
Final Report

Date:12/8/10
Student Name: David Register

Robot Name: BevBot
TAs : Mike Pridgen

Tim Martin
Ryan Stevens

Thomas Vermeer
Devin Hughes

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

 2

Table of Contents

Abstract…………………………………………………………………………….. 3
Executive Summary…………………………………………………………………3
Introduction………………………………………………………………………… 3
Integrated System………………………………………………………………....... 3
Mobile Platform……………………………………………………………………. 3
Actuation…………………………………………………………………………… 4
Sensors…………………………………………………………………………....... 5
Behaviors…………………………………………………………………………... 5
Experimental Layout and Results………………………………………………….. 6
Conclusion…………………………………………………………………………. 6
Documentation……………………………………………………………………... 6
Appendices…………………………………………………………………………. 7

 3

Abstract

BevBot is a beverage retrieval robot. When activated by the user it will search for a
canned beverage and safely navigate to a beverage’s location. As it does so it will avoid
any obstacle in its path. It will then secure the beverage and carry it back to the user’s
location.

Executive Summary

BevBot’s function it to retrieve a beverage for a user. To do this the robot utilizes a
mobile platform, actuating arms, a CMUcam1 camera, two long range infrared sensors,
and other necessary components to perform each behavior necessary to perform it’s task.
Once activated and all initialization is done BevBot, which is propelled by a pair of
hacked high-torque servos, uses its camera to find the beverage’s location, the location of
which is further indicated by illuminated LEDs. While attempting to find the beverage
the robot utilizes the infrared sensors to avoid any obstacles in its path. Once the camera
spots the beverage’s location, Bevbot uses the camera to guide it to the location and stops
when the infrared sensors indicate it is in position. It then uses another pair of servos to
actuate a pair of arms to secure the beverage. BevBot then maneuvers away from that
location with the beverage and navigates to the user’s location, further indicated by a
LASER pointer, in the same manner as it navigated to the beverage. Once the camera
and infrared sensors indicate BevBot has arrived, the robot will stop to allow the user to
take possession of the beverage.

Introduction

The robot I am building is a beverage retrieval robot, or BevBot. Upon activation the
robot will navigate to the beverage to be served, which will be in aluminum cans for the
purpose of this project. When BevBot arrives at the beverage it will secure it and carry it
back to the location of the user. Once there it will stop to allow the user to receive the
beverage. All of the functions required to complete the task will require various
actuators, sensors, controllers, and other hardware and software. The sections to follow
will elaborate on all of these requirements and the progress that has been made to
implement them.

Integrated System

BevBot can be broken down into several integrated component systems: a mobile
platform, a beverage securing mechanism, sensors, a microprocessor board, a human-
robot interface, and a DC power supply. Each component system provides necessary
functionality to perform a portion of the beverage retrieval task. The human-robot
interface is the means by which the user turns on the robot and data being used by the
robot is displayed. This interface consists of a toggle switch and an LCD display. The

 4

16 x 2 display is made by Xiamen Amotec Display Co. and is module number
ADM160SK-NSW-FBS/3.3V. The mobile platform houses all the other components and
provides a means of transporting the robot between the location of the user and the
beverage being retrieved. The sensors, which include a CMU camera, infrared sensors,
and bump sensors, enable the robot to enable it to receive input from its surroundings,
such as the location of obstacles or the colors of the beverage containers in the bin. The
function of the beverage securing mechanism is self-explanatory. All of these
components are controlled by a Pridgen Vermeer XMega128 microprocessor board (PVR
board) and powered by a DC power supply housing six nickel metal hydride batteries. A
picture of the robot is in Appendix A.

Mobile Platform

A vital element to the performance of BevBot’s task is mobility. The robot needs to be
capable of traveling from the location the beverage is ordered to the bin containing the
beverages and returning to the location of the order. This functionality is provided by a
wheeled platform driven by hacked servos.

The platform consists of a base, top, support columns, drink holder, two actuating arms,
component mounts, and a caster. The base and top of the robot are in the shape of circles
with two opposite ends cut off. It is 12 inches across at its longest point and 10 inches
across lengthwise. The base of the robot has the servo mounts, infrared (IR) sensors
mounts, drink holder, PVR board, caster, and battery pack holder mounted to it. The top
is positioned three inches above the base. It has the LCD display, on/off toggle switch
and actuating arms mounted to it. The top is supported by four support columns. The
support columns have ¾ inch tabs that go through holes in the top of the platform. This
allows the top to be secured without epoxy, screws, etc. so the top may be removed to
allow access to the components contained in the robot. The front drink holder is mounted
to the bottom of the base on the front end of the robot. It provides a surface protruding
from underneath the robot for the beverage to rest on during transport. Mounted opposite
to it on the back end of the robot is a caster with a 2 inch diameter wheel. This caster
provides freedom of motion and its size, mass, and location enable it to act as a
counterweight for the robot when carrying a beverage. The servo mounts are mounted to
the bottom of the base on either side and towards the front of the robot. They provide a
surface to mount the servos used to drive the robot via 4 screws and nuts each.

