

 Date: 12/12/03
 Student Name: Cem Tozeren
 TA : Uriel Rodriguez
 Louis Brandy
 Instructor. A. A Arroyo

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

CATRAY

 FINAL REPORT

Table of Contents:

Abstract 3

Introduction 4

Integrated System 5

Mobile Platform 7

Sensors 8

Behaviors 14

Conclusion 15

Parts List 16

Software 17

Abstract:

Catray is a robot that works at parties as a server. It will wander around the room and

offer people drinks and snacks while performing obstacle avoidance and collision

detection. Every 15 seconds, it will stop and monitor a pressure sensor located on the top

platform. The pressure sensor is placed beneath the glasses to observe the pressure

exerted by the glass. If there is no glass on the tray, the output of the pressure sensor will

reduce below a threshold. The robot will then begin searching for a beacon which

actually represents a predefined location to load more drinks. After loading drinks, Catray

will continue roaming and serving.

Introduction:

Mobile robots designed to serve people during parties has been an attractive idea since it

would eliminate waiting lines for drinks and snacks. Similar server robots were designed

in the IMDL lab in the past such as BEERbot(Don Mcmann) and CATE(Mark Antilla).

One of the major disadvantages of such robots was the fact that they were working very

close to the ground level which made them inadequate servers. Other problems associated

with previous robots include the complexity of the serving mechanisms which results in

some awkward rotating behaviors and inaccuracy of human detection sensors.

The main motivation for Catray is to build the tray high above the ground to enable easy

interaction with people. This will be accomplished by using wooden legs of

approximately 1 meter length on top of the carrier platform which will hold the motors

and wheels. The legs will support a platform to carry drinks and snacks. A pressure

sensor will be implemented on the surface of the platform to alert the microcontroller

when the platform is empty or when a drink is served. In the case of an empty tray, the

robot will start looking for a designated area to load the tray again. In the case where a

drink is served, the robot will interact with the person through an LCD display. IR

detectors and bump switches will be used to implement object detection and collision

avoidance.

This report describes the physical design, integrated sensors and the behaviors that are

built-in to Catray in detail.

Integrated System:

The controller that is used to design the Catray is the Programmable System on Chip

microcontroller from Cypress semiconductor. The microcontroller doesn’t come on a

development board. However being a System-on-a-Chip device, it includes most of the

electronics used for the robot internally. Psoc microcontroller is a reconfigurable device.

The user can configure the internal structure of the chip via an IDE(Integrated

Development Environment) called the Psoc Designer. Psoc Designer has three main

parts. In the first part which is called the Device Editor, the programmer chooses the

modules to be used in the project. The choices include ADC, DAC, PWM, Counters,

LCD interfaces, Uarts and many more. The second part is called the Application Editor

where the programmer develops the code for the project. After the code is successfully

compiled, the Debugger part enables the programmer to set breakpoints and trace

variables to inspect the operation of the software.

Catray weighs 12 pounds. Two servos with sufficient torque were used to carry the

weight of the body. These servos are to be interfaced with drivers which are controlled by

the microcontroller through pulse with modulation.

The sensors integrated into the robot include a pressure sensor, infrared sensors, bump

switches and a photo-camera. The pressure sensor array will be used to provide

information about the state of the tray, e.g. full or empty. In the case someone takes a

drink from the tray, the microcontroller senses the change in the pressure level and

respond to this by displaying a message. When the pressure level on the tray becomes

lower than a certain threshold value, the microcontroller will assume that the tray is

empty and it will head to reload the tray.

Figure 2 The pressure sensor and the tray.

The infrared sensors and bump switches will be used to avoid collisions and detect

obstacles. They will be connected to the analog ports of the microcontroller.

Mobile Platform:

Party Tray is a wheeled robot using two servo-driven wheels arranged in a differential

drive style. Differential drive is chosen since it simplifies to turn in place and move in an

arc. Two casters are used to balance the platform. The servos used are HS-700BB from

Servocity.

Figure 3 The physical design of the Party Tray robot.

