close to the yield point of the

cans. However, within seconds the cans collapsed and were subsequently crushed.

Ultimately, the 19.2 V power pack was selected since it was easiest to incorporate into

the system.

 The final test measured the time required to crush the cans. This simply consisted

of measuring how long the system took to move the crush plate from its zero position to a

distance 1 in above the base plate. For the 12 V power supply, the crush time was 36 sec,

while for the 19.2 V supply, crush time was only 24 sec.

Obstacle Avoidance

 Basic obstacle avoidance was demonstrated earlier in the semester and was found

to work decently for avoiding large surfaces. Code was designed to allow the system to

perform better obstacle avoidance as well as distinguish between cans, posts, and walls.

Unfortunately, this code could not be tested fully due to multiple catastrophic system

failures. The first and most important is that both drive servos burned out

simultaneously, though the reasons remain unknown. Since this occurred so close to the

end of the project, new servos could not be acquired to replace them. Secondly and

possibly related to the servo collapses, the battery packs could not handle the power

requirements of the entire system. Since I did not have the knowledge necessary to be

able to turn individual sensors and servos on and off, I had to leave everything except the

crusher on continuously. This effectively placed a constant drain of nearly four amps on

the system.

 Despite the setbacks of the loss of servos and an inadequate power supply, several

tests were made to determine sensor sensitivity. At first, the real-time readings from the

sensors were displayed on the LCD so that they could be compared. This led to the

discovery that the readings fluctuated far too much to be used effectively. However, a

new method for obtaining sensor data was suggested that virtually eliminated the

problem. This technique involved “smoothing” of the data, or averaging of the readings

over certain periods of time. Testing revealed that sampling data over a 300 ms period

removed any variability in the readings and brought the sensitivity of the system to 1%.

To detect cans, a difference of only 5% is needed, indicating that the sensor system

should perform quite well.

Conclusion

 Overall this project was a success since it met several of the design goals.

Namely, the system is able to detect the presence of a soda can, attain the can, and crush

it. Obstacle avoidance was also accomplished to a limited extent. Considering that when

the project began, I had no knowledge of processor programming, servo control, relay

control, or sensory input and very limited electrical experience, this project turned out

quite well. It also served as an invaluable learning experience since it brought to light the

real complexities involved in designing and building a system of any real complexity.

Documentation

N/A

Appendices

A-1. C++ code for search algorithm.

A-2. Schematics

A.1

Main Program
/***
This program was produced by the
CodeWizardAVR V1.23.9b Standard
Automatic Program Generator
© Copyright 1998-2003 HP InfoTech s.r.l.
http://www.hpinfotech.ro
e-mail:office@hpinfotech.ro

Project :
Version :
Date : 12/3/2003
Author : Jean Francois Kamath
Company : Hampton, FL 32044
Comments:

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/

#include <mega128.h>
#include <delay.h>
#include <math.h>
#include <string.h>
#include "inttostr.h"
#include "servocon.h"
#include "ultradrive.h"

#define REPEAT 1;

// Alphanumeric LCD Module functions
#asm
 .equ __lcd_port=0x18
#endasm
#include <lcd.h>

#define ADC_VREF_TYPE 0x60
// Read the 8 most significant bits
// of the AD conversion result

unsigned char read_adc(unsigned char adc_input)
{
ADMUX=adc_input|ADC_VREF_TYPE;
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCH;
}

// Declare your global variables here

void main(void)
{
// Declare your local variables here
int i; // generic counter
int nPosition[8];
int nNumCycles;
int c;

//int nSensor;
//int nBreak;
int nCrushLim;

// Input/Output Ports initialization
// Port A initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTB=0x00;
DDRB=0x00;

// Port C initialization
// Func0=Out Func1=Out Func2=Out Func3=Out Func4=Out Func5=Out Func6=Out
Func7=Out
// State0=0 State1=0 State2=0 State3=0 State4=0 State5=0 State6=0 State7=0
PORTC=0x00;
DDRC=0xFF;