The servos in use are HiTec HS-645MG Ultra Torque servos. Servos were selected
because speed is not a design requirement and for the torque they can provide. This
torque is needed to move the relatively large platform and all other components. The HS-
645MG provides large amounts of torque for a servo (7.7 kg*cm or 107 oz*in at 4.8 V)
and its metal gears provide the ruggedness needed to move the platform and withstand
frequent direction changes. Each servo drives a 2.63 inch diameter wheel and tire from
Lynxmotion. This wheel was designed to mount to a HiTec servo and has a rubber tire
affixed to it to provide adequate traction to move the robot.

 5

Actuation

The actuation performed by BevBot is related to robot mobility and beverage container
manipulation. The actuation pertaining to mobility was discussed in the previous section.
The other actuators on the robot are utilized to secure the beverage. After the robot has
located the beverage and positioned itself for retrieval, it actuates a pair of arms that
extend from the front of the robot to secure the beverage. The arms simultaneously
swing inward and overlap on the opposite side of the beverage from the robot. Further
moving these arms force the beverage to slide towards the robot and onto the drink
holder. Each arm is moved by a HiTec HS-485HB servo. While this servo is not as
powerful and lacks the metal gears of the HS-645MG that propels the entire robot, these
servos provide relatively large amounts of torque (4.8 kg*cm or 66.65 oz*in at 4.8 V),
have Karbonite gears the manufacture claim are four times stronger than typical white
resin gears, and can be purchased at approximately half the price. Each arm is mounted
to a servo and has one end anchored by a bolt that extends through the top and bottom
levels of the platform. One arm fits more snugly on its bolt and is capable of maintaining
the proper level of the arm. The other utilizes a duct tape around the bolt separated from
the arm by a spacer to maintain the proper level. This level control is necessary to ensure
the arms are on different levels and will not collide when they close.

Sensors

BevBot utilizes or will utilize several types of sensors to perform its task. These sensors
include a CMU camera, IR sensors, and bump switches.

The special sensor for the robot is a CMU camera, specifically the Boe-Bot CMUcam1
AppMod Vision System from Parallax, Inc. This version of the CMUcam1 is modified
for use with the Boe-Bot robot kit by leaving off the Maxim MAX232CPE level shifter
chip and nine capacitors needed for the camera to perform RS232 serial communication
and it came connected to a printed circuit board (PCB) that would allow the camera to
interface with the Boe-Bot and the user to select and identify the current function of the
camera. Once physically separated from the PCB and the missing components and a pair
of jumpers were installed the camera was capable of operating like the regular version of
the CMUcam1. For the BevBot the camera is used to track the location of a color, which
is red for this application with the current programming. The camera locates an object of
the correct color and provides a data packet that includes an X and Y coordinate for the
object’s location relative to the camera. The code found in Appendix B polls the camera
for the locations of red objects, receives the data packet, pulls out the X and Y coordinate
values, and turns the robot so that the red object is centered on the front of the robot. The
camera is mounted to the top of the BevBot utilizing the hardware used to connect it to
the PCB for the Boe-Bot. The hardware allows the camera to be tilted up and down as
needed, and its location on top of the robot keeps it out of the way of other components
and allows for an unobstructed view even when carrying a payload.

BevBot utilizes two IR sensor to measure the range from the sensor to an object. The IR
sensors used are Sharp long range infrared proximity sensors, part number

 6

GP2Y0A02YK0F. The sensors have a vendor specified range of 20 cm to 150 cm. They
utilize a 5 V supply voltage obtained from the ADC port on the PVR board and return a
value to the I/O pin ranging from approximately 500-700 if no object is detected to 4095
if an object is at the closest detectable range. This information is used for obstacle
avoidance and positioning with the beverage during retrieval. The code currently utilized
by BevBot to perform the obstacle avoidance, which is a modified version of the PVR
sample code, can be found in Appendix B.