When designing a 35’’ platform, stability becomes an important issue. Unstable designs

like the one in figure 3 easily fall forward when the motor comes to a jerky stop. In order

avoid this problem the bottom part of the robot is made larger than the top part. Above

the drive platform, four wooden legs were used to support the tray. The control board is

placed beneath the tray to make close contact to the bump switches, pressure sensors and

infrareds. The tray and the legs are purchased from Lowe’s. The servos are driven by a

single battery with separate regulators. The microcontroller interfaces the servos through

three wires that run from top part to the bottom. The wires are for ground, VCC and

Pulse-Width-Modulation signals.

Another important issue is to use springs under the casters to provide suspension.

Especially when the robot is moving on non-ideal surfaces, the wheels tend to disconnect

from the ground if springs are not used.

The finalized platform is shown below:

Fig 4: Final Platform for Catray

Sensors:

In order to detect obstacles three front sensor is used on the tray. The infrared detectors

are Sharp GP2D12 sensors. GP2D12 finds the range to a target between 3.9 inches and

31.5 inches. The GP2D12 sensors produce an analog voltage output which depends on

the range of the detected obstacle. The analog output is connected to an A/D converter in

the microcontroller. When the output of the sensor goes above a certain threshold, Catray

turns away from the obstacle. The figure below shows the calibration data for GP2D12

IR sensors. It is taken from www.hwmtech.com. It shows the distance-voltage

relationship for 4 randomly selected GP2D12 devices.

Fig 5: Distance vs. Output Voltage Relationship for GP2D12

GP2D12 is highly immune to ambient and laser light levels. However experiments

showed that when a light bulb points to it at an angle close to 90 degrees, it can produce

false results. The figure below shows the placement of IR range sensors. The rear

detector is omitted since Catray never goes back.

Figure 6: Location of infrared sensors

The sensor in the middle will determine the objects that are in front of the tray while the

other two monitors the side ways. Since the tray will be approximately 20 inches in

diameter, the infrared sensors will be carefully placed in order to monitor the

environment in a continuum.

Bump switches are located at the bottom with uniform displacements. Three bump

switches are used to detect collisions. They are connected to digital port and implemented

using an Interrupt Service Routine. When the switch is closed, a low-to-high interrupt is

triggered and the microcontroller begins to execute the associated ISR. Bouncing signals

was a major bottleneck while implementing the bump switches. They caused the interrupt

to trigger more than once when the contact switch is closed. It is important to disable the

pending interrupts while servicing for the first interrupt in the ISR. Another way to avoid

bouncing is to use a capacitor across the bump switch terminals. However I haven’t tried

this method.

2 Lite-on IR detectors operating at 56 KHz are used to detect the position of an IR

beacon. These detector cans normally produce a digital output and are hacked to produce

analog signals. The method for hacking Lite-on IR detector is explained in Michael

Hatterman’s report.

The beacon is built using a microcontroller, 940 nm IR LED’s and 1K resistors. Instead

of using a timer to generate the required 56 KHz pulse, I used microcontroller’s PWM

modules. The schematic for the IR emitter is given on page 128 of Mobile robots(Jones,

Flynn,Seiger). It is important to modulate the 56KHz signal with a 600µsec pulse.

Figure 7: The output of the transmitter (F0=56KHz.)

Modulation improves the SNR of the Lite-on detectors. The schematic for the IR

transmitter is shown below.

Figure 8: Beacon will determine the place where Catray is to be loaded again.

IESP-12 Pressure sensors from CUI Inc. are used to monitor the contents of the tray. The

IESP has a special rubber membrane which bends under pressure. While bent, membrane

makes contact with a ceramic plate with resistive traces. As the applied pressure

increases, the resistive traces are covered by ceramic and the output resistance drops. The

figure below shows the resistance vs. applied pressure graph.

Figure 9: Pressure Vs. Output Resistance Graph

As can be seen, when the load is less than 100 Grams, the output resistance is ~5MΩ.

However when the load is increased to 300 grams, the resistance reduces to 100KΩ.

Since the glasses that are used on the tray weigh around 300 grams, a simple voltage

divider circuit was built with 100K to detect the changes in the resistance. The output of

the voltage divider is connected to a buffer to isolate the microcontrollers analog pin

input resistance to effect the measurements. The analog output of the buffer is input to

A/D converter on the microcontroller and a threshold-based code is written to interface

the pressure sensor.

Figure 10: IESP-12

The pressure sensors are placed on a cup holder which is used to secure the glass on a

jerky platform. The pressure sensor together with the cup holder is shown below.

