
Date: 12/6/10
Student Name: Anup Parikh

TAs : Mike Pridgen
Tim Martin

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

University of Florida
Department of Electrical and Computer Engineering

EEL 4665/5666
Intelligent Machines Design Laboratory

Final Formal Written Report

Robot: Minesweeper

	

Table	 of	 Contents	
Abstract ... 3	
Introduction... 4	
Integrated Systems .. 4	
Mobile Platform and Drive System .. 4	
Sensors .. 5	

Camera .. 5	
Sonar ... 5	
Beacon... 6	

Behaviors .. 6	
Conclusion .. 7	
Appendix A – Robot Platform Schematic .. 8	
Appendix B – Final Robot Schematic .. 10	
Appendix C – Code... 11	

C.1 – Main Code ... 11	
C.2 – “CMUcam.c”... 14	

	

	

	

	

	

	

Abstract	
 This report details the design and testing of an autonomous robot that seeks and disables
mines in the form of LED beacons. The robot uses the Boe-Bot CMUcam with built in image
processing to determine the relative location of the mine with respect to the robot by tracking a
blue colored blob. The movement of the robot is controlled with visual servoing (proportional
control). Once the robot is within range of the beacon, a Hall Effect sensor on the beacon is
triggered by the magnetic field from a magnet mounted on the robotic platform, disabling the
mine. After deactivation, the robot backs away and continues searching for other active beacons.

 The robot was successful in locating and deactivating the mines. The main issues with the
robot’s performance were mutual interference between the sonar modules and false positive
detections by the camera. Methods for eliminating these problems and future improvements are
also outlined.

	

Introduction	
The purpose of the project is to create a robot that is able to find and disable mines. The

mines are simple light beacons that turn off when a magnetic field is applied to them. The robot
uses a camera to determine the direction to move in order to reach the mines, and then waves a
small magnet over them in order to deactivate them. Sonar rangefinders and bump sensors are
used to avoid obstacles and walls in the field.

Integrated	 Systems	

Process Flow

Mobile	 Platform	 and	 Drive	 System	
 The platform consists of a stack two circular plates made of wood, separated by 2 inch
spacers. The servos are mounted onto the sides of the bottom plate, where flats have been cut.
The microcontroller board is mounted on the top plate for easy access. The sonar, camera, and
magnet arm are also mounted onto the top plate. By mounting the sonar high, it should not sense
the small beacons. A schematic of the robot platform is shown in Appendix A.

The mobility of the robot is achieved through the use of 2 continuous servos attached to 3
inch wheels. The servos were originally restricted to only 90°	 rotation, but the potentiometer and
other limiting components were removed to allow for continuous rotation. A metal ball caster
used on the back of the platform to allow for easy rotation and linear motion. When the robot is
first activated, the servos run in opposite directions to allow the robot to spin until the camera
“sees” a beacon. Proportional control (or visual servoing) was implemented in moving the robot

N

N
N

Y

Y

Y Y
N

Close

Far

to the beacon, where the input error was the offset of the beacon from camera’s center of field of
view.

Sensors	

Camera	
The camera used on the robot is the Boe-Bot CMUcam. This camera can capture up to 17

frames per second at a resolution of 80x143. More importantly, this camera has image processing
circuitry built-in, therefore the location of a color blob can be easily determined with only a few
commands. The camera communicates with the controller via RS232.

After communication was established, 2 calibration steps were taken. The lens focus was
adjusted in order to get the sharpest images and therefore the most accurate beacon locations.
Also, the white balance and auto-gain are adjusted for the lighting conditions. The robot
automatically performs this calibration upon activation. This causes a 5 second delay before the
robot begins searching for a beacon.

The camera used in this robot was a modified version of the original CMUcam. As a
result, circuitry had to be added to bring the native TTL level transmission lines to RS232 levels.
Communication with the camera with UART was also quite difficult to establish, however once
established, the camera performed quite well and was able to track objects at a considerable
distance at a fast rate. The limiting factor in tracking the correct object was determining the
narrowest RGB color tracking bandwidths the object would be in. Too wide a range results in
many false positives, while too narrow a range results in the camera not detecting the object at
all.