// Port D initialization

// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTD=0x00;
DDRD=0xFF;

// Port E initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTE=0x00;
DDRE=0x00;

// Port F initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTF=0x00;
DDRF=0x00;

// Port G initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In
// State0=T State1=T State2=T State3=T State4=T
PORTG=0x00;
DDRG=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
ASSR=0x00;
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// OC1C output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;

OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
OCR1CH=0x00;
OCR1CL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// Timer/Counter 3 initialization
// Clock source: System Clock
// Clock value: Timer 3 Stopped
// Mode: Normal top=FFFFh
// OC3A output: Discon.
// OC3B output: Discon.
// OC3C output: Discon.
TCCR3A=0x00;
TCCR3B=0x00;
TCNT3H=0x00;
TCNT3L=0x00;
OCR3AH=0x00;
OCR3AL=0x00;
OCR3BH=0x00;
OCR3BL=0x00;
OCR3CH=0x00;
OCR3CL=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
// INT3: Off
// INT4: Off
// INT5: Off
// INT6: Off
// INT7: Off
EICRA=0x00;
EICRB=0x00;
EIMSK=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
ETIMSK=0x00;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
// Analog Comparator Output: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC Clock frequency: 125.000 kHz
// ADC Voltage Reference: AVCC pin
// ADC High Speed Mode: Off
// Only the 8 most significant bits of
// the AD conversion result are used
ADMUX=ADC_VREF_TYPE;
ADCSRA=0x87;
SFIOR&=0xEF;

// LCD module initialization
lcd_init(16);
int_to_str(read_adc(1));
lcd_puts(gstrConvNum);
delay_ms(2000);
lcd_clear();
lcd_putsf("Initializing");

// Initialize global variables.
gnCan = 0;
gnIRLimit = 120;
gnIRSens = 5;
gnLeftIR = 0; //
gnFLIR = 0; //
gnFIR = 0; //
gnFRIR = 0; //
gnRightIR = 0; //
gnBump = 0; //
gnRearB = 44; // check these
gnFrontB = 226; // check these
gnBreak = 0; //
gnBreakSens = 230;

nNumCycles = 0;

// Sensor limits
nCrushLim = 80;

// Initialize motor
delay_ms(500);
lcd_clear();
lcd_putsf("Motor Init");
while(read_adc(7) > nCrushLim)
{
 PORTD.3 = 1;
 PORTD.4 = 1;
 PORTD.5 = 1;
}
PORTD.3 = 0;
PORTD.4 = 0;
PORTD.5 = 0;

// Initialize servos.
delay_ms(500);
lcd_clear();
lcd_putsf("Servo Init");
nPosition[0] = 14; // Gripper Base
nPosition[1] = 15; // Gripper Arm
nPosition[2] = 22; // Clearer Arm
nPosition[3] = 15; // Left Servo
nPosition[4] = 14; // Right Servo
nPosition[5] = 14;
nPosition[6] = 14;
nPosition[7] = 14;

DriveServos(nPosition, 20);

i = 0;

delay_ms(500);
lcd_clear();
lcd_putsf("Waiting");
while(read_adc(0) != gnRearB)
 DriveServos(nPosition, 1);
lcd_clear();
lcd_putsf("Starting Program");

// Main program loop.
while (1)
 {

 gnCan = 0;

 // Get sensor readings.
 gnBump += read_adc(0);
 gnBreak += read_adc(1);
 gnLeftIR += read_adc(2);
 gnFLIR += read_adc(3);
 gnFIR += read_adc(4);
 gnFRIR += read_adc(5);
 gnRightIR += read_adc(6);

 nNumCycles++;

 // Check if we need to average the readings and update servo speeds.
 if(nNumCycles == 14)
 {
 gnBump /= nNumCycles;
 gnBreak /= nNumCycles;
 gnLeftIR /= nNumCycles;
 gnFLIR /= nNumCycles;
 gnFIR /= nNumCycles;
 gnFRIR /= nNumCycles;
 gnRightIR /= nNumCycles;

