
1

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

SplatBot
Final Report

By:
Stacey M Larese
December 5,2003

2

Table of Contents
Abstract……………………………………………………..….03
Executive Summary………………………………………..…..04
Introduction……………………………………….……….…..06
Integrated System…………………………………………..….08
Mobile Platform……………………………………………..…10
Actuation……………………………………………….……....11
Sensors……………………………………………………….....12
Behaviors……………………………………………………….17
Experimental Layout and Results…………………………….18
Conclusion………………………………………………………20
Appendix………………………………………………………...21

Abstract

3

The SplatBot is an autonomous outdoor/indoor target seeking
robot. Once activated, SplatBot roams around its environment until it
moves through the targets field of view. Finding the target is easily
accomplished through obstacle avoidance and direction finding SplatBot
uses a modified paintball gun module to “shoot down” its target once the
target is identified and in an appropriate firing range.

Executive Summary

4

SplatBot is an autonomous robot that seeks out it’s target using
obstacle avoidance. A target is equipped with PIR (passive infrared)
motion sensors and light sensors to tell SplatBot it is in its area. (The
target has approximately a 150 degree width and 20 feet depth area of
vision)

The MCU on the robot is an Atmel Atmega128 and uses ports
A,B,C,D,E and F. Port A is used as a communication bus for the LCD
unit. Port B pin 7 is as an output compare pulse for the left motors. The
output compare pulses are generated through pulse width modulation.
Port C is used as I/O for the front bumpers. Port D’s pins 0 and 1 are the
SCL and SCA lines, respectively. These lines are the clock and data lines
used with the Atmega128’s TWI, two-wire interface, commonly known as
I2C, bus. The TWI is a easy to use serial interface which enables a
designer to connect up to 127 devices using just the two lines, SCL and
SCA. SplatBot uses the TWI to connect two sonar units used for obstacle
avoidance. Port E is used for another output compare signal for the right
side motors. Port F’s pins 0-3 are used for the wireless receiver units
data bus.

The target uses an Atmel Atmega32 MCU for switching between
different data that is sent over the wireless channel. Port’s C and D are
used as I/O ports. Port A uses its analog to digital converter to convert
the light sensors analog voltage to a digital value. This data is used to
differentiate between when there is light and no light present on the
surface of the photo resistor array built on the target.

When testing SplatBot, results vary from outstanding to mediocre.
Obstacle avoidance is about 90% effective. The reason for the 10%
ineffectiveness is the height of the sonar units. They are mounted
approximately 8 inches off the ground. This generates a bottom “blind
plateau”. Bump sensors were added to eliminate this problem, but the
bump sensors are not very rigid. When SplatBot bumps into things, they
bend in a manner that does not always trigger the bump sensors. They
bend too much to add anything positive, but occasionally they work as
they should. Rear bump sensors were purchased, but not installed
because of there ineffectiveness.

The target works better than expected in doors. I originally
purchased the PIR motion sensors with the thought that they worked
with just motion of objects. I discovered that they actually detect a
change in heat, specifically heat that is generated by human bodies. (
Approximately temperatures around 90 – 105 degrees F.) This
introduced a new problem. I needed a heat source on my robot to emit
such temperatures. I purchased heat packs commonly used for skiing
used a s hand/heat warmers and attached them to the front of SplatBot.
This solved the motion sensor problem immediately. Once motion is
sensed, SplatBot stops where it is. Light sensor data is now transmitted.
Splatbot has a laser pointer on it to change the value of the light sensor

5

on the target. Once the laser pointer is pointing in the direction of the
target, SplatBot fires its gun. This is why the entire system is not that
effective outdoors. The sun causes many problems for the laser pointer,
so a change in light detected on the photo resistors is not always
detected.

Introduction

6

SplatBot is a military style robot but is used for entertainment

purposes only. SplatBot is designed to search for a pre-determined

target, and then once the target is found, SplatBot will release one of its

rounds, a paintball in this case, at the target to symbolically shoot down

an enemy piece of equipment. A target is defined as an array of motion

sensors that will notify the robot when he has moved through its

territory. The local environment is not always an ideal terrain, i.e. there

most likely isn’t a straight path from SplatBot to the target. Because of

this, SplatBot must be able to navigate around objects to get to the

target. This is accomplished through several sensors onboard.