Sonar	
 Sonar rangefinders continuously monitor the distance to the nearest object in the field of
view of the sensors. When they sense an object about 6 inches from the robot, the robot turns
away from the object and then continues finding beacons. A 4 step running average of the range
data is used to reduce noise. Bump sensors are also used in case the sonar does not detect an
obstacle.
 Using an oscilloscope, the output voltage versus range relationship was determined. The
following data was obtained by measuring the output voltage for various distances between the
sonar and a wall. The expected values were determined from the sonar datasheet.

 One of the main issues with using multiple sonar modules was mutual interference. Since
the cameras were pointed sufficiently away from each other such that no part of their field of
views overlapped, this interference was mostly mitigated. However, when the robot was near an
obstacle, sonar pings from one sonar would reflect off the walls and be intercepted by the other.
One way of eliminating this was to only power one sonar module at a time. This method was not
used however because the sonar modules have a 50 ms delay after power on and before reliable
sonar data is available, and this delay would significantly slow the main loop frequency of the
robot.

Beacon	
 The beacons use a simple latching Hall Effect sensor in order to store an ON and OFF
state. When the beacon is activated with a mechanical switch, all the LEDs on the beacon light
continuously. When the Hall Effect sensor senses a magnetic field, power transmission to the
LEDs is terminated. The system is reset by turning the switch OFF and ON. The threshold range
for state switching is approximately 4 inches using the same neodymium magnets that are
mounted onto the robot. The LEDs are embedded in a small Styrofoam ball that diffuses the light
and increases the size of the color blob the camera detects. One interesting aspect of the Hall
Effect sensors used on the beacon was that they were much more sensitive to a positive magnetic
field (north) than a negative magnetic field (south).

Behaviors	
 Once the robot is activated, it calibrates the camera by sending an auto-adjust command
and waiting 5 seconds. The robot then spins in place until the camera “sees” a blue blob of light.
After aligning the robot so that the beacon is directly in front of it, the robot moves toward the
beacon, using visual servoing to maintain path toward the beacon. Once the robot comes within
range of the beacon, the Hall Effect sensor is triggered by the magnets mounted on the robot,
causing the LEDs to deactivate (indicating the mine has been found and disabled). Once the blue
blob of light disappears from the camera’s view, the robot will back away, turn and look for a
new beacon. Throughout the entire run time, the sonar detects any obstacles, such as walls, and
navigates away from them.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

A
na

lo
g	
O
ut
pu

t	 V
ol
ta
ge
	 (V

)	

Distance	 to	 Obstacle	 (in)	

Analog	 Output	 vs.	 Distance	

Measured	

Expected	

Conclusion	
 The robot was successful in detecting and maneuvering toward the beacon, deactivating
the LEDs and continuing its search for other mines, all while avoiding obstacles. One of the main
issues I had was the camera tracking objects other than the beacons. Although the LEDs were
blue, the camera saw them as having large green and blue intensities. As a result, the camera
would detect and track bright lights and windows in addition to the beacon. Using red LEDs was
suggested, however the camera detected a variety of common objects (tables, floors, etc) with
large red intensities and the number of false positives increased.
 Future work would include adding a home base to move the mines after deactivating and
capturing them. One of the main changes I would need to make to the platform in order to
accomplish this task would be moving the camera to a higher vantage point. Currently, the
camera is mounted at the same height as the LEDs on the mines. Therefore, the limiting factor in
how far the camera can detect the mine is the light intensity of the beacon and not the vertical
field of view of the camera. One downside to this placement is that the distance between the
robot and the beacon cannot be determined from the y coordinate of the center of mass of the
tracked color blob. I also plan on implementing a new method of chaining the sonar to eliminate
mutual interference without severely decreasing the run frequency of the robot.

Figure 1: Final Robot.