 DriveControl();
 nPosition[3] = gnLeftMotor;
 nPosition[1] = gnRightMotor;
 lcd_clear();
 int_to_str(gnLeftMotor);
 lcd_puts(gstrConvNum);
 lcd_gotoxy(0,1);
 int_to_str(gnRightMotor);
 lcd_puts(gstrConvNum);

 nNumCycles = 0;

 gnBump = nNumCycles;
 gnBreak = nNumCycles;
 gnLeftIR = nNumCycles;
 gnFLIR = nNumCycles;
 gnFIR = nNumCycles;
 gnFRIR = nNumCycles;
 gnRightIR = nNumCycles;
 }

 // Servo control.

 DriveServos(nPosition, gnDriveTime);
 // If motor times are larger than 1, reset sensors.
 if(gnDriveTime > 1)
 {
 gnDriveTime = 1;
 }

 // If there is a can, pick it up and crush it.
 if(gnCan == 1)
 {
 lcd_gotoxy(0,0);
 lcd_putsf("Can Detected");
 // initialize the servo positions
 nPosition[0] = 14;
 nPosition[1] = 6;
 nPosition[2] = 22;
 nPosition[3] = 14;
 nPosition[4] = 14;
 nPosition[5] = 14;
 nPosition[6] = 14;
 nPosition[7] = 14;

 DriveServos(nPosition, 20);

 delay_ms(2000);

 /***********************/
 // Pick up and crush can.
 /***********************/
 // Flip gripper down.
 lcd_clear();
 lcd_putsf("Getting can.");
 nPosition[0] = 6; // gripper base
 DriveServos(nPosition, 20);

 // Close gripper arm.
 nPosition[1] = 19; // gripper arm
 DriveServos(nPosition, 20);

 // Flip gripper over.
 nPosition[0] = 22; // gripper base
 DriveServos(nPosition, 40);

 // Open arm.
 nPosition[1] = 6; // gripper arm
 DriveServos(nPosition, 40);

 // Recenter gripper.
 nPosition[0] = 6; // gripper base
 DriveServos(nPosition, 40);

 // Lower crusher
 lcd_clear();
 lcd_putsf("Crushing can.");
 // wait until sensor says crusher has lowered enough.
 for(c = 0; c < 3600; c++)
 {
 lcd_gotoxy(0,1);
 int_to_str(read_adc(1));
 lcd_puts(gstrConvNum);
 // DriveServos(nPosition, 1);
 PORTD.0 = 1;
 PORTD.1 = 1;
 PORTD.2 = 1;
 delay_ms(10);
 }
 // shut off crusher.
 PORTD.0 = 0;
 PORTD.1 = 0;
 PORTD.2 = 0;
 delay_ms(1000);

 // Raise crusher
 lcd_clear();
 lcd_putsf("Raising Crusher");
 delay_ms(1000);
 // raise crusher for predetermined interval.
 while(read_adc(7) > nCrushLim)
 {
 PORTD.3 = 1;
 PORTD.4 = 1;
 PORTD.5 = 1;
 }
 // shut off crusher.
 PORTD.3 = 0;
 PORTD.4 = 0;
 PORTD.5 = 0;

 // clear can
 lcd_clear();
 lcd_putsf("Clearing Crusher");
 nPosition[2] = 14; // clearer arm

 DriveServos(nPosition, 40);

 // rezero clearer
 nPosition[2] = 22;
 DriveServos(nPosition, 40);

 }
 };
}

servocon.h
// This file defines a basic function for controlling up to 8 servos
// on the AT Mega 128 board. Essentially crude PWM.
// Note: requires delay.h

// nPos determines how far the servos will turn. If a motor is being
// controlled, set nPos[#] to a number greater than nMaxSignal
// nCycles is the number of cycles

void DriveServos(int nPos[8], int nCycles)
{
 int t;
 int nSignal;
 int nMaxSignal; // Determines how long each pulse lasts.