For obstacle avoidance, SplatBot is equipped with two ultrasonic

sonar sensors that will send signals back to SplatBot’s “brain” to trigger

routines to avoid the object. Two ultrasonic sensors are used for a wider

field of view in front of the robot. Sonar is used for SplatBot’s obstacle

avoidance system because of its usefulness in an outdoor environment.

 After successfully navigating through its terrain to a

predetermined shooting location, SplatBot must now locate its target. It

would be easy for a human to know where it is relative to the target

because of our five senses. Unfortunately, robots are not equipped with

any of these. As designers we must come as close as possible to recreate

such environmental “antennas” and incorporate behaviors associated

with stimuli encountered everyday tasks. I added a wireless system to do

just that, tell the robot where it is , in some part, relative to the target.

Once one of the motion sensors is triggered, the robot knows it is at least

near the target. I then added a laser pointer on the robot, and photo

resistors on the target, to tell the robot specifically where it was in

relation to the target.

This report covers all the components of SplatBot in detail.

Including its platform, movement and actuation, all sensors onboard,

and the way SplatBot will successfully perform the desired task.

7

Integrated System

The robot consists of the following parts:

MCU : Alterra Atmega128 microprocessor

8

Platform: Self Designed Tank Style in PROE

Motors: 7.2VDC Gear Head Motors

Wheels: 2.88 Inch “Foam” Wheels

Bump Sensors: Contact Switches from Lynxmotion

Sonar Sensors: Devantach SRF08’s

Digital Compass: Images SI 1490 Compass (N/A)

Receiver: Glolab RM1V

Stepper Motor: Not Used

Paint Ball Gun: Victor Spyder

Actuation is controlled by the MCU including movement of the robot and

movement of the robot’s gun. The sonar units have PIC microcontrollers

on board and so all ranging calculations are done within the unit. All

data from the sonar units is sent over the TWI (two-wire interface) to the

Atmega128, which is then used to control the movement of the robot.

The target consists of the following parts:

Motion Sensor: All Electronics PIR sensor

Transmitter: Glolab TM1V

LED Display: Own Creation in PROTEL

Photo resistor Array: Series of 9 1” dia. Photo resistors

MCU: Atmega32

The motion sensor triggers a low true signal when something has moved

through one of the sectors. The data is then sent through a wireless

channel telling the robot it is in its “field of view”. The Atmega32 then

waits for the motion sensors to reset. Following the PIR motion sensor

reset, the MCU sends new data on the wireless channel. The first data is

just a series of 0xFF’s to tell the robot to now “listen” for the photo

resistor information, as compared to the motion sensor data. Once the

initiation information transfer is finished being sent, the A/D sensor on

9

the MCU data is sent. This data is the voltage across the photo resistors.

Finally, once this data has changed, because of the introduction of light

into the photo resistor array, the robot is told to fire it’s gun.

Mobile Platform

I have drawn the rails in CAD which give mechanical support for

the wheels and motors. The following describes an idea of what the

platform looks like. The rails will hold six wheels and motors, three

10

motors and wheels on the right and three motors and wheels on the left.

I have designed the platform to be relatively wide for a stable system

when SplatBot fires a round at its target. On top of the base will be a

immovable turret. On top of the turret sits the paintball gun module.

Rather then use a stepper motor, (because of costs), I have made the

turret immovable. I will instead rotate the robot in a 360 degree pattern

once it is located inside the targets range. Development of the platform is

shown below.

Actuation

The motors to drive the wheels are 7.2VDC Gear Head Motors

made by Hsiang Nenc. They are controlled by an SP-560 Motor Controller

which uses PWM (Pulse Width Modulation) from the microcontroller to

11

set the direction and speed of the motor. Both parts were ordered from

Lynxmotion, Inc. Pekin, IL.

A linear actuator used in power door locks is used to trigger the

gun. An active relay is used to power the trigger as well as an extra 9.6 V

battery. An active high signal sent from the Atmega128 is used as the

input to the relay.

Gear Head Motor

Linear Actuator
Sensors

Sensors are used to generate environment properties. Sensors are

necessary to perform any type of interaction with SplatBots local “world”.

The sensors that are used in SplatBot are ultrasonic rangers, RF

modules, light sensors, bump sensors and motion sensors.