The use of bump sensors is an area for future work for the robot. Bumps sensors will be
used to to detect when it has collided with an object that was not detected by the IR
sensors so it may navigate away from it. Each bump sensor has four pins that may be
connected to. On BevBot two pins diagonally across from each other will be used. The
connection between these pins is normally open and closes when the bump sensor is
pressed. One pin will be connected directly to ground, and the other will be connected to
an I/O pin on Port J of the PVR board configured to use an internal pull-up resistor. A
total of six bump sensors are intended to be used, three of which are installed on the sides
and rear of the bottom level of the platform. The other three will be mounted on each
side and on the rear of the top level of the platform.

Behaviors

Several behaviors are exercised by BevBot to perform its task. First the robot avoids
colliding with obstacles as it searches for the beverage, which is located more easily by
locating a pair of illuminated red LEDs directly above it. Once the robot sees the color
red it will steer towards it until it is positioned in front of the beverage. Once there the
robot secures the beverage. Then it navigates back to the user’s location with the
beverage and stops upon arrival.

The obstacle avoidance is currently provided by the IR sensors and the code in Appendix
B. Action is taken when the IR sensor inputs a value greater than 2500, which
corresponds to an object being within approximately 19 inches. The robot turns left if
only the right IR sensor detects an object and turns right if only the left IR sensor detects
an object. If both detect an object the robot turns left or right randomly. The robot will
also randomly turn left or right after traveling a short distance until it locates a red object.

Once a red object is seen, the obstacle avoidance and search behaviors are temporarily
disabled. If the object is located outside an allowable range to the left, which is indicted
by an X value greater than 48, the robot turns to the left. The same action is taken for an
object too far to the right, which has an X value less than 32. When the red object is
centered in the allowable range the robot travels straight ahead. This continues until the
IR sensors detect an object deliberately located behind the beverage. By detecting the
object behind the beverage and the color red in the center, the robot knows it is
positioned to secure the beverage.

Once the BevBot is properly positioned the actuating arms secure the beverage as
described earlier. After this is completed the robot backs up, rotates 180 degrees and

 7

begins to search again in the same manner as before. This search is aided by a LASER
pointer held by the user. Once found the robot navigates to the user the same way it
navigated to the beverage. When the robot gets close enough, indicated by both IR
sensors reading greater than or equal to 3100, the robot stops so the beverage may be
taken by the user.

Experimental Layout and Results

The layout of the robot can be seen in the photo in Appendix A. Few adjustments were
made to the robot to arrive at this configuration. The first modification was to remove
the PVR board, rotate it 180 degrees, and remount it. This was necessary so the wires
from the IR sensors could reach the appropriate pins on the board. The other
modification was to deviate from the original conceptual design and mount the servos for
the actuating arms to the top level rather than the bottom level of the platform. This
prevented the other components mounted on the bottom level from interfering with the
mounting location of the servos, and it allowed the arms to swing at a lower level than
had the servos been mounted to the bottom level.

A significant amount of experimentation was performed to confirm the operation of
various components and to develop the performance of the various behaviors of the robot.
First it was necessary to determine the values being provided by the IR sensors to write
the code for obstacle avoidance. The PVR board was programmed to display the value
from each sensor on the LCD display. Using the displayed values the specifics of
operation were determined and incorporated into the code. At this point the robot
demonstrated successful obstacle avoidance, but the arms had not been installed. The
protruding arms in front of the robot required and adjustment to the avoidance code to
turn sooner and prevent the arms from hitting objects.

Next the camera’s functionality and its utilization had to be checked. Functionality was
demonstrated by fabricating a connector for the camera to connect it to a computer and
then showing the output of the camera in hyperlink. Next communication with the robot
was demonstrated by outputting the data packet from the camera to the LCD display.
From there the code to track red to direct the robot to the beverage was developed and
functionality verified through trials.

The big issue was and continues to be the integration of all the behaviors into one
comprehensive program. All the behaviors worked properly when performed separately,
but when obstacle avoidance and searching were added to the program to track color,
secure the beverage, move away, and track color again the robot would move only a
couple feet before becoming confused and ceasing to perform any of the behaviors. Thus
currently the obstacle avoidance and searching elements to the code as seen in Appendix
B have been disabled to permit the other behaviors to be demonstrated.

Conclusion

 8

BevBot largely has all the capabilities to perform its intended task, but some future work
would need to be performed to perform all aspects of its task in one run. Physically
BevBot is sturdily constructed with minimal future work. This future work includes
attaching the remaining three bump switches and providing adequate pathways for and
securing the wiring. The majority of the work needed to enhance the capabilities of the
robot is with the software. Many of the individual robot behaviors have been
successfully created, but they must be integrated into a single program in such a way as
to not interfere with each other.