 nMaxSignal = 221;

 // Cycle through the loop until nCycles cycles have passed.
 // Used to turn large distances w/out interference from sensors.
 for(t = 0; t < nCycles; t++)
 { // start for1()
 // Send drive signal to all servos.
 PORTC.0 = 1;
 PORTC.1 = 1;
 PORTC.2 = 1;
 PORTC.3 = 1;
 PORTC.4 = 1;
 PORTC.5 = 1;
 PORTC.6 = 1;
 PORTC.7 = 1;

 // Start PWM
 for(nSignal = 0; nSignal < nMaxSignal; nSignal++)
 { // start for3()
 // Check each servo for stop.
 // Shut off servo signal if pulse time has passed.

 if(nSignal == nPos[0])
 {
 PORTC.0 = 0;
 }
 if(nSignal == nPos[1])
 {
 PORTC.1 = 0;
 }
 if(nSignal == nPos[2])
 {
 PORTC.2 = 0;
 }
 if(nSignal == nPos[3])
 {
 PORTC.3 = 0;
 }

 if(nSignal == nPos[4])
 {
 PORTC.4 = 0;
 }
 if(nSignal == nPos[5])
 {
 PORTC.5 = 0;
 }

 if(nSignal == nPos[6])
 {
 PORTC.6 = 0;
 }
 if(nSignal == nPos[7])
 {
 PORTC.7 = 0;
 }

 // Wait 0.1 ms
 delay_us(100);
 } // end for3()
 } // end for1()
}

ultradrive.h
// This header file defines the behavior that the robot will use to
// locate and avoid obstacles.

#define M_STOP 15

#define L_FORWARD 9
#define L_HALFFOR 14
#defineL_REVERSE 21
#define L_HALFREV 16
#define R_FORWARD 21
#define R_HALFFOR 16
#define R_REVERSE 9
#define R_HALFREV 14

int gnCan;

int gnLeftIR, gnFLIR, gnFIR, gnFRIR, gnRightIR; // Sensor readings from front IR's
int gnIRLimit; // Range limit
int gnIRSens; // Limit on IR sensitivity

int gnBump; // Bump switches
int gnRearB, gnFrontB; // Values for bump switches

int gnBreak; // Break sensor reading
int gnBreakSens; // Limit on break
int gnLeftMotor, gnRightMotor; // Motor speeds
int gnDriveTime; // Amount of time to drive servos at specified speed
 // This time is increments of 22.1 ms

// For the demo, the robot will use 3 sensors mounted on the left,
// right and front. The rear will have 1 bump switch to activate,
// the robot and to detect a rear obstacle.
// The other switches will not be present and their values need
// to be set to 255.
void DriveControl(void)
{
 // Check if there is a can to be picked up
 if(gnBreak >= gnBreakSens)
 {
 gnLeftMotor = M_STOP;
 gnRightMotor = M_STOP;
 gnDriveTime = 1;

 // Indicate that a can needs to be crushed.
 gnCan = 1;
 }

 // Check if the robot has backed into something
 else if(gnBump == gnRearB)
 {

 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 25;
 }

 // Ran into post
 else if(gnBump >= gnFrontB)
 {
 gnLeftMotor = L_REVERSE;
 gnRightMotor = R_HALFREV;
 gnDriveTime = 25;
 }

 // Check if IR sensors indicate obstacle
 // Front IR
 else if(gnFLIR >= gnIRLimit ||
 gnFIR >= gnIRLimit ||
 gnFRIR >= gnIRLimit)
 {
 // Check if can is possible
 // ^-o-^ Can directly in front
 if((gnFIR - gnFLIR) >= gnIRSens &&
 (gnFIR - gnFRIR) >= gnIRSens)
 {
 // Drive forward a little to see
 // if it is really a can
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 1;
 }

 // ^-^-o Can to right
 else if((gnFRIR - gnFLIR) >= gnIRSens &&
 (gnFRIR - gnFIR) >= gnIRSens)
 {
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 1;
 }