12

Sonar Sensors : Devantach SRF08’s

The sonar sensors are used for obstacle avoidance. The Devantach

SRF08’s have the following specs:

Beam Pattern . see graph

Voltage 5v

Current 15mA Typ. 3mA Standby

Frequency 40KHz

Maximum Range 6 m

Minimum Range 3 cm

Max Analogue Gain Variable to 1025 in 32 steps

Connection Standard IIC Bus

Light Sensor Front facing light sensor

Timing Fully timed echo, freeing host computer of task

Echo Multiple echo - keeps looking after first echo

Units Range reported n uS, mm or inches

Weight 0.4 oz

Size 43mm w x 20mm d x 17mm h

13

 SRF08 Beam Width Graph

Bump Sensors: Bumper Switch Assembly Kit

The bump sensors are attached to the four corners of the robot. This gives added assurance that

the robot will miss objects. In case of the switches being triggered, the robot will back up, if one of

the front sensors are triggered, or move forward, if one of the rear bump switches is triggered.

Poor Image of Bump Sensor Assembly Kit

14

Motion Sensor: Infrared Detector, Removed from Hardware

All-Electronics description:

”Infrared motion detectors are commonly used in alarm systems and motion

activated switches. This unit was designed to activate a floodlight, after dark,

when motion is present. It operates on 6Vdc and detects motion in a span of

120 degrees horizontally and 90 degrees vertically. When activated it outputs

low current 6Vdc for 10, 30 or 60 seconds, depending on the switch setting.

The unit was removed from a light fixture and has an adjustable ball-joint

stem with wires protruding from the rear which may require alteration for

mounting purposes. We supply a hook-up diagram and instructions for

disabling the photo resistor so the unit can be used during daylight hours.”

I will be using them during the day, so I did remove the CdS cells. This

is the motion sensor schematic for hook up and removal of the CdS

cell.

15

NOT USED BUT ASSEMBLED AND TESTED

Digital Compass: Images SI 1490 Digital Compass

The compass is used to put something in common between the robot and

the target. Without this piece of information, there is no way the robot

would be able to “see” the robot.

Images description of the compass:

“The 1490 sensor is a solid state hall effect device. It is sensitive enough to detect the
Earth's weak magnetic field. When rotated it can display the position of the four cardinal
points on a compass, North (N), South (S), East (E) and West (W). As well as the
intermediate directions: North East (NE), North West (NW), South East (SE), and South
West (SW).

The sensor is dampened to approximate the speed of a liquid filled compass. It takes 2.5
seconds for it to respond to a 90 degree displacement. The dampening prevents over
swinging the direction. In addition the built in hysterisis prevents flutter when near a
switching direction.

The device is sensitive to tilt. Any tilt greater than 12 degrees will create directional
errors.

16

Light Sensors

The light sensors are actually 1”diamter photo resistors. Photo

resistors are devices that change resistance with the amount of light

present on the surface of them. Two extreme cases are absolute light,

which will produce zero resistance, and the other being complete

darkness which will produce infinite resistance. I have made an array of

nine photo resistors on the target for them to detect when the laser

pointer mounted on the robot is pointed at the target.

17

 Behaviors

 SplatBot will accomplish four behaviors using itself and its target.

They are: obstacle avoidance, motion sensing, light sensing, and

disbursement of paintballs. SplatBot follows this flow chart:

 Turn On

Obstacle Avoidance

Sense
Motion?

Yes
?

 Stop

 Rotate

Light Change?

No?

Yes

Stop FIRE!

No?

18

Obstacle Avoidance

SplatBot uses two sonar units and two front bump sensors for

obstacle avoidance. I use two of each because this way I have the robot

behave differently if something is closer, or something hits, on the left or

right side of the robot. For example, if an object is closer on the right

side, the robot will back up and turn to the left, and vice versa. If

something is bumped on the left, it will back up to the right.

Motion Sensing

SplatBot can only tell if it is in the vicinity of the target with help

from the target itself. The target is constantly sending information to the

robot, telling it whether or not it has sensed its motion somewhere in

front of the robot. If there is no change in information, SplatBot

continues to avoid obstacles. If there is a change, Splatbot will stop

where it is and wait for the data sent over the wireless channel to be light

sensor information.

Object Object

19

Light Sensing

As with motion sensing, light sensing is obtained only with the

help of the target. Once motion sensing information has stopped, which

is accomplished with the resetting of all motion sensors, the voltage

across the photo resistors is sent wirelessly. Since my transmitter and

receiver only send 4 bits of data, and I have 9 motion sensors hooked up,

I added a 9 to 4 priority encoder to the transmitter unit. Once a change

When photo resistor information is being sent, SplatBot makes small

steps in a clockwise direction to change its direction with respect to the

target, increasing the chance for the laser pointer on the robot to change

the voltage across the photo resistors.