Few problems were experienced with the design of the robot. The biggest problem by far
was with the CMU camera. Significant time was lost attempting to obtain the camera due
to the unavailability of the CMUcam1 and having to resort to a lesser substitute. Given
the time lost in obtaining the camera, repopulating the missing components, and making
the camera operational, a better approach would have probably been to use the
CMUcam2 or CMUcam3. Not only would time have been saved, but with the extra
expenses required to make the Boe-Bot camera operation those options potentially would
not have been significantly more expensive if they were more expensive at all. Another
issue was that adequate tolerances for pieces fitting together were not made. Holes were
made too small for tabs, and the rounded edges cut by the T-Tech rather than square
edges did not fit properly at first. Some hand chiseling was required to enable a proper
fit. Finally, the PVR board had to be turned to allow the wires from the IR sensors to
reach the correct pins.

Documentation

Vendor documentation for components can be found online at the following locations:

IR sensors: http://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf

LCD display: http://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-
3.3v.pdf

CMU camera:
http://www.parallax.com/Portals/0/Downloads/docs/prod/robo/CMUcam%20Manual.PD
F

Appendices

Appendix A: BevBot Photo

 9

Appendix B: Current code programmed into robot.

The entirety of the code used by BevBot, including header and source files, is too long to
be included in this report. It can be found at the following web page: http://plaza.ufl.edu/
dregister/Index.htm. The following is the main program:

#include <avr/io.h>
#include "PVR.h"
#include "usart.h"
#include "global.h"

void main(void)
{xmegaInit(); //setup XMega
delayInit(); //setup delay functions
ServoCInit(); //setup PORTC Servos
ServoDInit(); //setup PORTD Servos
ADCAInit(); //setup PORTA analong readings
lcdInit(); //setup LCD on PORTK

lcdString("BevBot"); //display "BevBot" on top line (Line 0) of LCD
lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
//lcdString("Board Demo"); //display "Board Demo" on second line

PORTQ_DIR |= 0x01; //set Q0 (LED) as output

int i = 0;
int irleft = ADCA2();
int irright = ADCA0();
int rightforward = 100;
int rightreverse = -100;

 10

int rightstop = 6;
int leftforward = -100;
int leftreverse = 100;
int leftstop = 6;
int leftarmopen = 100;
int leftarmclosed = -50;
int rightarmopen = -100;
int rightarmclosed = 50;
int x = 0;
int y = 0;
int gotdrink = 0;

PORTE_DIR = PIN3_bm; //Pin 3 of port E is output
PORTE_OUT = PIN3_bm; //Pin 3 of port E is TXO
PORTE.DIRCLR = PIN2_bm; //Pin 2 of port E is RXO
USARTE0_CTRLC = 0x03; // USART Control Register C: ASYNCHRONOUS, no
parity 1 stop bit 8 bit word
USARTE0_BAUDCTRLA = 0x06; // Page 238 of Atmel manual, fbaud=115200 (my
case)=32MHz/(16*(((2^BSCALE) * BSEL)+1))
USARTE0_BAUDCTRLB = 0xC1; // BSEL= 262 and BSCALE= -4 in 2s comp .
USARTE0_CTRLB |= 0x08; // TX0 is on
USARTE0_CTRLB |= 0x10; // RX0 is on
static char *temp;

PORTJ_DIR |= 0x00;
PORTJ_PIN3CTRL |= 0b10011000;
PORTJ_PIN5CTRL |= 0b10011000;
PORTJ_PIN7CTRL |= 0b10011000;

//Program
CMUsend("RS\r"); //Reset the camera
temp=CMUreceive(); //Receive ACK
// lcdString("ACK receive");
delay_ms (5000); //Long enough to wait for ACK and to get the camera ready
CMUsend("L1 1\r"); //To turn on green light
// temp=CMUreceive(); //Receive ACK
// lcdString("Made it here");
// while(1){}
delay_ms(5); //For some reason that I havent figure out, there must be a delay between
commands
CMUsend("PM 1\r"); //Activate polling mode
temp=CMUreceive(); //Receive ACK
// lcdString("ACK receive");
// while(1){}
delay_ms(5);

 11

while(1)
 {lcdData(0x01); //clear LCD
// lcdString("Left IR "); //display "Left IR " on top line (Line 0) of LCD
 irleft = ADCA2(); //get latest left IR sensor value
// lcdInt(irleft); //display left IR sensor value on top line
// lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
// lcdString("Right IR "); //display "Right IR " on bottom line (Line 0) of LCD
 irright = ADCA0(); //get latest right IR sensor value
// lcdInt(irright); //display right IR sensor value on bottom line
// delay_ms(100); //delay 100ms