Appendix	 A	 –	 Robot	 Platform	 Schematic	

Sonar Mount

Alternative
Camera Mounts

Microcontroller
Mounting Holes

Power Switch
Mounting Hole

Reset Switch
Mounting Hole

Servos

Servo Mounts

Wheels

Ball Caster

Appendix	 B	 –	 Final	 Robot	 Schematic	

Appendix	 C	 –	 Code	

C.1	 –	 Main	 Code	

#include <avr/io.h>
#include "PVR.h"
#include "CMUcam.h"

//sonar variable initialization
int threshold = 280; //sonar threshold, 0 - 4096
#define avgLen 4 //running average length
int Lsonar[avgLen]; //Left sonar array
int Rsonar[avgLen]; //Right sonar array
int sensCount = 0; //sonar counter
int Lavg; //Sonar average value, used for threshold comparison
int Ravg;

void ObstAvoid(void)
{
 Lsonar[sensCount] = ADCA1(); //get sonar values
 Rsonar[sensCount] = ADCA0();
 if (sensCount == 3) //reset sensCount
 {
 sensCount = 0;
 }
 else
 {
 sensCount++;
 }
 Lavg = 0;
 Ravg = 0;
 for(int i = 0; i < avgLen;i++){ //calculate average sonar values
 Lavg += Lsonar[i];
 Ravg += Rsonar[i];
 }
 Lavg = Lavg/avgLen;
 Ravg = Ravg/avgLen;

 lcdGoto(0,0); //Display sonar values
 lcdString(" ");
 lcdGoto(0,0);
 lcdString("Lsonar ");
 lcdInt(Lavg);
 lcdGoto(1,0); //Display sonar values
 lcdString(" ");
 lcdGoto(1,0);
 lcdString("Rsonar ");
 lcdInt(Ravg);

 if (Lavg < threshold) //detect obstacle
 {
 ServoC0(-100);
 ServoC1(-100);
 lcdGoto(0,0);
 lcdString("Obstacle on left");
 for(int j = 0; j < 4; j++)
 {
 delay_ms(100);
 Lsonar[j] = ADCA1();
 Rsonar[j] = ADCA0();
 }

 sensCount = 0;
 lcdGoto(0,0);
 lcdString(" ");

 }
 else if (Ravg < threshold) //detect obstacle
 {
 ServoC0(100);
 ServoC1(100);
 lcdGoto(0,0);
 lcdString("Obstacle on right");
 for(int j = 0; j < 4; j++)
 {
 delay_ms(100);
 Lsonar[j] = ADCA1();
 Rsonar[j] = ADCA0();
 }
 sensCount = 0;
 lcdGoto(1,0);
 lcdString(" ");
 }

}

void main(void)
{
 //initialization
 xmegaInit(); //setup XMega
 delayInit(); //setup delay functions
 ServoCInit(); //setup PORTC Servos
 ADCAInit(); //setup PORTA analog readings
 lcdInit(); //setup LCD on PORTK
 USARTinit();
 camInit();
 PORTQ_DIR |= 0x01; //set Q0 (LED) as output

 //variable initialization
 int maxMotor = 50;
 int spinTime = 0;
 int maxSpin = 100;
 //int targetLocked = 0;
 //int centerThreshold = 10;
 float propConst = 2; //Proportional Control constant kp
 int ctrl;
 int MX;
 //char clear[] = " ";
 int i = 0; //LED toggle
 float j = 1; //Homing toggle and scale

 for(int s = 0; s < avgLen;s++) //Set all initial sonar values to twice the
threshold
 {
 Lsonar[s] = 2*threshold;
 Rsonar[s] = 2*threshold;
 }

 while(1)
 {
 //Code to get coordinates of beacon. All are zeros if beacon is not in sight
 MX = BeaconX();

 ObstAvoid();

 while(MX == 0)
 {
 spinTime++;
 if (spinTime < maxSpin)
 {
 ServoC0((int) (j*10));
 ServoC1((int) (j*10));

 }
 else
 {
 ServoC0(maxMotor);
 ServoC1(-1*maxMotor);
 delay_ms(1500);
 spinTime = 0;
 }

 MX = BeaconX();

 i++;
 if(i%2 == 1)
 {
 PORTQ_OUT = 1; // turn on LED
 }
 else
 {
 PORTQ_OUT = 0; // turn on LED
 }

 ObstAvoid();

 }

 i = 0;

 while(MX != 0)
 {
 if(MX < 40)
 {
 ctrl = (int) (MX*-1*propConst + 80);
 /*
 lcdGoto(1,5);
 lcdString(clear);
 lcdGoto(1,5);
 lcdInt(ctrl);
 */
 ServoC0((int) (maxMotor - ctrl));
 ServoC1(-1*maxMotor);