Figure 11: Specialized Pressure Sensor

The last device used on the platform is the LCD display. It is a Sharp LM 242 LCD

display with a Hitachi 44780 controller. The Psoc microcontroller includes an LCD

module which is specifically built to interface the Hitachi 44780 LCD controllers. Using

the LCD interface module, I didn’t have to get involved with control signals between the

LCD and microcontroller. This greatly simplified the interface of LCD to the

microcontroller.

Behaviors:

After reset, the Party Tray will start wandering around. Meanwhile it will employ

collision avoidance and will output a short beep signal if there is an object close enough.

Through an LCD display on the tray, it will offer people drink. Once somebody gets one,

it will indicate on the LCD. After 15 seconds, it will stop and check the pressure sensor.

If the pressure sensor indicates that the glass is on the tray, it will wait for 15 seconds

more and then continue roaming. In case the pressure sensor indicates no glass, the robot

will begin to turn in place in order to locate the beacon. Once the beacon is locked, it will

move towards the beacon to load more drinks.

Conclusion:

I’ve proposed an improvement over past server robot designs by building a more

practical party robot. I think I’ve mostly accomplished the goals I’ve set for myself. I had

problems with finding a pressure sensor suitable for the design. Initially I was planning to

use a device that could provide the pressure information of the overall surface. The

devices I’ve found for this purpose had prices that are well over the project budget limit.

Thus I had to use the point-load IESP pressure sensors. In the future, I am planning to

modify this aspect of the robot.

Parts Used:

HS700-BB Servo Motors from Servo-city (25$ each)

GP2D12 IR Range Sensors from Acroname Electronics (11$ each)

Lite-on IR detector Cans (2$ each)

Psoc Microcontroller from Cypress Microsystems (Requested Samples)

Microcontroller Development Kit (80$)

Bump Switches (2$ each)

IESP-12 Pressure Sensor from Cui Inc (6.95$ each)

9.6 Volt Radioshack Battery (20$)

Software Written for the Party Tray
include "m8c.inc"
include "PGA_1.inc"
include "PGA_2.inc"
;include "PGA_3.inc"
include "AMUX4_1.inc"
include "AMUX4_2.inc"
include "Force.inc"
include "DELSIG8_1.inc"
include "lcd_1.inc"
export cont, ADCVal, turn_left, turn_right , turn_back, reverse,right_beacon,
left_beacon
export Loops_til_stop, delay_45ms
area bss(RAM)
 ADCVal: BLK 1 ;Temp variable containing 8 most significant bits of ADC
result
 Loops_til_stop: BLK 1
right_beacon: BLK 1
cont: BLK 1
left_beacon: BLK 1
Y: BLK 8
cont1: BLK 1
ave: BLK 1
area text(ROM,REL)

THE_STR:

DS "Welcome to the IMDL"

DB 00h ; String should always be null terminated

Second_STR:

DS "Media Demo Day!"

DB 00h

Third_STR:

DS "Would you like a drink?"

DB 00h

Fourth_STR:

DS "Look out! Turning Right!"

DB 00h

export _main

_main:
 M8C_SetBank0
 M8C_EnableGInt ;enable interrupts using m8c.inc macro
 mov REG[INT_MSK0],20h
 ;M8C_SetBank0

 mov [ADCVal],FFh
 mov [Loops_til_stop],10h;
 mov [cont], Ah

 mov [Y],'T'
 mov [Y+1],'U'
 mov [Y+2],'Z'
 ;M8C_SetBank0
 call LCD_1_Start ; Initialize LCD

 ;call LCD_1_Start
 mov A,01h ; Set cursor postion at row = 0
 mov X,01h ; col = 1
 call LCD_1_Position
 mov A,>Second_STR ; Load pointer to ROM string
 mov X,<Second_STR
 call LCD_1_PrCString ; Print constant “ROM” string
 call delay_45ms
 call delay_45ms
 mov A,00h ; Set cursor postion at row = 0
 mov X,01h ; col = 1
 call LCD_1_Position
 mov A,>THE_STR ; Load pointer to ROM string
 mov X,<THE_STR
 call LCD_1_PrCString ; Print constant “ROM” string