Pulling Trigger

Not really a complicated behavior, but neither are some human

behaviors, but still a behavior. Once the light information is changed,

robot is instructed to pull its trigger.

20

Conclusion

SplatBot by far has been my most exciting and rewarding project I

have ever taken up. IMDL is the most practical class I have taken at the

University of Florida. SplatBot consistently accomplishes its task in an

indoor environment, but has trouble finishing its task outdoors. The

reason? The ground is not smooth. The sonar units pick up small echos

off the pavement when it is not smooth like a tile on the floor. This

causes SplatBot to turn sometimes when there is nothing to turn away

from. Motion sensing is accomplished 95% of the time whether indoor or

outdoors. The only time it will miss is when SplatBot is moving in a

direction away from the target with the heat packs not directly in front of

the target. An easy solution would be to add heat packs to the backside

of the robot. Light sensing works wonderful indoors and at night. (Yes, I

tested at night) Outdoors during the day was not very possible to detect

a change in light. (I had only been successful one time during daylight

hours.) The only other problem I had was with the wireless system.

Sometimes valid data was not presented to the receiver. The receiver

must receive a series of three successful transmission for it to accept it

as valid. SplatBot sometimes remains in its present motion, spinning,

when it does not receive valid data.

When this semester is over, I plan on making the robot an RC car,

this way I can control its motion, fire the gun when I want, and at

obstacles I choose. I also want to add the stepper motor to the turret, the

replacement came a day before presentations.

All in all, SplatBot was a success!

21

Appendices

ROBOT CODE

/* ** */
/* INCLUDE HEADERS

 */
/* ** */

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
#include <avr/twi.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <lcd.h>

/* ** */
/* DEFINITION SECTION */
/* ** */

#define Gen_Broadcast 0x00
#define Sonar1_Addr 0xE0 /* Sonar 1 is Right Side Unit */
#define Sonar2_Addr 0xE4 /* Sonar 2 is Left Side Unit
*/
#define Echo1_High 0x02
#define Echo1_Low 0x03
#define Result_Inch 0x50
#define Result_Cent 0x51
#define Result_Secs 0x52
#define TWBR4 0x10
#define TWBR1 0x02
#define SONAR_COMMAND_REGISTER 0
#define READ 1
#define WRITE 0
#define ADDR_COMM_1 0xA0
#define ADDR_COMM_2 0xAA
#define ADDR_COMM_3 0xA5
#define SYSCLK 16000000UL
#define SONAR_MAX_ADDRESS 35 // Last byte available (36 bytes 0:35)
#define MAX_RANGE 24 // Changes the maximum
range of the Sonar units to 1 meter
#define Analog_Gain 10
#define Range_Reg 0x02 // Sonar Range Register
#define Analog_Reg 0x01

/* ** */
/* GLOBAL VARIABLES
*/
/* ** */

unsigned char i,j,k,l,Light, START,DATA1[18],DATA2[18],error[1],error1;
unsigned int Inch,Range,temp1,temp2;
char buffer[4];
unsigned char led, per, dutyh_1B, dutyl_1B,dutyh_3B, dutyl_3B;
unsigned char old,bumper,receiver,receiver2,temp, temp7,sensed,stopped,
photoresistor_value,motion,counter;

SIGNAL(SIG_OUTPUT_COMPARE1A)
{

sei();
}

SIGNAL(SIG_OUTPUT_COMPARE3A)
{

sei();

22

}

INTERRUPT(SIG_OUTPUT_COMPARE3B)
{

sei();
}
INTERRUPT(SIG_OUTPUT_COMPARE1B)
{

sei();
temp1 = DATA1[3];
temp2 = DATA2[3];
bumper = inp(PINC);
receiver = inp(PINF);

if ((receiver < 0x0F)&&(receiver != 0x00)&&(sensed==0x00)) //
Check to see if robot has entered PIR sensor area

{
dutyh_1B = 0x02;

// If in PIR sensor area stop robot
dutyl_1B = 0x43;
dutyh_3B = 0x02;
dutyl_3B = 0x43;
temp = 0x01;
sensed = 0x01;
goto OUT;

}
else if((receiver < 0x0F)&&(receiver != 0x00)&&(sensed==0x01)) // Wait until PIR

sensors have reset
{

goto OUT;
}

else if((receiver == 0x00)&&(sensed == 0x01))
// Precaution in case data is lost wirelessly