 }
 else
 {
 ctrl = (int) (MX*propConst - 80);
 /*
 lcdGoto(1,5);
 lcdString(clear);
 lcdGoto(1,5);
 lcdInt(ctrl);
 */
 ServoC0(maxMotor);
 ServoC1((int) (-1*maxMotor + ctrl));

 }

 MX = BeaconX();
 /*
 lcdGoto(1,0);
 lcdString(clear);
 lcdGoto(1,0);
 lcdInt(MX);
 */

 i++;

 if(i%2 == 1)
 {
 PORTQ_OUT = 1; // turn on LED
 }

 else
 {
 PORTQ_OUT = 0; // turn on LED
 }

 ObstAvoid();

 }

 if(i > 10)
 {
 j = 2*(i%2) - 1;
 ServoC0(-1*maxMotor);
 ServoC1(maxMotor);
 delay_ms(500);
 }
 else
 {
 j = -0.95*j;
 }
 i = 0;

 }
}

C.2	 –	 “CMUcam.c”	

#include <avr/io.h>
#include "PVR.h"
#include "CMUcam.h"

void USARTinit(void)
{
 //Initializaiton
 PORTE_DIR = PIN3_bm; //Pin 3 of port E is output
 PORTE_OUT = PIN3_bm; //Pin 3 of port E is TXO
 PORTE.DIRCLR = PIN2_bm; //Pin 2 of port E is RXO
 USARTE0_CTRLC = 0x03; // USART Control Register C: ASYNCHRONOUS, no parity
1 stop bit 8 bit word
 USARTE0_BAUDCTRLA = 0x06; // Page 238 of Atmel manual, fbaud=115200 (my
case)=32MHz/(16*(((2^BSCALE) * BSEL)+1))
 USARTE0_BAUDCTRLB = 0xC1; // BSEL= 262 and BSCALE= -4 in 2s comp .
 USARTE0_CTRLB |= 0x08; // TX0 is on
 USARTE0_CTRLB |= 0x10; // RX0 is on
}

//CMUCAM functions
void CMUsend(char *command)
{
 int i = 0;
 while (command[i] != '\0') //While command does not end do...
 {
 // Data Register Empty Flag: check if data register is empty
 while (!(USARTE0_STATUS & (1<<USART_DREIF_bp)));

 //USARTE0_DATA is shared by the transmit and receive
 USARTE0_DATA = command[i];

 //if data is sent TXCIF is set
 while (!(USARTE0_STATUS & (1<<USART_TXCIF_bp)));
 i++;
 }
}

char CMUreceive(void)
{
 int i=0;

 static char *data;
 do
 { // wait for receive is complete
 while (!(USARTE0_STATUS & (1<<USART_RXCIF_bp)));

 //Put data into string
 data[i] = USARTE0_DATA;
 } while (data[i++] != '\r'); //Since all trasnfers are ended by \r wait for it to happen
 return data;
}

void camInit(void)
{

 CMUsend("RS\r"); //Reset the camera
 lcdString("Calibrating...");
 int j;
 for(j = 0; j < 5; j++) //Long enough to wait for ACK and to get the camera ready
 {
 lcdGoto(1,0);
 lcdInt((5-j));
 delay_ms(1000);
 }
 CMUsend("PM 1\r"); //Activate polling mode
 //lcdGoto(0,0);
 //lcdString(" ");
 //lcdString("ready");
 /*
 delay_ms(2000);
 CMUsend("TW\r");
 temp = CMUreceive();
 temp = CMUreceive();
 */
 lcdGoto(0,0);
 lcdString(" ");
 lcdGoto(1,0);
 lcdString(" ");

}

int BeaconX(void)
{
 CMUsend("TC 0 50 150 250 200 250\r"); //Track beacon
 char *temp;
 temp=CMUreceive(); //Receive ACK
 temp=CMUreceive();
 /*
 int i = 0;
 while(temp[i] != 'M')
 {
 i++;
 }
 int j = i + 2;
 while(temp[j] != ' ')
 {
 j++;
 }
 char xstr[5];
 strncpy(xstr,(temp + i + 1),(j - (i + 2)));
 */
 int x;
 temp[0] = ' ';
 x = atoi(temp);
 delay_ms(5);
 return x;

}