 call delay_45ms

 mov A,DELSIG8_1_HIGHPOWER ;Set Power level of ADC

 call DELSIG8_1_Start ;Start ADC
 call DELSIG8_1_StartAD ;Start getting samples
 mov A,PGA_1_HIGHPOWER ;Set Power level of PGA
 call PGA_1_Start
 mov A,PGA_2_HIGHPOWER ;Set Power level of PGA
 call PGA_2_Start

 call delay_45ms
 call SAR_init
 call servo_init
 call delay_45ms

loop1: ;data display occures
in DELSIG8_1INT.asm
 ;mov REG[INT_MSK0],20h
 ;call delay_45ms
 ;call delay_45ms
 mov A,[Loops_til_stop]
 dec A
 mov [Loops_til_stop],A

 call delay_45ms
 mov A,01h ; specify port pin Port0_2
 call AMUX4_1_InputSelect
 call delay_45ms

 call IR_forward
 call delay_45ms
 ;call delay_45ms
 mov A,03h ; specify port pin Port0_6
 call AMUX4_1_InputSelect
 call delay_45ms

 call IR_left
 call delay_45ms
 mov A,02h ; specify port pin Port0_4
 call AMUX4_1_InputSelect
 call delay_45ms

 call delay_45ms
 call delay_45ms

 mov A,[Loops_til_stop]
 dec A
 cmp A,04h

 jnc res
 call Force_monitor
 res:
 ;call Force_monitor
 jmp loop1 ;end loop1

 delay_90degree:
 push A
 mov A,17h; To turn back use two loops
 loop_90deg:
 push A
 call delay_45ms
 pop A
 dec A
 jnz loop_90deg
 pop A
 ret

delay_20degree:
 push A
 mov A,08h; To turn back use two loops
 loop_20deg:
 push A
 call delay_45ms
 pop A
 dec A
 jnz loop_20deg
 pop A
 ret

 delay_10degree:
 push A
 mov A,04h; To turn back use two loops
 loop_10deg:
 push A
 call delay_45ms
 pop A
 dec A
 jnz loop_10deg
 pop A
 ret

 delay_45ms:
 push A
 mov A,2Bh
 loop_45ms:

 push A
 call delay_1ms
 pop A
 dec A
 jnz loop_45ms
 pop A
 ret

 delay_10ms:
 push A
 mov A,0Ah
 loop_10ms:
 push A
 call delay_1ms
 pop A
 dec A
 jnz loop_10ms
 pop A
 ret

 delay_1ms:
 push A
 mov A,02h
 loop_1ms:
 push A
 call delay_500us
 pop A
 dec A
 jnz loop_1ms
 pop A
 ret

 delay_500us:
 mov A,AAh
 loop_500Us:
 dec A
 jnz loop_500Us
 ret

 servo_init:
 mov A,40h
 mov X,9Ch
 call PWM16_1_WritePeriod

 mov A,04h

 mov X,10h
 call PWM16_1_WritePulseWidth

 call PWM16_1_DisableInt

 call PWM16_1_Start

 mov A,40h
 mov X,9Ch
 call PWM16_2_WritePeriod

 mov A,FCh
 mov X,08h
 call PWM16_2_WritePulseWidth

 call PWM16_2_DisableInt

 call PWM16_2_Start

 ret

 SAR_init:
 mov A, Force_HIGHPOWER
 call Force_Start
 ret

 IR_forward:

 ;call DELSIG8_1_StartAD ;Start getting samples
 mov A,[ADCVal]
 ;add A,7Fh
 cmp A,28h
 jc nothing
 ;mov REG[PRT2DR],A
 call turn_right
 jmp something
 nothing:
 ;mov REG[PRT2DR],00h
 something:

 ret

 IR_left:
 ;call DELSIG8_1_StartAD ;Start getting samples
 mov A,[ADCVal]
 ;add A,7Fh

 cmp A,28h
 jc nothingleft
 ;mov REG[PRT2DR],A
 call turn_right
 jmp somethingleft
 nothingleft:

 somethingleft:

 ret

 IR_right:
 ;call DELSIG8_1_StartAD ;Start getting samples
 mov A,[ADCVal]
 ;add A,7Fh
 cmp A,1000h;NORMALLY 28H
 jc nothingright
 ;mov REG[PRT2DR],A
 call turn_left
 jmp somethingright
 nothingright:
 ;mov REG[PRT2DR],00h
 somethingright:
 ;call DELSIG8_1_StopAD
 ;mov [ADCVal],A
 ;add [ADCVal],7Fh
 ret

 turn_right:

 push A

 mov A,00h ; Set cursor postion at row = 0
 mov X,01h ; col = 1
 call LCD_1_Position
 mov A,>Fourth_STR ; Load pointer to ROM string
 mov X,<Fourth_STR
 call LCD_1_PrCString ; Print constant “ROM” string

 call delay_45ms
 call PWM16_1_Stop
 call delay_45ms
 mov A,34h
 mov X,08h
 call PWM16_1_WritePulseWidth