{
goto OUT;

}

else if (((receiver==0x0F)&&(sensed == 0x01)))
// Target remains "off" after reset

{

if (temp7 == 0x00)
// Get robot to rotate

{
dutyh_1B = 0x02;
dutyl_1B = 0x31;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
temp7 = 0x01;
goto OUT;

}
else

{
sensed = 0x02;
goto OUT;

}
}

else if ((receiver == 0x00)&&(sensed ==0x02))
// Precaution in case data is lost wirelessly

{
goto OUT;

}
else if ((receiver <= 0x0F)&&(receiver!=0x00)&&(sensed==0x02)) // New light

sensor data is sent over wireless channel
{

if(receiver == 0x0F)
{

23

goto OUT;
}

else
// Get initial A/D sensor data from

photoresistor array in target
{

if (photoresistor_value == 0x00)
{

receiver2 = receiver;
photoresistor_value = 0x01;
goto OUT;

}
else if (photoresistor_value == 0x01)

// Routine that identifies when robot is pointing at target
{

if((receiver == receiver2)&&(counter<=20))
{

dutyh_1B = 0x02;
dutyl_1B = 0x31;
dutyh_3B = 0x02;
dutyl_3B = 0x62;

counter++;
goto OUT;

}
else if((receiver == receiver2)&&(counter<=71))

{

dutyh_1B = 0x02;
dutyl_1B = 0x43;
dutyh_3B = 0x02;
dutyl_3B = 0x43;

if (counter == 71)
{

counter=
0;

goto
OUT;

}
else
{

counter++;
goto OUT;

}
}

else
{

if (stopped == 0x00)
{

stopped
= 0x01;

dutyh_1B = 0x02;
dutyl_1B

= 0x43;

dutyh_3B = 0x02;
dutyl_3B

= 0x43;
goto

OUT;
}

else
{

outp(0x01,PORTE);
temp7 =

0x00;

24

temp =
0x00;

sensed =
0x00;

stopped
= 0x00;

photoresistor_value = 0x00;
motion =

0x00;
goto

OUT;
}

}

}

}
}

else
// Routine for when robot is not in PIR

sensor range
{
temp7 = 0x00;
temp = 0x00;
sensed = 0x00;
stopped = 0x00;
photoresistor_value = 0x00;
outp(0x00,PORTE);

if (bumper == 0)
// Bump Sensor Routine

{
dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
else if (bumper == 1)

{
dutyh_1B = 0x02;
dutyl_1B = 0x31;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
else if (bumper == 2)

{
dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x31;
goto OUT;

}

if (old ==0)
// Sonar unit Routine

{
if((temp1 >= 20)|| (temp1==0))

{
goto CHECK_SONAR_2;

}
else if (temp1<20)

{
old = 1;
dutyh_1B = 0x02;
dutyl_1B = 0x62;

25

dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
CHECK_SONAR_2:

if ((temp2 >= 20)||(temp2==0))
{

dutyh_1B = 0x02;
dutyl_1B = 0x31;
dutyh_3B = 0x02;
dutyl_3B = 0x31;
goto OUT;

}
else if (temp2<20)

{
old = 2;
dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
}
else if(old == 1)
{

if (temp1<=10)
{

dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
else if (temp1>10)

{
dutyh_1B = 0x02;
dutyl_1B = 0x31;
dutyh_3B = 0x02;
dutyl_3B = 0x62;

if (temp1>=19)
old = 0;
goto OUT;

}
}
else if ((old==2))
{

if (temp2<=10)
{

dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x62;
goto OUT;

}
else if (temp2>10)

{
dutyh_1B = 0x02;
dutyl_1B = 0x62;
dutyh_3B = 0x02;
dutyl_3B = 0x31;

if (temp2>=19)
old = 0;
goto OUT;

}
}
}

OUT:
outp(dutyh_1B,OCR1BH); /* Set period of pulse with respect to OFF period */

26

outp(dutyl_1B,OCR1BL); /* 0x0052 for 1.5mS pulse 0x0040 for 1.0mS 0x0080
for 2.0 mS */

outp(dutyh_3B,OCR3BH); /* Shortest pulse puts robot in reverse, mid sized
pulse stops */

outp(dutyl_3B,OCR3BL); /* robot, and longest pulse puts robot in forward
*/

}

int main(void)
{

old = 0;
lcd_init(LCD_DISP_ON);
temp = 0x00;
sensed=0x00;
motion= 0x00;
counter = 0;
photoresistor_value = 0x00;
outp(0xFC,DDRC);
outp(0xFF,DDRD);
outp(0xFF,DDRE);
outp(0xFF,DDRB);

outp(0xF0,DDRF);

outp(0x00,PORTE);