 // o-^-^ Can to left
 else if((gnFLIR - gnFIR) >= gnIRSens &&
 (gnFLIR - gnFRIR) >= gnIRSens)
 {
 gnLeftMotor = L_REVERSE;
 gnRightMotor = R_FORWARD;

 gnDriveTime = 1;
 }

 // o-o-^ Can to left
 else if((gnFLIR - gnFRIR) >= gnIRSens &&
 (gnFIR - gnFRIR) >= gnIRSens)
 {
 gnLeftMotor = L_REVERSE;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 1;
 }

 // ^-o-o Can to right
 else if((gnFIR - gnFLIR) >= gnIRSens &&
 (gnFRIR - gnFLIR) >= gnIRSens)
 {
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 1;
 }

 // ^-o-o Can to right
 else if((gnFIR - gnFLIR) >= gnIRSens &&
 (gnFRIR - gnFLIR) >= gnIRSens)
 {
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 1;
 }

 // o-^-o Corner
 else if((gnFLIR - gnFIR) >= gnIRSens &&
 (gnFRIR - gnFIR) >= gnIRSens)
 {
 // Check for obstacles to sides
 if(gnRightIR >= gnIRLimit)
 {
 // Turn left
 gnLeftMotor = L_REVERSE;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 12;
 }

 else
 {
 // Turn right

 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 12;
 }
 }

 // o-o-o Wall
 else if(abs(gnFIR - gnFLIR) >= gnIRSens &&
 abs(gnFIR - gnFRIR) >= gnIRSens)
 {
 // Turn right
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 12;
 }
 }

 // Left IR
 // Wall to left
 else if(gnLeftIR >= gnIRLimit)
 {
 // Turn right a little
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_REVERSE;
 gnDriveTime = 12;
 }

 // Right IR
 // Wall to right
 else if(gnRightIR >= gnIRLimit)
 {
 // Turn left a little
 gnLeftMotor = L_REVERSE;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 12;
 }

 else
 {
 // Default to straight forward
 gnLeftMotor = L_FORWARD;
 gnRightMotor = R_FORWARD;
 gnDriveTime = 1;
 }
}

inttostr.h
// This function converts an integer into a string to be written to the LCD
char gstrConvNum[20];

char int_to_char(int num)
{
 char retval;
 num = abs(num);
 while(num >= 10)
 {
 num = num/10;
 }
 switch(num)
 {
 case 0: retval = '0'; break;
 case 1: retval = '1'; break;
 case 2: retval = '2'; break;
 case 3: retval = '3'; break;
 case 4: retval = '4'; break;
 case 5: retval = '5'; break;
 case 6: retval = '6'; break;
 case 7: retval = '7'; break;
 case 8: retval = '8'; break;
 case 9: retval = '9'; break;
 };

 return retval;
}

void int_to_str(int num)
{
 int power, pow, temp, i, wr_loc, pos;
 power = 0;
 wr_loc = 0;

 // Determine power
 temp = num = abs(num);
 while(temp >= 10)
 {
 temp = temp/10;
 power++;
 }

 // Add negative sign if needed
 pos = 0;
 if(num < 0)

 {
 num *= -1;
 gstrConvNum[0] = '-';
 pos = 1;
 }

 // Create string
 while(power >= 0)
 {
 // Convert first digit
 temp = num;
 while(temp >= 10)
 {
 temp = temp/10;
 }
 gstrConvNum[wr_loc] = int_to_char(temp);
 wr_loc++;

 // Remove first digit
 pow = 1;
 for(i = 0 + pos; i < power + pos; i++)
 {
 pow = pow*10;
 }
 if((num - temp*pow) < pow/10)
 {
 gstrConvNum[wr_loc] = '0';
 wr_loc++;
 power--;
 }
 num = num - temp*pow;

 // Decrement power
 power--;
 } // end while2

 gstrConvNum[wr_loc] = '\0';
}

A.2 Schematics