 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_90degree
 ;call delay_45ms

 call PWM16_1_Stop
 call delay_45ms
 mov A,04h
 mov X,10h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_45ms
 pop A

 ret

 turn_right_large:

 push A
 call PWM16_1_Stop
 call delay_45ms
 mov A,34h
 mov X,08h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start

 ;call delay_45ms
 ;call delay_45ms
 call delay_45ms

 call PWM16_2_Stop
 call delay_45ms
 mov A,FCh
 mov X,08h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms
 ;call PWM16_2_Start
 call delay_20degree
 ;call delay_45ms

 call PWM16_2_Stop
 call delay_45ms

 ;call delay_45ms
 ;call delay_45ms
 call PWM16_1_Stop
 call delay_45ms
 ;mov A,04h
 ;mov X,10h

 call delay_45ms
 pop A

 ret

 turn_right_small:

 push A
 call PWM16_1_Stop
 call delay_45ms
 mov A,34h
 mov X,08h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start

 ;call delay_45ms
 ;call delay_45ms
 call delay_45ms

 call PWM16_2_Stop
 call delay_45ms
 mov A,FCh
 mov X,08h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms
 ;call PWM16_2_Start
 call delay_10degree
 ;call delay_45ms

 call PWM16_2_Stop
 call delay_45ms

 call PWM16_1_Stop
 call delay_45ms

 call delay_45ms

 pop A

 ret

 turn_left:

 push A
 call PWM16_2_Stop
 call delay_45ms
 mov A,CCh
 mov X,10h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_90degree
 ;call delay_45ms

 call PWM16_2_Stop
 call delay_45ms
 mov A,FCh
 mov X,08h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms
 pop A

 ret

 turn_left_large:

 push A
 call PWM16_2_Stop
 call delay_45ms
 mov A,CCh
 mov X,10h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms
 ;call delay_45ms
 ;call delay_45ms

 call PWM16_1_Stop
 call delay_45ms

 mov A,04h
 mov X,10h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_45ms
 ;call PWM16_1_Start

 call delay_20degree
 ;call delay_45ms

 call PWM16_2_Stop
 call delay_45ms

 call PWM16_1_Stop
 call delay_45ms

 call delay_45ms
 pop A

 ret

 turn_left_small:

 push A
 call PWM16_2_Stop
 call delay_45ms
 mov A,CCh
 mov X,10h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms

 call PWM16_1_Stop
 call delay_45ms
 mov A,04h
 mov X,10h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_45ms
 ;call PWM16_1_Start

 call delay_10degree

 ;call delay_45ms

 call PWM16_2_Stop
 call delay_45ms

 call PWM16_1_Stop
 call delay_45ms

 call delay_45ms
 pop A

 ret

 turn_back:
 push A
 call PWM16_1_Stop
 call delay_45ms
 mov A,34h
 mov X,08h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_90degree
 call delay_90degree

 call PWM16_1_Stop
 call delay_45ms
 mov A,04h
 mov X,10h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_45ms
 pop A
 ret

 reverse:; Reverse should be followed by turn left right or back
 push A
 call PWM16_1_Stop
 call delay_45ms
 call delay_45ms
 call PWM16_2_Stop
 call delay_90degree

 mov A,34h
 mov X,08h

 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start

 call delay_45ms
 call delay_45ms
 mov A,CCh
 mov X,10h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start

 call delay_90degree
 call delay_90degree

 call PWM16_1_Stop
 call delay_45ms
 call delay_45ms
 call PWM16_2_Stop
 call delay_45ms
 call delay_45ms
 mov A,04h
 mov X,10h
 call PWM16_1_WritePulseWidth
 call PWM16_1_DisableInt
 call PWM16_1_Start
 call delay_45ms

 call delay_45ms
 mov A,FCh
 mov X,08h
 call PWM16_2_WritePulseWidth
 call PWM16_2_DisableInt
 call PWM16_2_Start
 call delay_45ms
 pop A
 ret