TWBR = (SYSCLK / 100000UL - 16) / 2; // Set Bit Rate to 100kHz
TWCR = _BV(TWEA) |_BV(TWEN) | _BV(TWINT); //acknowledge, enable, clear IRQ
TWAR = 0x01; // Don't

care, won't be in Slave mode

per = 0x00; /* init count */

outp(0x18,TIMSK); /* Enable Output Compare Register OCIE1A
and OCIE1B IN TIMSK */

outp(0x18,ETIMSK); /* Enable Output Compare Register OCIE3A
and OCIE3B IN ETIMSK */

outp(0x02,OCR1AH); /* Set compare register value 1A for 20mS

period */
outp(0x71,OCR1AL);

outp(0x02,OCR3AH); /* Set compare register value 3A for 20mS
period */

outp(0x71,OCR3AL);

outp(0x02,OCR1BH); /* Set period of pulse with respect to OFF
period */

outp(0x43,OCR1BL); /* 0x0052 for 1.5mS pulse 0x0040 for 1.0mS
0x0080 for 2.0 mS */

outp(0x02,OCR3BH); /* Set period of pulse with respect to OFF
period */

outp(0x43,OCR3BL); /* 0x0052 for 1.5mS pulse 0x0040 for 1.0mS
0x0080 for 2.0 mS */

outp(0x31,TCCR1A); /* Set to toggle OC1B pin on match and for
PFCPWM */

outp(0x14,TCCR1B); /* count with cpu clock/256 AND PFCPWM*/

outp(0x31,TCCR3A); /* Set to toggle OC3B pin on match and for
PFCPWM */

outp(0x14,TCCR3B); /* count with cpu clock/256 AND PFCPWM*/

27

outp(per,TCNT1H); /* reset TCNT1 */
outp(1,TCNT1L);

outp(per,TCNT3H); /* reset TCNT1 */
outp(1,TCNT3L);

sei();

/* *** */
/* Change Maximum Range in Range Register

 */
/* *** */

loop_until_bit_is_clear(TWCR, TWSTO); //check no transmission in progress

TWCR = _BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_START) /*Check value of
TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar1_Addr | WRITE; //send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto SONAR2;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);
for(;;)
{

cli();
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = Range_Reg;
//send the address on the sonar to write to

TWCR = _BV(TWINT) | _BV(TWEN); //clear
IRQ, continue transmission

while(!(TWCR & _BV(TWINT))){;} //wait
for interrupt flag to get set

if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

28

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Change Max Range to 1 meter */
/* *** */

TWDR = MAX_RANGE;
//send the sonar "start ranging" command

TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait

for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop
condition

loop_until_bit_is_clear(TWCR, TWSTO); //check
no transmission in progress

TWCR = _BV(TWSTA) | _BV(TWEN);
//send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait

for transmission */

if (TWSR!= TW_START)
/*Check value of TWI Status Register. Mask prescaler bits. If status different from START go to

ERROR */
{

lcd_home();
/* DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar2_Addr | WRITE;
//send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear

interrupt to start transmission */

29

while(!(TWCR & _BV(TWINT))){;} /* wait
for transmission */

if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto SONAR2;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);
for(;;)
{

cli();
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = Range_Reg;
//send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ,

continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for

interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Change Max Range to 1 meter */
/* *** */

TWDR = MAX_RANGE;
//send the sonar "start ranging" command
TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait for

interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

30

/* *** */
/* Change Maximum Analog Gain in Gain Register

 */
/* *** */

loop_until_bit_is_clear(TWCR, TWSTO); //check
no transmission in progress

TWCR = _BV(TWSTA) | _BV(TWEN);
//send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait

for transmission */

if (TWSR!= TW_START)
/*Check value of TWI Status Register. Mask prescaler bits. If status different from START go to

ERROR */
{

lcd_home();
/* DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar1_Addr | WRITE;
//send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear

interrupt to start transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait
for transmission */

if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto SONAR2;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);
for(;;)
{

cli();
lcd_home();
/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = Analog_Reg;
//send the address on the sonar to write to