// lcdData(0x01); //clear LCD
 CMUsend("TC 155 255 0 30 0 30\r"); //Track color
 temp=CMUreceive(); // Receive ACK
 temp=CMUreceive(); // Receive M packet
 delay_ms(5);

 lcdString(temp);

 CMUTC(temp, &x, &y);
 lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
// lcdInt(x);
// lcdString(" ");
// lcdInt(y);

 delay_ms(5); //delay 200ms
if (x != 0)

{if (irleft >= 3100 && irright >= 3100) //If the left IR sensor detects an
object within range...

 {ServoC0(leftstop);
 ServoC4(rightstop); // Stop moving.
 ServoD0(leftarmclosed);
 ServoD3(rightarmclosed); // Close arms.
 gotdrink = 1;
 delay_ms(3000); //delay 3000ms
 ServoC0(leftreverse);
 ServoC4(rightreverse);
 delay_ms(1200);
 ServoC0(leftforward);
 delay_ms(2200);
 }
else
 {if (gotdrink == 0)
 {ServoD0(leftarmopen);

 12

 ServoD3(rightarmopen);} // Leave arms open otherwise.
 ServoC0(leftforward);
 ServoC4(rightforward);
 }
/*
 if (y >= 135)
 {ServoC0(leftstop);
 ServoC4(rightstop);
 }
 else
 {ServoC0(leftforward);
 ServoC4(rightforward);
 }
*/
if (x <= 32 && x != 0) //If both IR sensors detect an object within range...
 {//lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
// lcdString("turn right");
 ServoC4(rightstop);
// delay_ms(5);
 }

if (x >= 48) //If the random function (range 0 to 32677) is greater than 16338
 {//lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
// lcdString("turn left");
 ServoC0(leftstop);
// delay_ms(5);
 }
/* else //If the random function (range 0 to 32677) is less than 16338
 {//lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD
// lcdString("go straight"); //delay 200ms
 ServoC0(leftforward);
 ServoC4(rightforward);
 delay_ms(5);
 }*/
}
else
{ if (gotdrink == 0)
 {ServoD0(leftarmopen);
 ServoD3(rightarmopen);} // Leave arms open otherwise.

 ServoC0(leftforward);
 ServoC4(rightforward);

if (irleft >= 3100 && irright >= 3100) //If the left IR sensor detects an
object within range...

 {ServoC0(leftstop);

 13

 ServoC4(rightstop); // Stop moving.
// ServoD0(leftarmclosed);
// ServoD3(rightarmclosed); // Close arms.
// delay_ms(3000); //delay 3000ms
 }
/* else
 {ServoD0(leftarmopen);
 ServoD3(rightarmopen); // Leave arms open otherwise.
 }
*/

/*if (irleft >= 2200 && irright >= 2200) //If both IR sensors detect an object within

range...
{if (random() > 16338) //If the random function (range 0 to 32677)

is greater than 16338
 {ServoC0(leftforward);
 ServoC4(rightreverse); // Turn right.
 delay_ms(600); //delay 200ms
 }
else //If the random function (range 0 to 32677) is less than 16338
 {ServoC0(leftreverse);
 ServoC4(rightforward); //Turn left
 delay_ms(600); //delay 200ms
 }
}
else //If not on positive half of servo range...
 {ServoC0(leftforward);
 ServoC4(rightforward);
 }

if (irleft >= 2200 && irright <= 2500) //If the left IR sensor detects an object

within range...
ServoC4(rightreverse); //Reverse right wheel.

else //Otherwise...
 ServoC4(rightforward); //Right wheel goes forward.

if (irright >= 2200 && irleft <= 2500) //If the right IR sensor detects an object

within range...
 ServoC0(leftreverse); //Reverse left wheel.
else //Otherwise...
 ServoC0(leftforward); //left wheel goes forward.
*/
/*if (i == 20) //If both IR sensors detect an object within range...

{if (random() > 16338) //If the random function (range 0 to 32677) is
greater than 16338

 14

 {ServoC0(leftforward);
 ServoC4(rightreverse); // Turn right.
 delay_ms(600); //delay 200ms
 }
 else //If the random function (range 0 to 32677) is less than 16338
 {ServoC0(leftreverse);
 ServoC4(rightforward); //Turn left
 delay_ms(600); //delay 200ms
 }
 i = 0;
 }
 i = i + 1;*/
}
free(temp);

 }}