 Force_monitor:
 mov [cont1], 00h
 mov [ave], 00h
 call PWM16_1_Stop
 call delay_45ms
 call PWM16_2_Stop
 call delay_90degree

 mov A,00h ; Set cursor postion at row = 0
 mov X,01h ; col = 1
 call LCD_1_Position
 mov A,>Third_STR ; Load pointer to ROM string
 mov X,<Third_STR
 call LCD_1_PrCString ; Print constant “ROM” string

 mov A,01h ; specify port pin Port0_2
 call AMUX4_1_InputSelect
 call delay_45ms
 mov A,02h
 call AMUX4_2_InputSelect
 call Force_GetSample

 add A,1Fh
 cmp A,05h
 jnc no_pressure
 ;mov REG[PRT2DR],A
 ;mov REG[PRT2DR],A

 call find_beacon;
 ;jmp pressure
 no_pressure:
 call PWM16_1_Start
 call delay_45ms
 call PWM16_2_Start
 mov [Loops_til_stop],10h;normally 1ah

 ret

 find_beacon:
 ;call delay_90degree; normally only one delay
 call delay_90degree
 call delay_90degree
 mov A,00h
 call AMUX4_2_InputSelect
 call delay_45ms
 call Force_GetSample
 add A,1Fh
 mov [right_beacon],A

 mov A,01h

 call AMUX4_2_InputSelect
 call delay_45ms
 call Force_GetSample
 add A,1Fh
 mov [left_beacon],A

 cmp A,[right_beacon]
jc right_beacon_code
 cmp [left_beacon],11h
 jnc go_get_beacon
 call delay_45ms
 call delay_45ms
 call turn_left_large
 call delay_45ms
 call delay_45ms
 jmp find_beacon

 right_beacon_code:
 cmp [right_beacon],11h
 jnz go_get_beacon
 mov REG[PRT2DR],FFh
 call delay_45ms
 call delay_45ms
 call turn_right_large
 call delay_45ms
 call delay_45ms
 jmp find_beacon

 go_get_beacon:
 mov REG[PRT2DR],0Fh

 call delay_45ms
 mov [cont],07h
 loop:
 call delay_10degree
 call delay_45ms
 call delay_45ms
 call servo_init
 call delay_45ms
 call delay_45ms
 ;call PWM16_2_Start

 call delay_45ms
 mov A,01h ; specify port pin Port0_2

 call AMUX4_1_InputSelect
 call delay_45ms

 call IR_forward
 call delay_45ms
 ;call delay_45ms
 mov A,03h ; specify port pin Port0_6
 call AMUX4_1_InputSelect
 call delay_45ms

 call IR_left
 call delay_45ms

 call PWM16_1_Stop
 call delay_45ms
 call delay_45ms
 call PWM16_2_Stop
 call delay_45ms
 mov A,[cont]
 dec A
 mov [cont],A

 mov A,00h
 call AMUX4_2_InputSelect
 call delay_45ms
 call Force_GetSample
 add A,1Fh
 mov [right_beacon],A

 call delay_45ms
 call delay_45ms
 mov A,01h
 call AMUX4_2_InputSelect
 call delay_45ms
 mov [cont1],20h
 here:
 call Force_GetSample
 add A,1Fh

 mov [left_beacon],A

 call delay_45ms
 call delay_45ms
 mov A,[right_beacon]
 cmp A,[left_beacon]

 jc left
 ;cmp [right_beacon], 19h
 ;jnz leave
 call delay_45ms
 call delay_45ms
 call turn_right_small
 call delay_45ms
 call delay_45ms
 jmp right
 left:
 ;cmp [left_beacon], 19h
 ;jnz leave
 call delay_45ms
 call delay_45ms
 call turn_left_small
 call delay_45ms
 call delay_45ms
 right:

 mov A,[cont]
 mov REG[PRT2DR],A
 ;dec A
 cmp A,01h
 jnc res1
 jmp leave
 res1:
 jmp loop
 leave:
 call PWM16_1_Stop
 call delay_45ms
 call PWM16_2_Stop
 call delay_45ms
 loopx:
 jmp loopx

 ret

 ret