TWCR = _BV(TWINT) | _BV(TWEN); //clear
IRQ, continue transmission

while(!(TWCR & _BV(TWINT))){;} //wait
for interrupt flag to get set

if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{

31

lcd_home();
/* DEBUG MESSAGE FOR NOW */

lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Change Max Analog Gain */
/* *** */

TWDR = Analog_Gain;
//send the sonar "start ranging" command
TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait for

interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

loop_until_bit_is_clear(TWCR, TWSTO); //check no
transmission in progress

TWCR = _BV(TWSTA) | _BV(TWEN); //send
start condition

while(!(TWCR & _BV(TWINT))){;} /* wait for
transmission */

if (TWSR!= TW_START)
/*Check value of TWI Status Register. Mask prescaler bits. If status different from START go to

ERROR */
{

lcd_home();
/* DEBUG MESSAGE FOR NOW */

lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar2_Addr | WRITE; //send
sonar address

TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt
to start transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for
transmission */

if(TWSR != TW_MT_SLA_ACK)

32

{
TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto SONAR2;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);
for(;;)
{

cli();
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = Analog_Reg;
//send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ,

continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for

interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Change Max Analog Gain */
/* *** */

TWDR = Analog_Gain; //send the sonar "start
ranging" command

TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

/* ** */
/* START RANGING HERE

 */
/* ** */

33

BEGIN:
loop_until_bit_is_clear(TWCR, TWSTO); //check no transmission in

progress

TWCR = _BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_START) /*Check value of
TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar1_Addr | WRITE; //send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto SONAR2;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);
for(;;)
{

cli();
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = SONAR_COMMAND_REGISTER; //send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ, continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Command Result in Inches */
/* *** */

34

TWDR = Result_Inch; //send the sonar "start ranging" command
TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

for (i=0;i<=60;i++){ /* Wair for SRF08 to Finish Ping */
for (j=0;j<=60;j++){

for (k=0;k<=60;k++){}
}

}

/* ** */
/* READ */
/* ** */

loop_until_bit_is_clear(TWCR, TWSTO); //check no transmission in
progress
BEGIN1:

TWCR = _BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_START) /*Check value of
TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN1;

}

TWDR = Sonar1_Addr | WRITE; //send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */
if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!BLAH\n");
lcd_gotoxy(0,1);
lcd_putc(TWCR);

}
}

35

TWDR = SONAR_COMMAND_REGISTER; //send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ, continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

BEGIN2:
TWCR = _BV(TWINT)|_BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_REP_START) /*Check
value of TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN2;

}

TWDR = Sonar1_Addr | READ; //send sonar address
TWCR = _BV(TWEA)|_BV(TWINT) | _BV(TWEN); /* clear interrupt

to start transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */
if(TWSR != TW_MR_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!BLAH\n");
lcd_gotoxy(0,1);
lcd_putc(TWCR);

}
}

for(i=0; i<8; i++) {
TWCR = _BV(TWINT)|_BV(TWEA)|_BV(TWEN);
loop_until_bit_is_set(TWCR, TWINT);
if(TWSR != TW_MR_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}
}
DATA1[i] = TWDR;

36

}

TWCR = _BV(TWINT) | _BV(TWEN);

while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MR_DATA_NACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!data_last\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}
}
DATA1[9] = TWDR;

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

/* *** */
/* Second Sonar Unit

 */
/* *** */

SONAR2:
loop_until_bit_is_clear(TWCR, TWSTO); //check no transmission in

progress

TWCR = _BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_START) /*Check value of
TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN;

}

TWDR = Sonar2_Addr | WRITE; //send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);
goto BEGIN;
error[0] = TWSR;
error1 = error[0];
itoa(error1,buffer,10);

37

for(;;)
{

lcd_home(); /*
DEBUG MESSAGE FOR NOW */

lcd_puts("!Sonar1_Addr\n");
lcd_gotoxy(0,1);
lcd_puts(buffer);

}
}

TWDR = SONAR_COMMAND_REGISTER; //send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ, continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

/* *** */
/* Command Result in Inches */
/* *** */

TWDR = Result_Inch; //send the sonar "start ranging" command
TWCR = _BV(TWINT) | _BV(TWEN);
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

for (i=0;i<=60;i++){ /* Wair for SRF08 to Finish Ping */
for (j=0;j<=60;j++){

for (k=0;k<=60;k++){}
}

}

/* ** */
/* READ */
/* ** */

loop_until_bit_is_clear(TWCR, TWSTO); //check no transmission in
progress

38

BEGIN11:
TWCR = _BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_START) /*Check value of
TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN11;

}

TWDR = Sonar2_Addr | WRITE; //send sonar address
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */
if(TWSR != TW_MT_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!BLAH\n");
lcd_gotoxy(0,1);
lcd_putc(TWCR);

}
}

TWDR = SONAR_COMMAND_REGISTER; //send the address on the sonar to write to
TWCR = _BV(TWINT) | _BV(TWEN); //clear IRQ, continue transmission
while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MT_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!SONAR_COMMAND_REGISTER\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}

}

BEGIN22:
TWCR = _BV(TWINT)|_BV(TWSTA) | _BV(TWEN); //send start condition
while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */

if (TWSR!= TW_REP_START) /*Check
value of TWI Status Register. Mask prescaler bits. If status different from START go to ERROR */

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!START\n");
lcd_gotoxy(0,1);
lcd_putc(0xFF);
 goto BEGIN22;

}

39

TWDR = Sonar2_Addr | READ; //send sonar address
TWCR = _BV(TWEA)|_BV(TWINT) | _BV(TWEN); /* clear interrupt

to start transmission */

while(!(TWCR & _BV(TWINT))){;} /* wait for transmission */
if(TWSR != TW_MR_SLA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home(); /*

DEBUG MESSAGE FOR NOW */
lcd_puts("!BLAH\n");
lcd_gotoxy(0,1);
lcd_putc(TWCR);

}
}

for(i=0; i<8; i++) {
TWCR = _BV(TWINT)|_BV(TWEA)|_BV(TWEN);
loop_until_bit_is_set(TWCR, TWINT);
if(TWSR != TW_MR_DATA_ACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!Sonar2_Addr\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}
}
DATA2[i] = TWDR;

}

TWCR = _BV(TWINT) | _BV(TWEN);

while(!(TWCR & _BV(TWINT))){;} //wait for interrupt flag to get set
if(TWSR != TW_MR_DATA_NACK)
{

TWCR = _BV(TWINT)|_BV(TWSTO)|_BV(TWEN);

{
lcd_home();

/* DEBUG MESSAGE FOR NOW */
lcd_puts("!data_last\n");
lcd_gotoxy(0,1);
lcd_putc(TW_MT_SLA_ACK);

}
}
DATA2[9] = TWDR;

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); //send stop condition

lcd_clrscr();
Range = DATA1[3];
lcd_gotoxy(0,0);
itoa(Range,buffer,10);
lcd_puts("Range_1: ");
lcd_gotoxy(9,0);
lcd_puts(buffer);

40

Range = DATA2[3];
lcd_gotoxy(0,1);
itoa(Range,buffer,10);
lcd_puts("Range_2: ");
lcd_gotoxy(9,1);
lcd_puts(buffer);

goto BEGIN;

}

TARGET CODE

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
unsigned char adchigh,pirsensor,photovalue,temp,i,j,k,l,m,n ;

void init_ADC(void)
{
ADMUX = 0x00; // start by selecting channel 0
ADCSRA = 0x00; // select the ADC clock frequency
ADMUX |= (1<<ADLAR);
ADCSRA |= (1<<ADPS2);
ADCSRA |= (1<<ADPS1);
ADCSRA |= (1<<ADPS0);
ADCSRA |= (1<<ADATE);
ADCSRA |= (1<<ADEN);
ADCSRA |= (1<<ADSC);

SFIOR |= (0<<ADTS2);
SFIOR |= (0<<ADTS1);
SFIOR |= (0<<ADTS0);

}
int main(void)
{

outp(0x00,DDRD);
outp(0xFF,DDRB);
outp(0xFF,DDRC);

init_ADC();

41

while(1)
{
 pirsensor = inp(PIND);
 outp(pirsensor,PORTC);

 if (pirsensor !=0xFF)
 {

 while(pirsensor!=0xFF)
 {

 pirsensor = inp(PIND);
 outp(pirsensor,PORTC);

 }
outp(0xFF,PORTC);
for (i=0;i<=5;i++){ /*

Wair for SRF08 to Finish Ping */
for (j=0;j<=60;j++){
for (k=0;k<=60;k++){
for (l=0;l<=60;l++){

}
}
}
}
while (1)
{

outp(ADCH,PORTC);

}

}
}

return 0;
}

